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Introduction
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● Problem
○ Finding a robust and efficient way to detect Android malware

● Traditional solutions
○ Static: reviews the source code and binaries in order to find suspicious 

patterns.
○ Dynamic: involves the execution app in an isolated environment while 

monitoring and tracing its behaviour.
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Static and Dynamic Analysis Approaches
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● Static
○ Traditionally: signatures
○ Patterns in: binary file, API calls, op-codes
○ Methods: manual analysis or machine learning
○ Challenge: obfuscated applications, processing speed

● Dynamic
○ Executing in the isolated environment
○ System-level behavior or networking behavior: monitoring battery, op-codes, 

API calls, network traffic, etc.
○ Methods - signature based or machine learning
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Our Approach
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● Utilizing static and dynamic behavioral analysis
● Hybroid = program code structures + network traffic + machine learning
● Binary classification and multi-label classification
● Android malware detection and categorization

Mohammad Reza Norouzian, Peng Xu, Claudia Eckert, and Apostolis Zarras



Our Contribution
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● We present Hybroid, a hybrid framework for Android malware 
detection and categorization based on static and dynamic features.

● We design and implement automatic extraction of flow-based features 
from the Android raw network traffic as a dynamic features.

● We leverage NLP and convert machine codes, functions, and programs 
to opcode2vec, function2vec, and graph2vec by embedding 
methods.

● We evaluate the accuracy of our approach using a real-world dataset 
and show that Hybroid outperforms nearly all state-of-the-art solutions.
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System Overview
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https://app.diagrams.net/?page-id=nUfTxWIU3fskmxl740qJ&scale=auto#G1S4beqFg7D7ENCtpGBhjt66oZyyqn2HQs


 Static Features Preparation
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● Extract the opcode, basic block, and CFG from the Android APKs.
● Extract the CFG by utilizing the Androguard framework.
● Iterate each function in the program to get the basic block.
● Analyze each instruction and take opcode as our basic term.
● The entire process includes three main steps:

○ Opcode embedding
○ Basic block embedding
○ Graph embedding

1- https://github.com/androguard
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 Static Features Preparation Cont’d
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● Opcode embedding 
○ Converts the machine instructions into vectors

● Basic block embedding
○ Transforms a basic block of the program into a vector

● Graph embedding
○ Modifies the whole function call graph into a vector

● Representation learning 
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 Static Features Preparation Cont’d
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● Opcode embedding
○ Word2vec
○ Opcode/Mnemonic

● Basic block embedding normalization
○  

● Graph embedding. 
○ Structure2vec
○ Vertices: functions/basic block
○ Edges: caller/callee, jump/return/jne instructions
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 Dynamic Features Preparation
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● Network flow generation
○ NetFlow data aggregated

● Normalization 
○

● Feature selection
○ Complexity reduction
○ Noise reduction

Mohammad Reza Norouzian, Peng Xu, Claudia Eckert, and Apostolis Zarras

https://app.diagrams.net/?page-id=nUfTxWIU3fskmxl740qJ&scale=auto#G1glCRSBhNOBXnSNOW5ZZsygUABbJsAj4A


Dynamic Feature Selection
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● Feature selection algorithms
○ Pearson correlation, Extra trees classifier, Univariate feature selection

● Feature selection validation
○  Kendall’s correlation method

List of network flow features Dynamic network flow feature correlation scores
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Observation of Malware Network Communications
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● Observations on the entire encrypted data flows
● Initially more upload than download are more likely to be malicious.

○ Malware connects to a control server, identifies a client certificate
○ After the initial connection, the channel is often kept open but idle!

● The initial upload of normal connections usually
○ A GET request (little upload)
○ Large response in the form of web page from server

● Hybroid results show that analyzing flow metadata would be effective on 
encrypted flows too.
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Evaluation and Dataset
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● We set up our experiments on our Euklid server with 32 Core 
Processor, 128 GB RAM, and 16 GB GPU.

● Python, Scikit-Learn, Tensorflow, and Keras.
● 5-fold cross-validation

○ we averaged the results of the cross-validation tests, executed each time 
with a new random dataset shuffle.

1- https://www.unb.ca/cic/datasets/andmal2017.html

CICAndMal2017 Dataset
1
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Power Law 

15Mohammad Reza Norouzian, Peng Xu, Claudia Eckert, and Apostolis Zarras

Power-law distribution for Dalivk opcodes



Results Performance

16

Binary 
Classification - 

Detection

Multi-label 
Classification - 
Categorization
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Related Works on Binary Classification
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Malware detection overall performance of different related works
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ROC Curve Results
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Malware categorization
ROC curve of gradient boosting

Malware detection ROC curve of 
different related works
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Limitation and Future Work
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● Lack of labeled data for CICAndMal2017
● Larger dataset
● Tested Hybroid on 45,592 malware and 90,313 benign samples

○ AndroidZoo
○ VirusTotal
○ VirusShare
○ The accuracy and F1-score of 95.0% and 96.0% respectively 

1- https://androzoo.uni.lu/
2- https://www.virustotal.com/gui/
3- https://virusshare.com/
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Conclusion 
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● Summary
● Limitations

○ Lack of labeled data for CICAndMal2017
○ Larger dataset
○ Tested Hybroid on 56000 samples from
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Thanks!!!
Discussions?
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