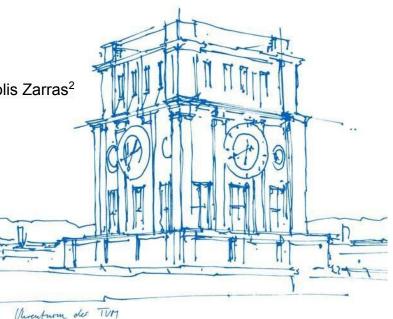


Hybroid: Toward Android Malware Detection and Categorization with Program Code and Network Traffic

Mohammad Reza Norouzian¹, **Peng Xu¹**, Claudia Eckert¹, and Apostolis Zarras²

¹ Technical University of Munich

² Delft University of Technology

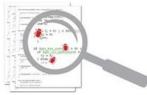


- Introduction
- System design
- Evaluation
- Limitation and future works
- Summery

Mohammad Reza Norouzian, Peng Xu, Claudia Eckert, and Apostolis Zarras

- Introduction
 - Problem
 - Finding a robust and efficient way to detect Android malware

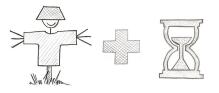
- Traditional solutions
 - **Static**: reviews the source code and binaries in order to find suspicious patterns.
 - **Dynamic**: involves the execution app in an isolated environment while monitoring and tracing its behaviour.



Static and Dynamic Analysis Approaches

• Static

- Traditionally: signatures
- Patterns in: binary file, API calls, op-codes
- Methods: manual analysis or machine learning
- Challenge: obfuscated applications, processing speed



• Dynamic

- Executing in the isolated environment
- System-level behavior or networking behavior: monitoring battery, op-codes, API calls, network traffic, etc.
- Methods signature based or machine learning

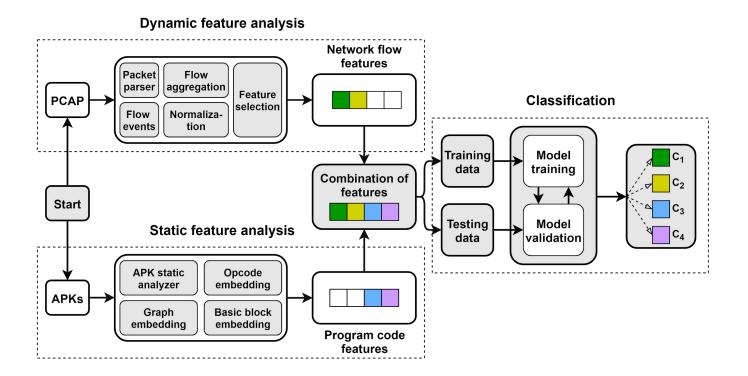
Our Approach

- Utilizing static and dynamic behavioral analysis
- Hybroid = program code structures + network traffic + machine learning
- Binary classification and multi-label classification
- Android malware **detection** and **categorization**

Our Contribution

- We present Hybroid, a **hybrid framework** for Android malware detection and categorization based on static and dynamic features.
- We design and implement automatic extraction of **flow-based** features from the Android raw network traffic as a dynamic features.
- We leverage NLP and convert machine codes, functions, and programs to opcode2vec, function2vec, and graph2vec by embedding methods.
- We **evaluate** the accuracy of our approach using a real-world dataset and show that Hybroid outperforms nearly all state-of-the-art solutions.

System Overview

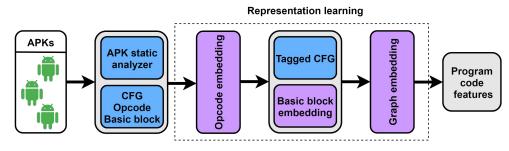


Static Features Preparation

- Extract the **opcode**, **basic block**, and **CFG** from the Android APKs.
- Extract the **CFG** by utilizing the Androguard, framework.
- Iterate each function in the program to get the **basic block**.
- Analyze each instruction and take **opcode** as our basic term.
- The entire process includes three main steps:
 - Opcode embedding
 - Basic block embedding
 - $\circ \quad \text{Graph embedding} \\$

1- https://github.com/androguard

Static Features Preparation Cont'd



- Opcode embedding
 - Converts the machine instructions into vectors
- Basic block embedding
 - Transforms a basic block of the program into a vector
- Graph embedding
 - Modifies the whole function call graph into a vector
- Representation learning

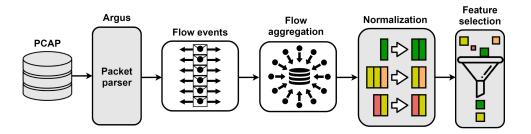
Mohammad Reza Norouzian, Peng Xu, Claudia Eckert, and Apostolis Zarras

Static Features Preparation Cont'd

- Opcode embedding
 - \circ Word2vec
 - Opcode/Mnemonic
- Basic block embedding normalization
 - $\circ \quad x^1 = (x \min(x))/(\max(x) \min(x))$
- Graph embedding.
 - Structure2vec
 - Vertices: functions/basic block
 - Edges: caller/callee, jump/return/jne instructions

```
\begin{array}{c|c} \textbf{Algorithm 1: Graph embedding} \\ \hline \textbf{Input: Instruction embedding } v_i: i \in I, \text{ control flow graph insider of a} \\ function $g_f$, parameter $\alpha$ \\ \hline \textbf{Output: Graph embedding $v_f: f \in F$ \\ 1 \text{ Initialize $\mu_v^0 = Rand, forall $v \in V$ \\ 2 \text{ for $t=1$ to $T$ do} \\ 3 & & \\ \textbf{for $v \in V$ do$ \\ 4 & & \\ 5 & & \\ \mu_v^{(t)} = tanh(W_1 x_v + \sigma(l_v)) \\ 6 $v_f = W_2(\sum_{v \in V} \mu_v^T)/len(V))$ \\ 7 \text{ return $v_f$} \end{array}
```


Dynamic Features Preparation



- Network flow generation
 - NetFlow data aggregated
- Normalization

 $\circ \quad x^1 = (x - \min(x)) / (\max(x) - \min(x))$

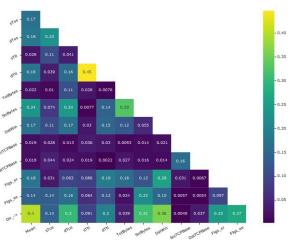
- Feature selection
 - Complexity reduction
 - Noise reduction

Dynamic Feature Selection

- Feature selection algorithms
 - **Pearson** correlation, **Extra trees** classifier, **Univariate** feature selection
- Feature selection validation
 - Kendall's correlation method

Notation	Traffic Features
Mean	Average duration of aggregated records
sTos	Source TOS byte value
dTos	Destination TOS byte value
sTtl	Source to destination TTL value
dTtl	Destination to source TTL value
TotBytes	Total transaction bytes
SrcBytes	Source to destination transaction bytes
DstWin	Destination TCP window advertisement
SrcTCPBase	Source TCP base sequence number
DstTCPBase	Destination TCP base sequence number
Flgs_er	State flag for Src loss/retransmissions
Flgs_es	State flag for Dst packets out of order
Dir	Direction of transaction

List of network flow features



Dynamic network flow feature correlation scores

Observation of Malware Network Communications

- Observations on the entire encrypted data flows
- Initially more upload than download are more likely to be malicious.
 - Malware connects to a control server, identifies a client certificate
 - After the initial connection, the channel is often kept open but idle!
- The initial upload of normal connections usually
 - A **GET** request (little upload)
 - Large response in the form of web page from server
- Hybroid results show that analyzing flow metadata would be effective on encrypted flows too.

Category	HTTP Flow TLS Flow		
Adware	52.00%	8.00%	
Ransomware	29.22%	0.00%	
Scareware	61.38%	10.89%	
SMSmalware	52.20%	10.28%	

Type of malware category communication networks

Evaluation and Dataset

- We set up our experiments on our Euklid server with 32 Core Processor, 128 GB RAM, and 16 GB GPU.
- Python, Scikit-Learn, Tensorflow, and Keras.
- 5-fold cross-validation
 - we averaged the results of the cross-validation tests, executed each time with a new random dataset shuffle.

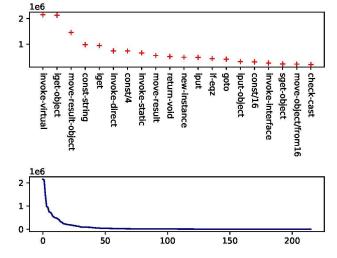
Name	Number	Description	Distribution(%)
APK files	2,126	All program code files	100%
PCAP files	2,126	All the raw network traffic files	100%
Benign APKs	1,700	No. of benign APK	80%
Adware APKs	124	No. of Adware category APK	5.9%
Ransomware APKs	112	No. of Ransomware category APK	5.2%
Scareware APKs	109	No. of Scareware category APK	5.2%
SMSmalware APKs	101	No. of SMSmalware category APK	4.7%

CICAndMal2017 Dataset

1- https://www.unb.ca/cic/datasets/andmal2017.html

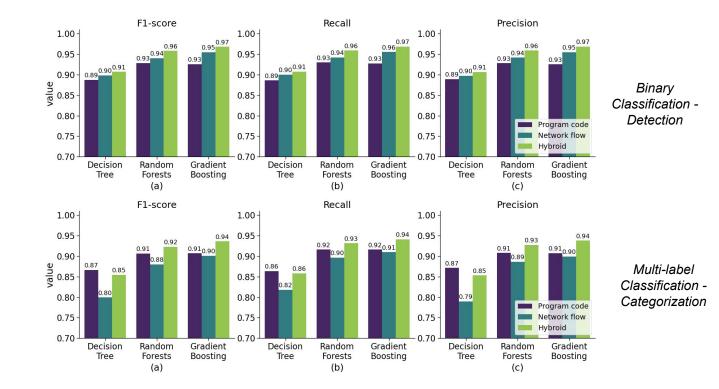
Mohammad Reza Norouzian, Peng Xu, Claudia Eckert, and Apostolis Zarras

Power Law



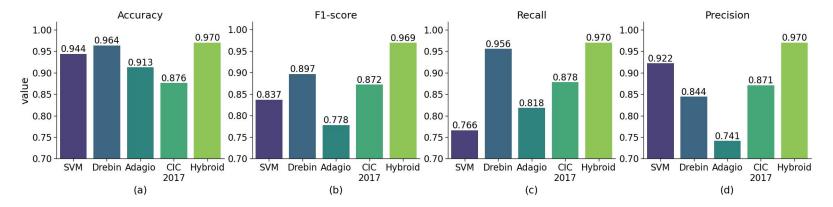
Power-law distribution for Dalivk opcodes

Results Performance



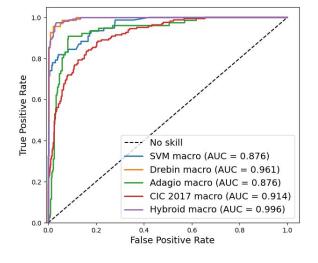
Mohammad Reza Norouzian, Peng Xu, Claudia Eckert, and Apostolis Zarras

Related Works on Binary Classification

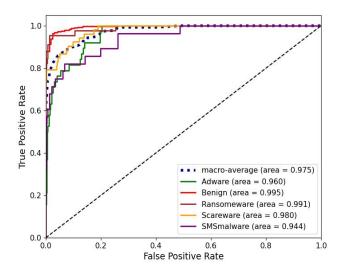


Malware detection overall performance of different related works

ROC Curve Results



Malware detection ROC curve of different related works



Malware categorization ROC curve of gradient boosting

Limitation and Future Work

- Lack of labeled data for CICAndMal2017
- Larger dataset
- Tested Hybroid on 45,592 malware and 90,313 benign samples
 - \circ AndroidZoo¹
 - VirusTotal²
 - VirusShare³
 - The accuracy and F1-score of 95.0% and 96.0% respectively

1- https://androzoo.uni.lu/

2- https://www.virustotal.com/gui/

3- https://virusshare.com/

Conclusion

- Summary
- Limitations
 - Lack of labeled data for CICAndMal2017
 - Larger dataset
 - Tested Hybroid on 56000 samples from

Acknowledgement

 It has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No. 830892 (SPARTA), No. 883275 (HEIR), and No. 833115 (PREVISION).

Thanks!!! Discussions?

Mohammad Reza Norouzian, Peng Xu, Claudia Eckert, and Apostolis Zarras