

HawkEye: Cross-Platform Malware Detection with Representation Learning on Graphs

Peng Xu¹, Youyi Zhang², Claudia Eckert¹, Apostolis Zarras²

{**Peng**,eckert}sec.in.tum.de

zhangyouyi@yahoo.com

a.zarras@tudelft.nl

¹ Technical University of Munich

² Tongji University

³ Delft University of Technology

ТШ

Agenda

- Introduction
- Related Work
- System Design and Implementation
- Evaluation
- Conclusion

Introduction

Problems

- ✓ Developed systems can **prevent** malware
 - they frequently target one specific platform/architecture, and thus, they cannot be ubiquitous.
- ✓ Malware authors use obfuscation technique
 - code obfuscation techniques used by malware authors can negatively influence detecting and preventing performance.

Introduction

Motivation

✓ Cross-platfrom Detection

- The native libraries of Android apps, including the malicious native code, are cross platform (i.e., x86, ARMv7, ARMv8).
- Modern ICT environments need mixture malware detection system on Router, Terminals, Workstation and PC
- Control Flow Graphs (CFG) based method is a solution in the right direction because all programs have CFGs

Introduction

Contribution

- ✓ design and implement HawkEye, a cross-platform malware detection
 framework
- ✓ a hybrid Control Flow Graph and Graph Neural Networks and is inspired by Natural Language Processing.
- ✓ includes three primary components: (i) a graph generator; (ii) a graph-neuralnetwork-based graph embedding method (iii) a machine-learning classification
- ✓ **outperforms** numerous malware detection solutions.

✓ Feature-code-based methods

✓ Feature-code-based methods

✓ Machine/Deep learning-based methods

Malicious API(Mainfest file) based methods

✓ Feature-code-based methods

✓ Machine/Deep learning-based methods

- Malicious API(Mainfest file) based methods
- Permission-based methods

✓ Feature-code-based methods

✓ Machine/Deep learning-based methods

- Malicious API(Mainfest file) based methods
- Permission-based methods
- Network-traffic-based-methods

✓ Feature-code-based methods

✓ Machine/Deep learning-based methods

- Malicious API(Mainfest file) based methods
- Permission-based methods
- Network-traffic-based-methods
- Program-code-based methods
 - Control flow graph-based
 - Function-call/API-call graph-based
 - Executable-file pattern-based

Table 1. comparison with providus works						
	Approaches	Description				
CFG	Gemini [15], MAGIN [16] Adagio [4]	ACFG + Manually indicated features CFG + Manual one-hot embedding features				
Byte Sequences	MalConv [10] Ember [3]	Convolutional + trainable embedding Gradient boosted decision tree + LightGBM				
CFG+NLP	Pektaş et. al. [9] HawkEye	Malware Detection + call graph + graph embedding Cross-platforms + Representation learning on graph				

Table 1: Comparison with previous works

Design and Implementation ✓ Overview

Fig. 1: System architecture

$$loss = \min \sum_{i=1}^{n} \lambda(f(g_i(V, X, A)) + \delta w(f)) - y_i$$
$$G^D(V^D, E^D), \quad D \text{ presents the number of the graph} \quad g_i(V, X, A)$$
HawkEye G^D to $Y^D, f : G \to Y$ to predict whether an executable file is malicious

Peng Xu, Youyi Zhang, Claudia Eckert, Apsotlis Zarras | IT Security | Technical University of Munich

Design and Implementation ✓ Overview

Fig. 1: System architecture

Graph generator, Feature embedding and MLP-based classifier

✓ Overview

✓ Graph Generator

- \succ Extract flow graphs from the executable binaries
 - Types

static&dynamic control flow graph, function call graph

• Expression

 \square G = (N, E), N: function/basic block, E: caller/callee

• The dCFG and the fCG are **reduced graph** of the sCFG

✓ Overview

- ✓ Graph Generator
- ✓ Feature Embedding
 - Mnemonic embedding
 - Machine Instruction: *label:[mnemonics][operands][comment]*.
 - Mnemonic : *mov*, *add*, and *sub*.
 - Operands : immediate number, register, and memory
 - **Mnemonic2vec:** skip gram sampleing word2vec

Mnemonic will lost operands infomration, operands have their inherent variability

- OverviewGraph Generator
- ✓ Feature Embedding
 - Mnemonic embedding
 - Block embedding
 - Normalization: $x_{normalization} = \frac{x Min}{Max Min}$

Max and Min are the maximal and minimal values among all embedding vectors in the basic block. The **first** element of vectors is picked up to get the maximal and minimal values

✓ Overview

✓ Graph Generator

✓ Feature Embedding

- Mnemonic embedding
- Block embedding
- Graph embedding
 - Structure2vec: G = (N, E)
 - Vertices: Functions/Basic Block
 - **Edges**: Caller/callee, jump/return/jne instruction

- ✓ Overview
- ✓ Graph Generator
- ✓ Feature Embedding

✓ MLP Classifier

- MLP Structure: one input layer, two hidden layers with 32 units, and one output layer
- Loss function: hinge loss

ТШП

Evaluation

- ✓ Experimental Setup
 - ✓ Platform
 - Linux X86-64
 - 128 GB RAM and 16 GB GPU
 - ✓ Software
 - Tensorflow 2.0.0-beta0
 - Angr: angr-utils and bingraphvis
 - Keras 2.2.4
 - Sklearn 0.20.0
 - numpy 1.16.4
 - matplotlib 3.1.1

✓ Experimental Setup

✓ Datasets

Platforms	Training		Validation		Testing		Total	
	Malware	Benign	Malware	Benign	Malware	Benign	Malware	Benign
Windows-x86	17,910	19,043	5,970	6,347	5,970	6,346	29,850	31,736
Android	15,331	15,000	5,111	5,000	5,111	5,000	$25,\!553$	25,000
Linux-x86	5,501	$5,\!693$	$1,\!834$	1,898	1834	1,897	9,169	9,488
Linux-x64	319	923	106	307	106	307	533	1,539
Linux-ARM32	434	446	144	148	144	148	724	744

Table 2: The number of samples in different datasets

Split the dataset with 60% for training, 20% for validation, and the rest 20% for testing

Experimental Setup

- ✓ Datasets
- Power Law and Opcode Embedding

Fig. 2: Power-law Distribution for Intel, ARM and Dalivk Opcodes.

- Experimental Setup
- Datasets
- Power Law and Opcode Embedding
 - **Results Comparison Malware Detection Performance**

Table 3: Performance comparison with other approaches						
Model	Accuracy (%)	Precision (%)	Recall (%)) F1 (%)	AUC: (%)	
WIN-Ge	93.39	94.79	97.74	96.24	94.61	
WIN-MalConv [10]	90.77	98.88	34.34	50.97	82.43	
WIN-Ember [3]	98.23	97.47	89.72	93.43	96.67	
WIN-MAGIC [16]	82.46	86.63	82.46	81.96	84.78	
ANDROID-Ge	99.85	99.74	99.74	99.74	99.57	
ANDROID-Adagio [4]	95.00	91.07	94.0	95.32	91.07	

Fig. 3: ROC and precision-recall on Windows-x86 and Android

- Experimental Setup
- ✓ Datasets
- Power Law and Opcode Embedding

Results Comparison - Hyperparameters

Fig. 4: ROC results with different iteration

- After 12 epochs, the ROC value will be maintained at a certain level.
- When learning rate equals to 0.005, HawkEye gets the best of AUC with 98.83%.
- The embedding size in a specific range does not impact the performance.

- ✓ Experimental Setup
- ✓ Datasets
- ✓ Power Law and Opcode Embedding

Results Comparison - Obfuscated Samples

	ClassEnc.	StrEnc.	Refl.	Triv.	TrivStr.	TrivRefStr.	TrivRefStrClass.
$\mathbf{PRAGuard}^5$	38.0	64.0	96	90.0	50.0	44.0	32.0
Drebin	99.12	98.99	86.58	98.32	98.99	99.32	96.98
Our framework	99.33	98.99	86.58	98.32	98.99	99.32	96.98

 Table 4: Detection rate of obfuscated APK

- Experimental Setup
- ✓ Datasets
- ✓ Power Law and Opcode Embedding
 - Results Comparison Obfuscated Samples

Fig. 5: ROC of obfuscated APK

Conclusion

- ✓ design and implement HawkEye, a cross-platform malware detection framework
- A hybrid Control Flow Graph and Graph Neural Networks and is inspired by Natural Language Processing.
- ✓ includes three primary components: (i) a graph generator; (ii) a graph-neuralnetwork-based graph embedding method (iii) a machine-learning classification
- \checkmark outperforms numerous malware detection solutions.

ТШ

Thank you !!! Questions? Comments?