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Abstract

We tackle a new challenge of modeling a perceptual experience in which a
stimulus in one modality gives rise to an experience in a different sensory
modality, termed synesthesia. To meet the challenge, we propose a probabilistic
framework based on graphical models that enables to link visual modalities and
auditory modalities via natural language text. An online prototype system is
developed for allowing human judgement to evaluate the model’s performance.
Experimental results indicate usefulness and applicability of the framework.

1 Introduction

A picture of a golden beach might stimulate human’s hearing,probably, by imagining the sound of
waves crashing against the shore. On the other hand, the sound of a baaing sheep might illustrate
a green hillside in front of your eyes. In neurology, this kind of experience is termedsynesthesia.
That is, a perceptual experience in which a stimulus in one modality gives rise to an experience in
a different sensory modality. Without a doubt, the creativeprocess of humans (e.g. painting and
composing) is to a large extent attributed to their synesthesia experiences. While cross-sensory
links such as sound and vision are quite common to humans, machines do not possess the same
ability naturally. Nevertheless, synesthetic perceptionis never a mysterious term for machines as it
is for psychologists and neuroscientists. Images and sounds represent distinct modalities, yet both
modalities capture the same underlying concepts as they were used to describe the same objects. In
this paper, we are aiming to associate images and sounds using a multi-modality model.

Before contemplating the problem of multi-modal modeling,we illustrate the links between im-
ages and sounds in Figure 1. Loosely speaking, there are two types of links between images and
sounds, namelyexplicit linking andimplicit linking. Explicit linking happens ubiquitously. For in-
stance, for those who have been to the sea, it is easy to associate the sound of waves with the picture
of blue sea. On the other hand, implicit linking is more sophisticated. Assume you are aware that
J.S. Bach was a grand violinist and you know how a violin sounds like. Yet, you have never heard
Bach playing violin personally. Now by showing you a portrait of Bach, the sound of violin might
involuntarily ring in your ears. The major difference between these two links is: the correspondence
between image and sound is observed in first case, whereas image and sound are not directly asso-
ciated in the second case, they are linked together by another intermediate but obscure modality.

As natural language is based on visual and auditive stimuli,we believe text is a reasonable
and effective intermediate modality to bridge the gap between images and sounds. Seen from
the perspective of machine learning, implicit linking via text stimulates particular interests for the
following reasons.

• Implicit linking makes full use of the data resources. In particular, an implicit linking model
can be trained on three separate data sets, i.e. images/text, sounds/text and text. These three
type of data can be easily acquired from the web. By contrast,an explicit linking model needs
aligned images/sounds data for training. That is, one has tocollect a set of images, each of which
corresponds to a collection of associated sounds. Unfortunately, a high-quality images/sounds
data set is scarce and expensive. Hence the explicit linkingmodel is limited realizable due to
the lack of corresponding information between two modalities. On the other hand, the implicit

1



J.S. BACH

COMPOSER

VIOLINIST

Time

0.5 1 1.5
0

1

2

x 10
4

VIOLIN

STRING

INSTRUMENT

Time

5 10 15 20
0

1

2

x 10
4

Explicit linking

Implicit linking via text

Image Sound

Figure 1: The upper part of the figure illustrates explicit linking, where the image and sound are linked
together directly. Sounds are visualized as spectrogram using the short-time Fourier transform. The lower part
consists of two entries from our data set: a captioned portrait of J.S Bach (left side) and a captioned sound
snippet of violin (right side). The captions are shown in uppercase. Note, that our data set does not contain the
correspondence between images and sounds.

linking provides an approach to model two modalities in an indirect manner by leveraging an
intermediate modality.

• Implicit linking is more likely to capture the subtle association between images and sounds. For
instance, we feed pairwise pictures and sounds of a violin totrain an explicit linking model.
Given a new sound snippet of a violin, the model is unlikely tolink it with the portrait of J.S.Bach.
On contrary, an implicit linking model can propagate the relatedness crossing three modalities:
from sound to text (violin’s sound→ “violin”), from text to text (“violin”→ “violinist”), and
finally from text to image (“violinist”→ Bach’s portrait). Therefore, an implicit linking model
can achieve a more comprehensive synesthesia than an explicit model.

• Natural language relies on the process of semiosis to relatea sign with a particular meaning.
Jointly modeling visual and auditory information enables us to gain insight into the language
itself, for instance by studying the following problems: how are words or morphemes related
to sensory information? How is the syntactic system concatenating words into different phrases
and sentences under different scenes? By exploring the implicit linking, we might use the
methodology of machine learning research to answer the above questions originated in the field
of cognitive science and neurolinguistics.

We intend to link images and sounds in an implicit manner. In particular, using natural language
text as an intermediate representation for both visual and auditory modality and bringing them
together. Our motivation is that the natural language reveals the underlying concepts in both visual
and auditory modality, meanwhile encompasses the semanticrelations of polysemy and synonymy,
which suggests a bridge between images and sounds. A complete matching process follows three
steps: translating the original modality into text, analyzing the text, and translating the text to target
modality. The problem we focus on can be described in two ways. First, one might attempt to predict
sounds given an image, where sounds should be either directly (approximately matching with visual
objects) or indirectly (a reasonable synesthesia stimulated by the scene) related with the image. We
refer to this task asimage composition. Secondly, one might attempt to predict images that either
directly or indirectly relate to the given sound, which is denoted assound illustration in this paper.

There are several practical applications that derive from image composition and sound illus-
tration. For example, a digital photo management software with an image composition plugin
can automatically link suitable sound effects for every picture in the album, which will greatly
enrich the user experiences. The art museum can also exploitimage composition to attract visitors
by giving them environmental sounds of what they currently see. Moreover, image composition
and sound illustration can also be used to provide an assisted multimedia context for people with
disabilities like blindness and deafness.

We explore and exploit probabilistic topic models, such as latent Dirichlet allocation (LDA) [3]
to model the implicit links. Probabilistic topic models finda low dimensional representation of data
under the assumption that each datum can exhibit multiple “topics”. This idea has been successfully
adapted and imported to many computer vision problems [1, 2,5, 8]. In this paper, we develop
a probabilistic framework that exploits LDA and correspondence-LDA models (Corr-LDA) [2] to
perform image composition and sound illustration simultaneously. For the sake of clarity the paper
is structured as follows: Previous works on multi-modal modeling are briefly reviewed in Sect. 2. In
Sect. 3, we describe the input representation of images and sounds as well as the preprocessing step.
Sect. 4 formulates the image composition and sound illustration tasks in a probabilistic framework,
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and introduces our approach of jointly modeling images, sounds and text. Experimental results are
illustrated in Sect.5. Sect. 6 concludes.

2 Related Work

A number of papers have considered probabilistic models formulti-modal data, especially for
modeling images and text. As linking an image with associated text is extremely useful in
image annotation, multi-media information retrieval and object recognition, manifold models are
proposed. The co-occurrence model allows to compute in a straightforward manner the probability
of associating words with image grids [10]. Inspired by the techniques in machine translation [4],
one can consider images and text as two different languages.Thus, linking images and words
can be viewed as a process of translating from visual vocabulary to textual vocabulary [5, 12].
Leveraging on the bags-of-words representation of images and text, many approaches originated in
the field of text modeling such as: Hofmann’s hierarchical aspect model [11], translation model [4]
and latent Dirichlet allocation (LDA) model [3]. These models were extended for predicting
words from images [1]. LDA was further extended to correspondence-LDA (Corr-LDA) to model
the generative process of image regions and words in the samelatent space [2]. Additionally, a
supervised extension was proposed to perform classification [23].

In another line of research, modeling text and audio focusedon music classification of genre,
emotion, and instrumentation for text-based music information retrieval [7, 14, 22]. These
approaches classify music and “tag” them with class labels (e.g., “pop”, “jazz”, “blues”) from a
limited textual vocabulary. More recently, several approaches have been developed to annotate
music with a larger and more diverse vocabulary of tags [6, 17, 20].

Our work can be viewed as a combination of multi-modal modeling, information retrieval and
natural language processing. The contribution of this paper is threefold. First, to the best of our
knowledge the idea of artificial synesthesia and cross-sensory implicit linking have not been well
explored in the field of machine learning. Second, we leverage an intermediate modality, that is text,
to bridge the gap between images and sounds, which differs from ordinary approaches based on
explicit linking. Third, we represent images, text and sounds in a generic probabilistic framework,
which provides a clean, solid and extensible infrastructure.

3 Input Representation and Preprocessing

In this section, we briefly introduce the preprocessing stepfor images and sounds. The goal is
to build a visual vocabulary and an auditory vocabulary for representing images and sounds as
bags-of-words.

3.1 Image Representation

Following previous work [8], we represent each image as a setof visual words. Here,visual words
are defined as the centroids of learnt clusters usingk-means algorithm. To obtain visual words, we
compute the dense SIFT descriptors for each image [13, 16]. Thus, each image is represented as
a set of128 dimensional SIFT descriptors. We then quantize all SIFT descriptors in the collection
usingk-means algorithm to obtain centroids of learnt clusters, which compose the visual vocabulary
for images. Finally, each visual word is assigned a unique integer to serve as its identifier, and the
SIFT descriptors are mapped to their corresponding nearestvisual word.

3.2 Sound Representation

Each sound snippet is cut into frames, where a frame refers toa sequence of1024 audio samples.
For each frame, we compute the13 dimensional Mel-Frequency Cepstral Coefficients and6 groups
of widely used statistics (mean and standard deviation) [21]: Energy Entropy, Signal Energy, Zero
Crossing Rate, Spectral Rolloff, Spectral Centroid and Spectral Flux. Thus, each sound snippet is
represented as a set of25 dimensional feature vectors. Similar to the preprocessingstep of images,
all feature vectors in the collection are clustered usingk-means algorithm to obtain auditory words.
At last, the feature vectors are mapped to their corresponding nearest auditory word.

3.3 Notations

Assuming a training collectionT consists of K annotated images andL tagged sounds
T = {I1, . . . , IK ;S1, . . . ,SL}, we can now unify the notation of images, sounds and their
corresponding text as follows:
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• An annotated imageI ∈ T has a dual representation in terms of visual words and textual words:
I = {v1, . . . , vM ;w1, . . . , wN}. Here{v1, . . . , vM} represents theM visual words ofI and
{w1, . . . , wN} representsN words in the annotations ofI.

• A captioned sound snippetS ∈ T has a dual representation in terms of auditory words and textual
words: S = {u1, . . . , uM ;w1, . . . , wN}, Here{u1, . . . , uM} represents theM auditory words
of S and{w1, . . . , wN} representsN words in the tags ofS.

In addition, we defineWi as the vocabulary of image annotations andW
s as the vocabulary of

sound tags. The complete textual vocabulary is denoted asW = W
i ∪W

s.

4 Linking Images and Sounds via Text

An overview of the probabilistic framework for performing the image composition task and sound
illustration task is depicted in Figure 2. Following the notations in Section 3.3, these two tasks can
be formulated as follows:

Image composition Given an un-annotated imageI∗ /∈ T, estimate the conditional probability
p(S|I∗) for everyS ∈ T. To compose a sound effect, one can pick the sound snippets with the
highest probability underp(S|I∗) and mix them together.

Sound illustration Given an un-tagged soundS∗ /∈ T, estimate the conditional probabilityp(I|S∗)
for everyI ∈ T. The visual scene that best matches the given sound is the image with highest
probability underp(I|S∗).

Since we can not estimatep(S|I∗) andp(I|S∗) directly, as there are no explicit correspondences
between images and sounds in our data set, the only bridge we can take advantage of is the text
in the captioned images and sounds. An intuitive way is to first “translate” the image into natural
language text, and then “translate” the text back into sound. Therefore, the conditional probabilities
can be approximated as:

p(S|I∗) ≈
∑

w∈Wi

∑

w′∈Ws

p(S|w′)p(w′|w)p(w|I∗), (1)

p(I|S∗) ≈
∑

w∈Ws

∑

w′∈Wi

p(I|w′)p(w′|w)p(w|S∗). (2)

One can observe, that the two approximations have an equivalent representation. As a consequence,
we can first focus on the image composition taskp(S|I∗) and later apply the algorithm to the sound
illustration taskp(I|S∗) straightforwardly. The conditional probability (1) consists of three parts
and crosses three modalities, which implies three different models. Fortunately, as images and
sounds have been converted to the same representation as shown in Section 3, we can deal with
p(S|w) andp(w|I) using the same model. As we shall see,p(S|w) andp(w|I) can be derived from
Corr-LDA model, andp(w′|w) can be obtained from LDA and a lexical database.

4.1 Modeling Images/Text and Sounds/Text

Our approach is based on the Corr-LDA model proposed in [2]. We modify the Corr-LDA and
apply it to model images/text and sounds/text. As images andsounds have been represented
in an equivalent form, we hereinafter introduce our approach by taking images/text as exam-
ple. Formally, fixing the number of topicsT , the generative process of an annotated image
I = {v1, . . . , vM ;w1, . . . , wN} is described as follows:

1. Draw topic proportionsθ ∼ Dirichlet(α)
2. For each visual wordvm,m ∈ {1, . . . ,M}

(a) Draw topic assignmentzm|θ ∼ Multinomial(θ)
(b) Draw visual wordvm|zm ∼ Multinomial(πzm)

3. For each textual wordwn, n ∈ {1, . . . , N}

(a) Draw discrete indexing variableyn ∼ Uniform(1, . . . ,M)
(b) Draw textual wordwn ∼ Multinomial(βzyn

)

The graphical model of Corr-LDA is depicted in Figure 3. Two remarks need to be highlighted
here. First, we use a multinomial distribution to generate avisual word in step 2.b, whereas the
original model used a multivariate gaussian to generate image regions [2]. This slight difference
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Figure 2: Probabilistic framework for performing the image composition and sound illustration task. The
framework is an extension based on the work flow proposed in [8]. Images and sounds are represented in
bags-of-words, so that the difference between the two modalities can be omitted. Once we have the algorithm
for inferring sounds from an image, we can apply it to infer images from a sound by mirroring the algorithm.

can be attributed to the quantization of feature vectors in our preprocessing step. As a visual word
is a discrete indexing variable rather than a high dimensional vector, it makes sense to use the
multinomial distribution instead. This modification leadsto a variant of the variational inference
of Corr-LDA. Second, by simply replacing the visual wordvm by an auditory wordum, the same
generative process can be used to model sound and text. With atrained model in hand, we can
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Figure 3: (a) A graphical model representation of Corr-LDA. Nodes represent random variables; shaded
nodes are observed random variables, unshaded nodes are latent random variables. Edges denote possible
dependence between random variables; plates denote replicated structure. Note that the variablesyn are
conditioned onM . Corr-LDA is used to model the correspondence between images and text, as well as sounds
and text. (b) A graphical model representation of LDA, whichis used to model the word relatedness in this
paper. (c,d) Exemplary outputs the word relatedness of LDA and WordNet. Seven words with the highest
probabilities underp(w|rain) are listed. One can observe, that LDA and WordNet capture thesynonyms
effectively, yet LDA’s result relies more on the quality of the data set. Binding the two models together will
make the relatedness measurement more robust.

compute the conditional distributions of interest:p(I|w) andp(w|I∗), whereI ∈ T andI∗ /∈ T. In
particular, the distribution over words conditioned on an unseen image is approximated by:

p(w|I∗) ≈

M∑

m=1

∑

zm

p(zm|θ)p(w|zm, β). (3)

Moreover, we can rewritep(I|w) using Bayes rule as:

p(I|w) =
p(w|I)p(I)∑

I′∈T
p(w|I′)p(I′)

, (4)
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wherep(I) can be computed as follows:

p(I) = p(θ|α)
M∏

m=1

p(zm|θ)p(vm|zm, π)
N∏

n=1

p(yn|M)p(wn|zyn
, β) (5)

By plugging (3) and (5) into (4), we can estimatep(I|w) for every word and image in the training
set. For the sake of completeness, we release a technical note which includes the detailed derivation
of the variational inference and the parameter estimation algorithm on the web1.

4.2 Modeling Text

The remaining problem is to estimatep(w′|w) from the training set, which is actually measuring the
semantic relatedness between two words. We make use of the LDA model [3] to solve this problem.
To apply LDA on our data set, we build another data setD containing only captions of all images and
sounds inT, where|D| = |T|. The generative process of a documentD ∈ D is described as follows:

1. Draw topic proportionsθ ∼ Dirichlet(α)
2. For each textual wordwn, n ∈ {1, . . . , N}

(a) Draw topic assignmentzn|θ ∼ Multinomial(θ)
(b) Draw textual wordwn|zn ∼ Multinomial(βzn)

The graphical model of LDA is depicted in Figure 3(b). The mixing proportion over topics
θD = p(z|D) and the word distribution over topicsβ = p(w|z) are two sets of parameters that need
to be estimated from the training set. The LDA model can be trained by three different algorithms:
variational Expectation-Maximization [3], Expectation-Propagation [18] and collapsed Gibbs sam-
pling [9]. Given a trained LDA model, the word relatedness betweenw andw′ can be calculated by:

pLDA(w|w
′) =

1

C

∑

zn

p(w|zn)
nw′

nzn

p(w′|zn), (6)

wherenw′ is the number ofw′ occurred inD, nzn is the number of words assigned to topiczn. C is
a normalization factor to scale the relatedness to[0, 1]. Note, however, that the relatedness is calcu-
lated on a small data set with limited scope, it might not reflect the ground-truth of semantic similar-
ity. With this issue in mind, we avail ourselves of the WordNet dictionary2 to smoothp(w|w′). We
measure the semantic relatedness defined in [15] for every two words. Due to the limit of pages, we
omit the details of the algorithm and denote the result from WordNet similarity aspWordNet(w|w

′),
which is also in the range0 to 1. An example of relatedness measurements based on LDA and
WordNet is depicted in Figure 3(c,d), where we find both algorithms to give reasonable output, yet
differ from each other. Therefore, the final relatedness is defined as a mixture of two probabilities:

p(w|w′) = σ pLDA(w|w
′) + (1− σ)pWordNet(w|w

′), (7)

whereσ is the smoothing parameter.

In summary, calculatingp(S|I∗) boils down to two problems. First, to estimate the probabilities
p(w|I∗), p(S|w′) according to (3) and (4) respectively, which we obtain from the Corr-LDA
model. Second, to estimatep(w|w′) according to (7) which we obtain from the LDA model.
Plugging (3), (4) and (7) into (1) and (2), we finally obtain the conditional probabilities of interest.

5 Experimental Results

In this section we will discuss details of the data set used and show experimental results using
our approach. Due to the objective difficulties for evaluating synesthesia, the evaluation is mainly
performed in a qualitative manner. We will introduce an online system we built for allowing users
to identify the predicted sounds/images interactively. Finally, some examples are demonstrated to
illustrate different aspects of our approach.

5.1 Data set

For the images/text data set, we downloaded three classes ofimages from the LabelMe data set [19],
namely “street”, “coast”, “forest” and then randomly selected300 images for each class. The total

1http://home.in.tum.de/ ˜ xiaoh/pub/derivation.pdf
2WordNet is a lexical database for the English language (http://wordnet.princeton.edu/ ).
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number of images is900. For each image, the average length of annotations is7 tokens. The textual
vocabulary size of all annotations is156.

For sounds/text, we downloaded831 audio snippets fromThe Freesound Project3, where most
of them are natural sounds and synthetic sound effect. The duration of these sound snippets range
from 2 seconds to10 minutes. All sound snippets are converted to44.1kHz mono WAV format.
Each snippet is tagged by the uploader or other online users.The average number of tags per sound
is 6 tokens. The textual vocabulary size of sound tags is1576. An example of an abridged entry
from our data set is shown in Figure 1.

We held out20% of the data for testing purposes and used the remaining80% to estimate
parameters. Our goal is to train first the Corr-LDA model withannotated images, and second the
Corr-LDA model with tagged sounds, as well as the LDA model with all annotations and tags.
The image composition and sound illustration tasks are performed on un-annotated images and
un-tagged sounds, respectively.

5.2 Model Parameters

For computing SIFT descriptors, the size of a patch is set to16 × 16, the distance between grid
centers is10. By clustering SIFT descriptors and audio feature vectors,respectively, we obtained
241 visual words and89 auditory words in total (clusters with less than5 members are pruned
out). The Dirichlet priorα of Corr-LDA and LDA is fixed to0.1. The number of topic is40 for
both Corr-LDA and LDA. The maximum number of iterations for variational inference and EM
algorithm is set to100. The smoothing parameterσ is set to0.8.

5.3 Online Evaluation System

Evaluating the performance of the image composition and sound illustration task is difficult for
two reasons. First, our data set does not contain the correspondence information between images
and sounds. Moreover, a high quality images/sounds data setis scarce and expensive. Therefore,
we lack a gold-standard list of associated images or sounds to compare against. Second, the
image-sound synesthesia differs from person to person, andas a consequence the judgments
from two or three people may not truly reflect the model’s performance. Thus, evaluating the
image-sound synesthesia in a meaningful manner, requires gathering of exogenous data.

We developed an online evaluation system4 that allows humans to judge the predicted
sounds/images of a randomly given scene. For the image composition task, the webpage will
randomly draw an image from the test set as the scene. Meanwhile, ten sound snippets with highest
probabilities underp(S|I∗) are provided. Users can listen to the snippets and decide whether the
sounds are acceptable or not. For the sound illustration task, the webpage will randomly present a
sound from the test set as the scene, and provide ten images with highest probabilities underp(I|S∗).
In both tasks, subjects must identify sounds or images related to the given scene. Occasionally, the
system randomly draws images or sounds from the data set as intruders and demonstrates them to
the subjects. Decisions from subjects are counted for evaluating the model’s performance in terms
of precision and recall. We invited10 people from all walks of life for evaluating the result. As
depicted in Fig. 4, our approach achieves more meaningful result of images/sounds association than
the random baseline.

5.4 Illustrative Examples

To demonstrate the model’s performance, a good prediction and a bad prediction of each task is
illustrated in Figure 5. By observing Figure 5(a), one can see that there are4 out of 5 sounds
(1, 2, 4, 5) that are highly related to the left hand picture. Our model successfully made a reasonable
synesthesia by highlighting the sounds related with water.In Figure 5(b),4 out of 5 responsive
images (1, 2, 3, 4 are images about “car, street”) are related to the sound “vehicles passing”.
Nevertheless, we also notice that our model fails to producemeaningful synesthesia in some cases.
Consider for instance the right-hand side of Figure 5(a). Except the “wood stick breaking” sound,
one can hardly relate sounds (2, 3, 4, 5) with the scene. At the bottom of Figure 5(b), only the last
image is related to the query sound “waterfall flowing”.

3http://www.freesound.org/
4http://yulei.appspot.com/
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(a) Image composition task. (b)  Sound illustration task.

Figure 4: Given the top-10 predicted images/sounds, the top-N precision and recall of our approach
and a random baseline. (a) In image composition task, F-score@10 of our approach and the random
baseline is0.17 and0.09, respectively. (b) In sound illustration task, F-score@10 of our approach
and the random baseline is0.10 and0.02, respectively.

1. waterfall flowing
2. wave splashing,
powerboat engine booming
3. wood stick breaking
4. wave splashing
5. stream flowing

1. wood stick breaking
2. bell ringing
3. ice cube shaking in glass
4. child speaking
5. glass shattering

waterfall flowing

vehicles passing

(a) Image composition task, a good prediction (left) and a bad prediction (right).

(b) Sound illustration task, a good prediction (top) and a bad prediction (bottom).

The images are ranked according to the conditional probabilities from highest

probability (left most) to smallest probability (right most).

Figure 5: Example of good prediction and bad prediction of the synesthesia system. (a) The result of the
image composition task, where two un-annotated images and five predicted sounds are depicted. (b) The result
of the sound illustration task, where the un-tagged sounds and five predicted images are showed. Due to the
difficulties to illustrate sounds on paper, we list the predicted sound snippets and manually give them captions.

6 Conclusions and Future Work

We have developed a probabilistic framework to tackle a new challenge called artificial synesthesia.
The framework is based on latent Dirichlet models and enables the implicit linking of images and
sounds via text. Conducted experiments showed usefulness and applicability on real-world data
sets. Furthermore, an online prototype system has been developed to enable humans to evaluate the
model’s performance.

It has not escaped our notice, that the performance of Corr-LDA is varying on different data
sets. In particular, Corr-LDA has difficulties to effectively explore the latent space of images with
clutter. We are currently studying other graphical models to address this problem. As our proposed
framework is based on probabilistic models, new models can be straightforwardly plugged into our
framework.
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Our future goal for the image composition task, is to explorea suitable and elegant way of mixing
relevant sounds into a single track and compose a lifelike environmental sound effect. For sound
illustration, our ideal goal is to automatically paint a single collage by selecting segments from
relevant images. Other areas of possible research include using natural language sentences rather
than words as a bridge to link visual and auditory modalities.
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