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Abstract

We tackle a new challenge of modeling a perceptual expeziémovhich a
stimulus in one modality gives rise to an experience in aediffit sensory
modality, termed synesthesia. To meet the challenge, wgogea probabilistic
framework based on graphical models that enables to linkavisiodalities and
auditory modalities via natural language text. An onlinetptype system is
developed for allowing human judgement to evaluate the irsogerformance.
Experimental results indicate usefulness and appli¢glufithe framework.

1 Introduction

A picture of a golden beach might stimulate human’s heanghably, by imagining the sound of
waves crashing against the shore. On the other hand, the danbaaing sheep might illustrate
a green hillside in front of your eyes. In neurology, thiskiof experience is termegynesthesia.
That is, a perceptual experience in which a stimulus in ondatity gives rise to an experience in
a different sensory modality. Without a doubt, the creapivecess of humans (e.g. painting and
composing) is to a large extent attributed to their synesthexperiences. While cross-sensory
links such as sound and vision are quite common to humanghinedo not possess the same
ability naturally. Nevertheless, synesthetic percepisamever a mysterious term for machines as it
is for psychologists and neuroscientists. Images and sorepitesent distinct modalities, yet both
modalities capture the same underlying concepts as they ugerd to describe the same objects. In
this paper, we are aiming to associate images and soundsaiginlti-modality model.

Before contemplating the problem of multi-modal modeling, illustrate the links between im-
ages and sounds in Figure 1. Loosely speaking, there areypves Of links between images and
sounds, namelgxplicit linking andimplicit linking. Explicit linking happens ubiquitously. For in-
stance, for those who have been to the sea, it is easy to atstw sound of waves with the picture
of blue sea. On the other hand, implicit linking is more ssfibated. Assume you are aware that
J.S. Bach was a grand violinist and you know how a violin sauite. Yet, you have never heard
Bach playing violin personally. Now by showing you a portiaiBach, the sound of violin might
involuntarily ring in your ears. The major difference beemehese two links is: the correspondence
between image and sound is observed in first case, wherege mna sound are not directly asso-
ciated in the second case, they are linked together by anioteemediate but obscure modality.

As natural language is based on visual and auditive stimudi,believe text is a reasonable
and effective intermediate modality to bridge the gap betwanages and sounds. Seen from
the perspective of machine learning, implicit linking vext stimulates particular interests for the
following reasons.

e Implicit linking makes full use of the data resources. Intjgatar, an implicit linking model
can be trained on three separate data sets, i.e. images#textds/text and text. These three
type of data can be easily acquired from the web. By contaasgxplicit linking model needs
aligned images/sounds data for training. That is, one hesltect a set of images, each of which
corresponds to a collection of associated sounds. Unfatély) a high-quality images/sounds
data set is scarce and expensive. Hence the explicit linkiadel is limited realizable due to
the lack of corresponding information between two modsgitiOn the other hand, the implicit
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Figure 1: The upper part of the figure illustrates explicit linking, ek the image and sound are linked
together directly. Sounds are visualized as spectrogramg tise short-time Fourier transform. The lower part
consists of two entries from our data set: a captioned podfal.S Bach (left side) and a captioned sound
snippet of violin (right side). The captions are shown inengase. Note, that our data set does not contain the
correspondence between images and sounds.

linking provides an approach to model two modalities in adgirict manner by leveraging an
intermediate modality.

e Implicit linking is more likely to capture the subtle assatodn between images and sounds. For
instance, we feed pairwise pictures and sounds of a violittaim an explicit linking model.
Given a new sound snippet of a violin, the model is unlikelljrik it with the portrait of J.S.Bach.
On contrary, an implicit linking model can propagate thetediness crossing three modalities:
from sound to text (violin’s sound- “violin”), from text to text (“violin” — “violinist”), and
finally from text to image (“violinist”— Bach'’s portrait). Therefore, an implicit linking model
can achieve a more comprehensive synesthesia than anitaxypldzl.

e Natural language relies on the process of semiosis to ralaign with a particular meaning.
Jointly modeling visual and auditory information enablesto gain insight into the language
itself, for instance by studying the following problems:vhare words or morphemes related
to sensory information? How is the syntactic system comedieg words into different phrases
and sentences under different scenes? By exploring thacimfphking, we might use the
methodology of machine learning research to answer theeatpogstions originated in the field
of cognitive science and neurolinguistics.

We intend to link images and sounds in an implicit manner.drtipular, using natural language
text as an intermediate representation for both visual amtit@y modality and bringing them
together. Our motivation is that the natural language rievib@ underlying concepts in both visual
and auditory modality, meanwhile encompasses the senratdiions of polysemy and synonymy,
which suggests a bridge between images and sounds. A campégthing process follows three
steps: translating the original modality into text, anaigzthe text, and translating the text to target
modality. The problem we focus on can be described in two waiyst, one might attempt to predict
sounds given an image, where sounds should be either gliapghroximately matching with visual
objects) or indirectly (a reasonable synesthesia stiradlby the scene) related with the image. We
refer to this task aemage composition. Secondly, one might attempt to predict images that either
directly or indirectly relate to the given sound, which isxdéed assound illustration in this paper.

There are several practical applications that derive frorage composition and sound illus-
tration. For example, a digital photo management softwath an image composition plugin
can automatically link suitable sound effects for everytyie in the album, which will greatly
enrich the user experiences. The art museum can also exp&ge composition to attract visitors
by giving them environmental sounds of what they currendlg.sMoreover, image composition
and sound illustration can also be used to provide an adsistdtimedia context for people with
disabilities like blindness and deafness.

We explore and exploit probabilistic topic models, suchaderit Dirichlet allocation (LDA) [3]
to model the implicit links. Probabilistic topic models fiadow dimensional representation of data
under the assumption that each datum can exhibit multipl@¢s”. This idea has been successfully
adapted and imported to many computer vision problems [5, 8]. In this paper, we develop
a probabilistic framework that exploits LDA and correspende-LDA models (Corr-LDA) [2] to
perform image composition and sound illustration simwdtaursly. For the sake of clarity the paper
is structured as follows: Previous works on multi-modal elod) are briefly reviewed in Sect. 2. In
Sect. 3, we describe the input representation of imagesaurdls as well as the preprocessing step.
Sect. 4 formulates the image composition and sound illtistréaasks in a probabilistic framework,



and introduces our approach of jointly modeling imagesndsiand text. Experimental results are
illustrated in Sect.5. Sect. 6 concludes.

2 Related Work

A number of papers have considered probabilistic modelsrfolti-modal data, especially for
modeling images and text. As linking an image with assodiaext is extremely useful in
image annotation, multi-media information retrieval argject recognition, manifold models are
proposed. The co-occurrence model allows to compute ire@btforward manner the probability
of associating words with image grids [10]. Inspired by thehiniques in machine translation [4],
one can consider images and text as two different languagkss, linking images and words
can be viewed as a process of translating from visual voeapud textual vocabulary [5, 12].
Leveraging on the bags-of-words representation of imagdgext, many approaches originated in
the field of text modeling such as: Hofmann’s hierarchicakas model [11], translation model [4]
and latent Dirichlet allocation (LDA) model [3]. These mdslevere extended for predicting
words from images [1]. LDA was further extended to corresfmorte-LDA (Corr-LDA) to model
the generative process of image regions and words in the e space [2]. Additionally, a
supervised extension was proposed to perform classificf2ij.

In another line of research, modeling text and audio focusedusic classification of genre,
emotion, and instrumentation for text-based music infdiomaretrieval [7, 14, 22]. These
approaches classify music and “tag” them with class labels.(“pop”, “jazz”, “blues”) from a
limited textual vocabulary. More recently, several appits have been developed to annotate

music with a larger and more diverse vocabulary of tags [620F.

Our work can be viewed as a combination of multi-modal madglinformation retrieval and
natural language processing. The contribution of this papthreefold. First, to the best of our
knowledge the idea of artificial synesthesia and crossesgnsplicit linking have not been well
explored in the field of machine learning. Second, we levergintermediate modality, that is text,
to bridge the gap between images and sounds, which differs érdinary approaches based on
explicit linking. Third, we represent images, text and siaiim a generic probabilistic framework,
which provides a clean, solid and extensible infrastruectur

3 Input Representation and Preprocessing

In this section, we briefly introduce the preprocessing $tegmages and sounds. The goal is
to build a visual vocabulary and an auditory vocabulary fgpresenting images and sounds as
bags-of-words.

3.1 Image Representation

Following previous work [8], we represent each image as afsésual words. Herevisual words

are defined as the centroids of learnt clusters ukingeans algorithm. To obtain visual words, we
compute the dense SIFT descriptors for each image [13, 1l&]is,Teach image is represented as
a set of128 dimensional SIFT descriptors. We then quantize all SIFTcdpwors in the collection
usingk-means algorithm to obtain centroids of learnt clusterscivbhompose the visual vocabulary
for images. Finally, each visual word is assigned a uniqtegir to serve as its identifier, and the
SIFT descriptors are mapped to their corresponding neasest! word.

3.2 Sound Representation

Each sound snippet is cut into frames, where a frame refeasstmuence of024 audio samples.
For each frame, we compute thg& dimensional Mel-Frequency Cepstral Coefficients éiggoups

of widely used statistics (mean and standard deviation)) [Rhergy Entropy, Signal Energy, Zero
Crossing Rate, Spectral Rolloff, Spectral Centroid andc8pkeFlux. Thus, each sound snippet is
represented as a set2if dimensional feature vectors. Similar to the preprocessieg of images,
all feature vectors in the collection are clustered ugirrgeans algorithm to obtain auditory words.
At last, the feature vectors are mapped to their correspgmugarest auditory word.

3.3 Notations

Assuming a training collectiorl' consists of K annotated images and tagged sounds
T = {I,...,Ix;S1,...,S5}, we can now unify the notation of images, sounds and their
corresponding text as follows:



e An annotated image € T has a dual representation in terms of visual words and tewiials:
I = {v,...,on;w1,...,wn}. Here{vy,...,vp} represents théd/ visual words ofI and
{wy, ..., wy} representV words in the annotations af

e A captioned sound snippBte T has a dual representation in terms of auditory words andaéxt
words: S = {uy,...,up;we,...,wy}, Here{u, ..., up} represents thé/ auditory words
of S and{ws, ..., wx} representV words in the tags o$.

In addition, we defindV' as the vocabulary of image annotations avd as the vocabulary of
sound tags. The complete textual vocabulary is denotd¥ as W' U W*,

4 Linking Images and Sounds via Text

An overview of the probabilistic framework for performingetimage composition task and sound
illustration task is depicted in Figure 2. Following the aitidns in Section 3.3, these two tasks can
be formulated as follows:

Image composition Given an un-annotated imadé ¢ T, estimate the conditional probability
p(S|T*) for everyS € T. To compose a sound effect, one can pick the sound snippttghvei
highest probability undes(S|I*) and mix them together.

Sound illustration Given an un-tagged sourt ¢ T, estimate the conditional probabilipyI|S*)
for everyI € T. The visual scene that best matches the given sound is thgeimih highest
probability undep(I|S*)

Since we can not estimatgS|I*) andp(I|S*) directly, as there are no explicit correspondences
between images and sounds in our data set, the only bridgeweake advantage of is the text
in the captioned images and sounds. An intuitive way is to firanslate” the image into natural
language text, and then “translate” the text back into solthérefore, the conditional probabilities
can be approximated as:

p(ST) =~ > > p(Slw)p(w|w)p(wlI), 1)
weWi w e Ws
pAIST) ~ D > pIlw)p(w fw)p(w|S*). )

weW?s w/ e Wi

One can observe, that the two approximations have an egquiv@presentation. As a consequence,
we can first focus on the image composition ta&|I*) and later apply the algorithm to the sound
illustration taskp(I|S*) straightforwardly. The conditional probability (1) costs of three parts
and crosses three modalities, which implies three difterendels. Fortunately, as images and
sounds have been converted to the same representationvas sh8ection 3, we can deal with
p(S|w) andp(w|I) using the same model. As we shall spS|w) andp(w|I) can be derived from
Corr-LDA model, anth(w’|w) can be obtained from LDA and a lexical database.

4.1 Modeling Images/Text and Sounds/Text

Our approach is based on the Corr-LDA model proposed in [2¢ riédify the Corr-LDA and
apply it to model images/text and sounds/text. As images smuhds have been represented
in an equivalent form, we hereinafter introduce our appohg taking images/text as exam-
ple. Formally, fixing the number of topic#, the generative process of an annotated image
I={v1,...,op;w1,...,wy} is described as follows:

1. Draw topic proportion8 ~ Dirichlet(«)

2. For each visual word,,,,m € {1,..., M}
(a) Draw topic assignment,, |0 ~ Multinomial(#)
(b) Draw visual wordv,,, |z, ~ Multinomial(r, )

3. For each textual word,,,n € {1,..., N}

(a) Draw discrete indexing variablg, ~ Uniform(1,..., M)
(b) Draw textual wordw,, ~ Multinomial(f., )

The graphical model of Corr-LDA is depicted in Figure 3. Twaamarks need to be highlighted
here. First, we use a multinomial distribution to generatésaal word in step 2.b, whereas the
original model used a multivariate gaussian to generatgémagions [2]. This slight difference



Training Testing

Image Sound Unknown Image ~ Unknown Sound

Input j:z W%ﬂﬁ

caption caption

! !

Feature extraction X X

! !

uonejuasaIdor 29 UOTIOBIIXD 2INJEd |

Feature extraction & representation

Represent each OO OAA Represent each DAA oooAA DA A
image into a bag Y¢3% Ye¥r O sound into a bag of ||| Yk Hik @ W WO b o e o dil
of visual word OO0 auditory word @ed. .. OO0« @eaG. .-
L caption R . caption l l |
B g I 0{‘ ; 5 I N —t— ( Probabilistic topic model )
_%D Feed data into é‘)\ LDA 2\ i l %
= probabilistic | - - P g
3 topic model | (Corr-LDA ) (_WordNet ) (_Cor-LDA ) | I W%ﬁﬁ Q %
— ! Predicted sound Predicted image ~ —

Figure 2: Probabilistic framework for performing the image compiositand sound illustration task. The
framework is an extension based on the work flow proposed]in [fBages and sounds are represented in
bags-of-words, so that the difference between the two nit@tatan be omitted. Once we have the algorithm
for inferring sounds from an image, we can apply it to infeagas from a sound by mirroring the algorithm.

can be attributed to the quantization of feature vectorsinpoeprocessing step. As a visual word
is a discrete indexing variable rather than a high dimeraioector, it makes sense to use the
multinomial distribution instead. This modification leasa variant of the variational inference
of Corr-LDA. Second, by simply replacing the visual warg by an auditory word,,, the same
generative process can be used to model sound and text. \Wfi#dinad model in hand, we can
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Figure 3: (a) A graphical model representation of Corr-LDA. Nodesrespnt random variables; shaded
nodes are observed random variables, unshaded nodesearerktdom variables. Edges denote possible
dependence between random variables; plates denoteateplistructure. Note that the variablgs are
conditioned onV/. Corr-LDA is used to model the correspondence between iage text, as well as sounds
and text. (b) A graphical model representation of LDA, whistused to model the word relatedness in this
paper. (c,d) Exemplary outputs the word relatedness of LbBé WWordNet. Seven words with the highest
probabilities undep(w(rain) are listed. One can observe, that LDA and WordNet capturesyhenyms
effectively, yet LDA's result relies more on the quality dietdata set. Binding the two models together will
make the relatedness measurement more robust.

compute the conditional distributions of interes{I|w) andp(w|I*), wherel € T andI* ¢ T. In
particular, the distribution over words conditioned on aseen image is approximated by:

M
p@lI) = 3 plzml0)p(wlzm, B). (3)
m=1 zm
Moreover, we can rewritg(IJw) using Bayes rule as:
w|I)p(1

a ZI’ET p(w|I’)p(I’)’

5



wherep(I) can be computed as follows:

M

N
p(@ = p@la) [T pzmlO)pmlzm, ™) [T palM)p(wnlzy,, 8) (5)

m=1

By plugging (3) and (5) into (4), we can estimatd|w) for every word and image in the training
set. For the sake of completeness, we release a techniealvhath includes the detailed derivation
of the variational inference and the parameter estimatigorighm on the web.

4.2 Modeling Text

The remaining problem is to estimaiéw’|w) from the training set, which is actually measuring the
semantic relatedness between two words. We make use of tAeriddel [3] to solve this problem.
To apply LDA on our data set, we build another datalebntaining only captions of all images and
sounds irT, where|D| = |T|. The generative process of a documbBnt D is described as follows:

1. Draw topic proportion8 ~ Dirichlet(«)
2. For each textual word,,,n € {1,..., N}

(a) Draw topic assignment, |6 ~ Multinomial(6)
(b) Draw textual wordu,, |z, ~ Multinomial(S., )

The graphical model of LDA is depicted in Figure 3(b). The mg proportion over topics
0p = p(z|D) and the word distribution over topigs= pﬁw|z) are two sets of parameters that need
to be estimated from the training set. The LDA model can begdby three different algorithms:
variational Expectation-Maximization [3], Expectati®mepagation [18] and collapsed Gibbs sam-
pling [9]. Given a trained LDA model, the word relatednessieenw andw’ can be calculated by:

pLDA w|w C ZP wlzn |Zn (6)

Zn

wheren,, is the number ofv’ occurred inD, n,, is the number of words assigned to topjc C is

a normalization factor to scale the relatedneg9tao]. Note, however, that the relatedness is calcu-
lated on a small data set with limited scope, it might not otflee ground-truth of semantic similar-

ity. With this issue in mind, we avail ourselves of the WordNigtionary to smoothp(w|w’). We
measure the semantic relatedness defined in [15] for everwtwds. Due to the limit of pages, we
omit the details of the algorithm and denote the result froordMet similarity a9 wo.ane: (w|w’),
which is also in the range to 1. An example of relatedness measurements based on LDA and
WordNet is depicted in Figure 3(c,d), where we find both atbars to give reasonable output, yet
differ from each other. Therefore, the final relatednes®fsdd as a mixture of two probabilities:

p(w|w’) = UpLDA(w|w/) + (1 - U)pWordNet(w|wl)7 (7)

whereo is the smoothing parameter.
In summary, calculating(S|TI*) boils down to two problems. First, to estimate the probtési
p(w|I*), p(S|w") according to (3) and (4) respectively, which we obtain frame Corr-LDA

model. Second, to estimajgw|w’) according to (7) which we obtain from the LDA model.
Plugging (3), (4) and (7) into (1) and (2), we finally obtaie ttonditional probabilities of interest.

5 Experimental Results

In this section we will discuss details of the data set usedl srow experimental results using
our approach. Due to the objective difficulties for evalogtsynesthesia, the evaluation is mainly
performed in a qualitative manner. We will introduce an oalsystem we built for allowing users
to identify the predicted sounds/images interactivelyally, some examples are demonstrated to
illustrate different aspects of our approach.

5.1 Dataset

For the images/text data set, we downloaded three clasgaagés from the LabelMe data set [19],
namely “street”, “coast”, “forest” and then randomly seé&xt300 images for each class. The total

http://home.in.tum.de/ ~ xiaoh/pub/derivation.pdf
2WordNet is a lexical database for the English langudugg (/wordnet.princeton.edu/ ).



number of images i800. For each image, the average length of annotationsakens. The textual
vocabulary size of all annotationsis6.

For sounds/text, we download&d1 audio snippets fronThe Freesound Project®, where most
of them are natural sounds and synthetic sound effect. Ttetidn of these sound snippets range
from 2 seconds td 0 minutes. All sound snippets are converteditolkHz mono WAV format.
Each snippet is tagged by the uploader or other online uSaesaverage number of tags per sound
is 6 tokens. The textual vocabulary size of sound tagksigs. An example of an abridged entry
from our data set is shown in Figure 1.

We held out20% of the data for testing purposes and used the remaif¥g to estimate
parameters. Our goal is to train first the Corr-LDA model watimotated images, and second the
Corr-LDA model with tagged sounds, as well as the LDA modehvéll annotations and tags.
The image composition and sound illustration tasks areopmid on un-annotated images and
un-tagged sounds, respectively.

5.2 Model Parameters

For computing SIFT descriptors, the size of a patch is sébta 16, the distance between grid
centers isl0. By clustering SIFT descriptors and audio feature vect@spectively, we obtained
241 visual words an®9 auditory words in total (clusters with less tharmembers are pruned
out). The Dirichlet priora of Corr-LDA and LDA is fixed to0.1. The number of topic id0 for
both Corr-LDA and LDA. The maximum number of iterations fariational inference and EM
algorithm is set td 00. The smoothing parameteris set t00.8.

5.3 Online Evaluation System

Evaluating the performance of the image composition anch@adllustration task is difficult for
two reasons. First, our data set does not contain the camedspce information between images
and sounds. Moreover, a high quality images/sounds daia searce and expensive. Therefore,
we lack a gold-standard list of associated images or soumd®mpare against. Second, the
image-sound synesthesia differs from person to person,asnd consequence the judgments
from two or three people may not truly reflect the model's perfance. Thus, evaluating the
image-sound synesthesia in a meaningful manner, requatbsigng of exogenous data.

We developed an online evaluation sysfemhat allows humans to judge the predicted

sounds/images of a randomly given scene. For the image citiggotask, the webpage will
randomly draw an image from the test set as the scene. Mekmwéar sound snippets with highest
probabilities undep(S|I*) are provided. Users can listen to the snippets and decidéhehthe
sounds are acceptable or not. For the sound illustratide, the webpage will randomly present a
sound from the test set as the scene, and provide ten imatielsighiest probabilities unde(I|S*).
In both tasks, subjects must identify sounds or imagesaelat the given scene. Occasionally, the
system randomly draws images or sounds from the data setradens and demonstrates them to
the subjects. Decisions from subjects are counted for atiatlyithe model’s performance in terms
of precision and recall. We inviteth people from all walks of life for evaluating the result. As
depicted in Fig. 4, our approach achieves more meaninggultref images/sounds association than
the random baseline.

5.4 lllustrative Examples

To demonstrate the model’s performance, a good predictionaabad prediction of each task is
illustrated in Figure 5. By observing Figure 5(a), one cae get there ard out of 5 sounds
(1,2, 4, 5) that are highly related to the left hand picture. Our modektgssfully made a reasonable
synesthesia by highlighting the sounds related with walierFigure 5(b),4 out of 5 responsive
images (,2,3,4 are images about “car, street”) are related to the soundi¢le=hpassing”.
Nevertheless, we also notice that our model fails to progoeaningful synesthesia in some cases.
Consider for instance the right-hand side of Figure 5(a)cepx the “wood stick breaking” sound,
one can hardly relate sounds 8, 4, 5) with the scene. At the bottom of Figure 5(b), only the last
image is related to the query sound “waterfall flowing”.

3http://www.freesound.org/
“http:/lyulei.appspot.com/
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Figure 4: Given the tog# predicted images/sounds, the tdpprecision and recall of our approach
and a random baseline. (a) In image composition task, Feggur of our approach and the random
baseline i9.17 and0.09, respectively. (b) In sound illustration task, F-scor@@f our approach
and the random baseline(isl 0 and0.02, respectively.

1. waterfall flowing
2. wave splashing, :
powerboat engine booming
3. wood stick breaking
4. wave splashing

5. stream flowing

(a) Image composition task, a good prediction (left) and a bad prediction (right).

1. wood stick breaking

2. bell ringing

3. ice cube shaking in glass
4. child speaking

5. glass shattering

(b) Sound illustration task, a good predlctlon (top) and a bad prediction (bottom).
The images are ranked according to the conditional probabilities from highest
probability (left most) to smallest probability (right most).

Figure 5: Example of good prediction and bad prediction of the syressthsystem. (a) The result of the

image composition task, where two un-annotated images em@rfedicted sounds are depicted. (b) The result
of the sound illustration task, where the un-tagged soundsfige predicted images are showed. Due to the
difficulties to illustrate sounds on paper, we list the peésti sound snippets and manually give them captions.

6 Conclusions and Future Work

We have developed a probabilistic framework to tackle a rieallenge called artificial synesthesia.
The framework Is based on latent Dirichlet models and emsatbie implicit linking of images and
sounds via text. Conducted experiments showed usefulmesaplicability on real-world data
sets. Furthermore, an online prototype system has beetogedso enable humans to evaluate the
model’s performance.

It has not escaped our notice, that the performance of CBA-Is varying on different data
sets. In particular, Corr-LDA has difficulties to effectiyexplore the latent space of images with
clutter. We are currently studying other graphical modeladdress this problem. As our proposed
framework is based on probabilistic models, new models easttaightforwardly plugged into our
framework.



Our future goal for the image composition task, is to expéoseitable and elegant way of mixing
relevant sounds into a single track and compose a lifelikir@mmental sound effect. For sound
illustration, our ideal goal is to automatically paint aga collage by selecting segments from
relevant images. Other areas of possible research inclsidg natural language sentences rather
than words as a bridge to link visual and auditory modalities
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