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Abstract: 

Buffer overflow vulnerabilities present a common threat. To encounter this issue, operating system 

support and compile-time security hardening measures have been introduced. Unfortunately, these are 

not always part of the shipped object code. We present design and implementation of BinProtect, a 

binary rewriting tool, capable of retrospectively protecting binaries, which have not been sufficiently 

secured at compile-time. To achieve this, we do not need source code or any additional information. 

1. Introduction 

The stack buffer overflow, aka. the stack smashing attack [1], presents presumably the 

most known and one the most dangerous attacks on software applications. One of the 

first worms in history of computer security (the Morris worm [2]) exploited already in 

1988 a stack buffer overflow vulnerability. And even today – almost three decades later 

– a buffer overflow presents one of the most feared attacks. Figure 1 illustrates the course 

of reported buffer overflow vulnerabilities2: Despite the trend concerning buffer 

overflows is slowly going back, it remains a common threat. 

 

Figure 1: Buffer overflow related CVE entries, reported since 2008. 

Buffer overflow vulnerabilities in general are the result of insufficient array bounds 

checks by the compiler or the applications themselves. Precisely this lack enables the 

attacker to overwrite function's return addresses and hence take over control of the 

associated process and its privileges. To limit this attack vector, special compile- and 

link-time security measures have been introduced [3, 4, 5, 6]. Unfortunately, these are 

not always part of the shipped object code. To encounter the issue of unprotected and 

potentially vulnerable object code, this paper presents BinProtect, a static binary 

protection mechanism, applying modifications on the Executable and Linking Format 

(ELF) [7] and post link-time object code transformation techniques, provided by 

Dyninst [8] and PatchAPI [9]. BinProtect modifies binaries with the objective of 

mitigating potential buffer overflow vulnerabilities and consequences by statically 

integrating security measures, which have been disabled at compile-time. This way, 

BinProtect retrospectively fortifies binaries and hence timely decouples development 

and compilation from the security hardening process. 

                                              

1 Technische Universität München 

2 CVE: http://cve.mitre.org/data/downloads/allitems.csv, online Jan 2015. 
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The paper is outlined as follows: Section 2 shortly relates BinProtect to similar work. 

Section 3 introduces general security mechanisms, enabled by the compiler and partly 

enforced by the Linux kernel. Inspired by the presented security mechanisms, section 4 

and 5 outline the design and implementation details of their retrospective incorporation 

into binaries as it is done by BinProtect. We evaluate our prototype in section 6 and 

finally conclude this paper with references to future work in section 7. 

2. Related Work 

A binary rewriting Return Address Defense (RAD) has been presented by Prasad and 

Chiueh [10]. RAD introduces a binary rewriting engine that retrospectively fortifies 

binary objects for Windows platforms. Similar to BinProtect, RAD utilizes a shadow 

stack to temporarily store return addresses of stack frames at function entry and match 

these values with actual return addresses at function exit. In contrast to BinProtect, RAD 

is restricted to mitigation of buffer overflow vulnerabilities on the stack.  

SecGOT [11] randomizes the address of the Global Offset Table (GOT) at load-time 

and hence decreases the chances of GOT entry modifications. BinProtect, on the other 

hand, tries to completely eliminate the possibility of GOT tampering by preventing the 

lazy binding mechanism of the dynamic linker and marking the GOT as read-only. 

In their paper, Bernat and Miller present capabilities of PatchAPI [9] by closing three 

vulnerabilities in a running Apache server. Our implementation utilizes PatchAPI but in 

contrast to the prototype presented by Bernat and Miller, we do not concentrate on 

already reported vulnerabilities but rather fortify binaries in a prophylactic manner. 

3. Binary Protection 

For buffer overflow attacks to be successful, several conditions must be met: First, an 

attacker requires the presence of vulnerabilities. Second, he needs to modify control 

flow structures. Finally, to take over control, an attacker must locate and execute 

previously injected malicious code. Aiming at prevention of the upper conditions to 

become true, this section presents core methodologies that may be enabled by the GNU 

Compiler Collection (GCC) and partly enforced by the Linux kernel. These 

methodologies present fundamental concepts, which, if not available, are retrospectively 

integrated into binary objects by BinProtect as discussed in section 4 and 5. 

3.1 Execution Prevention: NX-Bit 

In general, every ELF segment that can be written to at run-time presents a 

potential vulnerability. One cannot rule out that an attacker may place malicious 

code or data into one of the writable memory regions (usually part of data 

segment) and hence influence the process for his benefit. Naturally, to preserve 

modern program compatibility, it is not always feasible to prohibit execution 

within the entire data segment3. For instance, applications and libraries utilizing 

certain programming constructs, such as dynamic code generation, may require 

                                              

3 Former Unix and Windows systems utilized segment-wide access permissions, strictly separating executable code from 

writable data and stack segment. 
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the data segment to be executable. However, the stack segment certainly should 

be protected from malicious code execution. To counter buffer overflow attacks, 

attempting to execute malicious code on the stack, AMD introduced a memory 

execution prevention technology: The No eXecute (NX) bit. In contrast to coarse-

grained and mostly inflexible protection provided by segmentation, the NX-bit 

enables fine-granular execution prevention on a per page basis. Thus, page table 

entries associated with the stack segment may be marked as non-executable. GCC 

achieves just that by advising the linker with the option –z noexecstack to insert 

the program header PT_GNU_STACK into the ELF file, indicating a non-

executable stack. Yet, in special cases, both GCC and Linux require the stack to 

be executable: Former Linux kernels handle signals directly on the stack and 

GCC requires an executable stack within the context of nested functions. In 

addition, in case the dynamic linker4 determines that one of the Dynamic Shared 

Objects (DSO) requires an executable stack, it will ignore permissions provided 

by the PT_GNU_STACK program header and enable its execution.  

3.2 Stack Protection 

There exist two types of stack overflow protection mechanisms: stack overflow 

protection based on bounds checking and integrity checking. Bounds checking 

approaches try to completely eliminate the issue of buffer overflows by tackling 

the problem by its source: These approaches try to prevent buffer overflows by 

implementing a mechanism, which checks the bounds of arrays, whenever they 

are accessed. This check can be a part of the compiler [12] or the application 

itself. However, because of potential dramatic performance degradation and 

compatibility preserving issues, bounds checking approaches are not considered 

very practical. Integrity checking based mechanisms, on the other hand, provide 

the possibility to detect compromised activation records (stack frames) by either 

inserting a terminator value, which is referred to as canary, directly into the stack 

frame [3], or saving the associated return address within a dedicated memory 

region [4, 6, 10]. In both cases, the integrity of activation records is validated by 

checking the canary or the redundantly stored return address with the associated 

value on the stack. In case the value was changed, the integrity of the associated 

activation record has been compromised. GCC enforces stack protection with -

fstack-protector(-all|-strong) flags implementing a canary-based approach. 

3.3 Standard C Library Consolidation 

Besides the lack of array bounds checking mechanisms in languages, such as C 

and C++, the risk of a potential buffer overflow vulnerability arises when using 

certain functions provided by the standard C library (libc). Functions, such as 

strcpy(), gets(), sprintf(), and more, are classified as unsafe and rely on the 

programmer to make sure that they do not fill buffers beyond their bounds. To 

mitigate this risk, Libsafe [9] has been introduced as a layer between the binary 

                                              

4 The dynamic linker, also referred to as the dynamic loader, is responsible for making the program ready for execution. It is 

implemented as a shared object so that it may be shared between ELF files. 
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and the dynamically linked standard C library. This layer comprises wrappers 

being able to intercept and harden calls to unsafe libc functions.  

Similar to Libsafe, the GCC compiler, supplies the flag –D_FORTIFY_SOURCE 

that performs bounds checks on arrays and pointer references in connection with 

a number of unsafe libc functions. The GCC compiler benefits from the fact of 

having sufficient information to perform code modifications at compile-time and 

hence, in contrast to Libsafe, hardens calls to the libc not only when it is 

dynamically but as well statically linked against the binary object to be protected. 

3.4 Global Offset Table Protection 

Position Independent Code (PIC) and globally shared libraries introduce an 

indirection step, required to access the Dynamically Shared Objects (DSO). In 

contrast to the earlier concept of load-time relocation of shared libraries [13], 

Position Independent Code utilizes a Global Offset Table [13], containing 

pointers to global objects. This way, instead of relocating every reference to a 

shared object within the .text segment, PIC limits the amount of relocations to the 

number of entries within the GOT. At compile-time, addresses of shared objects 

are unknown and hence they need to be resolved or relocated by the dynamic 

linker at load- or run-time. Relocations, specifying memory addresses to be 

modified, are announced within the sections .rel.dyn and .rel.plt of the ELF file. 

Thus, the dynamic linker is able to identify memory addresses to be updated with 

addresses to the particular DSOs. Inside the ELF file, the GOT is usually 

distributed across the sections .got and .got.plt, both residing at fixed offsets 

within the .data segment. The section .got contains references to global data to 

be relocated at load-time, whereas the section .got.plt comprises references to 

global position independent functions to be relocated at run-time. To reduce 

overhead at program startup, external functions are not immediately relocated. 

Ergo, an additional table is incorporated into the .text segment of the ELF file: 

The Procedure Linkage Table (PLT). The PLT consists of trampolines to .got.plt 

entries, containing addresses of external functions. The PLT allows the dynamic 

linker not to relocate external functions until they are called for the first time. 

This process of delayed address resolution is referred to as lazy binding.  

Since the dynamic linker updates the .got.plt part of the GOT at run-time, the 

associated segment needs to remain writable and hence vulnerable: A potential 

attacker may manipulate the process' control flow by modifying the GOT table 

entries. The same applies to entries of the sections .init_array, .fini_array etc., 

containing addresses of functions to be executed at program startup and end. To 

reduce the attack vector, GCC offers the RELRO mechanism making the linker 

mark the above listed sections as read-only after load-time relocations have been 

performed. The linker options -Wl,-z,relro and -Wl,-z,relro,-z,now distinguish 

between partial and full RELRO. Partial RELRO makes the linker arrange the 

sections listed above that are populated at load-time in a way that the dynamic 

linker may subsequently mark the associated pages as read-only. The part of the 

data segment, whose permissions are changed in this way, is specified by the 
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information held within the PT_GNU_RELRO program header. Nonetheless, 

because the .got.plt is bound lazily, it remains writable at run-time. In contrast, 

full RELRO resolves all DSOs at load-time. It therefore arranges the sections in 

a way that the entire GOT may be marked as read-only.  

4. Design of BinProtect 

The past has shown that the development of highly secure systems is very hard. Security 

hardening measures need to be utilized in every abstraction layer beginning from the 

logic and circuit design to hardware architecture and software applications. Security 

flaws in one of the abstraction layers has the potential to shatter the security of others. 

The idea behind BinProtect is to reduce the possibility of a successful attack on software 

applications. BinProtect allows to inject security hardening mechanisms into weakly 

protected object-files compiled for Linux platforms, to enable similar protection as 

provided by modern compilers. Individual mechanisms that are presented in section 3 

may be retrospectively incorporated into shipped applications. To achieve this, our 

prototype classifies the presented hardening measures based on two binary 

transformation concepts required for their implementation: binary editing and ELF 

transformation. Both, the classification of the enforced protection mechanisms and the 

associated binary transformation methodologies are shortly described in the following. 

4.1 Binary Editing 

BinProtect applies static object code modification techniques, utilizing 

capabilities provided by the analysis and instrumentation framework Dyninst [8] 

and the binary code patching library PatchAPI [9]. The comprehensive static 

analysis of Dyninst allows a precise deduction of function and control flow from 

binaries without the need for any debugging information – even in stripped and 

highly optimized form [9]. PatchAPI utilizes the gathered static analysis 

information to perform fine granular object code transformations. In addition, 

PatchAPI introduces the concept of structured binary editing [9], comprising a 

transformation algebra to ensure validity of the instantiated binaries. This 

technique views the binary from a higher, more abstract level: The binary is not 

considered any more as a collection of subsequent instructions but as a flow of 

basic blocks interconnected by edges in form of a Control Flow Graph (CFG). 

Thus, transformations of binaries are performed on the CFG level. To preserve 

structural validity of binaries, Bernat and Miller introduce constraints on CFG 

transformations in form of a transformation algebra [9]. The CFG transformation 

algebra transforms the underlying control flow of the associated binary, and 

allows to insert so called snippets in form of a special abstract syntax language 

or raw binary code into the basic blocks of the previously transformed CFG. This 

way, the original binary may be extended and its control flow transformed, while 

simultaneously preserving its validity. Based on these concepts, BinProtect 

rewrites binaries to integrate mechanisms, required to protect the stack and fortify 

calls to insecure functions of libc, as described in sections 3.2 and 3.3. 
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4.1.1. Standard C Library Consolidation 

BinProtect provides safe versions of the known set of unsafe standard C library 

functions and rewrites the binary in a way that all calls to unsafe functions in 

question are intercepted. Therefore, it needs to distinguish between whether the 

libc has been statically or dynamically linked against the binary to be protected 

and modify the binary accordingly. For this, BinProtect applies Dyninst's binary 

rewriting capabilities. Hence, the modified binary obtains hardened calls to both 

dynamically and statically linked standard C library functions. Similarly to 

Libsafe [6], for the implementation of the unsafe standard C library functions, 

our idea is to associate buffers with stack frames and make sure that they do not 

spill over return addresses. Thus, control flow information remains protected but 

general buffer overflows are not entirely eliminated. 

4.1.2. Stack Protection 

BinProtect collects sufficient static function and control flow information from 

binaries by means of extensive static binary analysis capabilities of the 

underlying framework Dyninst. Based on the statically gathered information, 

BinProtect extracts functions that are not part of shared libraries and subsequently 

performs static object code modification in respect to structural validity of the 

binary object by applying the transformation algebra introduced by PatchAPI [9]. 

The general idea behind the stack protection mechanism of BinProtect is to 

modify the extracted functions so that they become capable of performing 

integrity checks of the associated activation records at run-time. As a result – in 

contrast to GCC -fstack-protector variants, which implement a canary-based 

approach – the binary becomes able to check integrity of its activation records by 

utilizing a shadow stack mechanism: Therefore, the binary stores return addresses 

of active functions within a dedicated memory region during the function's 

prologue and matches the associated return addresses with their copies on the 

shadow stack during the function's epilogue. Thus, BinProtect detects stack 

buffer overflows and makes sure that the attacker does not take over control. 

4.2 ELF Transformation 

The Executable and Linking Format [7] defines a common object file format used 

in Unix-based operating systems for executable-, relocatable-, and shared object 

files. The ELF header acts as a guide, helping to locate essential components 

within the rest of the file. An ELF file may further comprise a section header 

table and a program header table, representing two different views on the ELF 

file: The linking- and the program execution view. The section header table keeps 

track of all sections containing essential data required for the process of linking. 

The program header table distributes all sections across segments, which are 

loaded into memory considering specified permissions. Thus, the ELF format 

determines the way how the file is handled at load- and run-time. This means, 

modifications of ELF files directly influence its future behavior. The ELF format 

is often abused for malicious purposes. Both, kernel and user space applications 

may suffer from so called ELF infections [14, 15], which hide inside proper 
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applications abusing their hospitality. Within the context of BinProtect, we apply 

such ELF infections or rather transformations with the purpose of security 

hardening binaries by mechanisms, which prevent execution on the stack and 

provide protection of the entire GOT, according to sections 3.1 and 3.4. The 

following presents ELF transformations required to incorporate these protections. 

4.2.1. Execution Prevention: NX-Bit 

Our idea is to modify ELF files in a way that the kernel (assuming sufficient 

support) will mark pages of the stack segment as non-executable. Therefore, we 

insert the program header of type PT_GNU_STACK into ELF executables in case 

of its absence or otherwise make sure it has no execution permissions. This does 

not alter the process' behavior but cause the kernel to mark the affected pages as 

non-executable. This technique does not directly prevent or recognize buffer 

overflows but rather alleviates their effects: Execution attempts of previously 

injected malicious code on the stack will be aborted. As a consequence, a number 

of stack buffer overflow vulnerabilities may be mitigated. Depending on the 

policy of the underlying operating system, heap-based buffer overflows may as 

well be eliminated respectively. Attacks, such as return-to-libc [16], however, 

remain possible. Permissions specified by the PT_GNU_STACK header are 

ignored if the binary makes use of libraries requiring an executable stack. 

However, programs that make use of an executable stack must skip this step.  

4.2.2. Global Offset Table Protection 

Partial RELRO and hence lazy binding of DSOs is considered as default in the 

today's GNU linker implementation5. However, as presented in section 3.4, the 

.got.plt part of the Global Offset Table is vulnerable (Figure 3). To retrospectively 

utilize full RELRO, the entire GOT should be marked as read-only. To achieve 

this, first, the lazy binding mechanism must be deactivated, so that all relocations 

are performed at load-time. Considering that memory permissions apply on a per 

page basis, it must be assured that the .got.plt section is located in a dedicated 

part of a segment that may be marked as read-only without compromising the 

remaining .data segment. Finally, to complete the protection of the GOT, the 

function _init() needs to be modified so that it becomes responsible for altering 

permissions of the dedicated segment to read-only right after it has been 

populated and before the function main() has been initiated. Since all DSOs are 

resolved at load-time, this technique sacrifices startup time of programs in order 

to make sure that GOT tampering attacks are entirely eliminated. 

5. Implementation 

BinProtect presents a tool capable of retrospectively hardening security of programs in 

form of binary objects. Unprotected binaries should obtain protection similar to 

                                              

5 The GNU linker: http://unixhelp.ed.ac.uk/CGI/man-cgi?ld, online Jan 2015. 
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mechanisms provided by modern compilers, as described in section 3. This section 

outlines implementation details of the techniques that are being shown in section 4. 

5.1 Execution Prevention: NX-Bit 

By default, the Linux kernel allocates a stack segment with execution 

permissions, in case the target ELF file misses a PT_GNU_STACK program 

header. To prevent execution on the stack segment, BinProtect first checks the 

presence of this header and makes sure that it does not contain the execution 

permission. In case the ELF file lacks the PT_GNU_STACK program header, 

BinProtect incorporates it into the ELF file to achieve the desired behavior. 

5.2 Stack Protection 

BinProtect transforms binaries in a way that they become able to check integrity 

of their activation records by means of a shadow stack mechanism that is 

incorporated into binaries. A shadow stack can be understood as an abstract data 

structure representing a collection of data, managed in a Last-In-First-Out (LIFO) 

manner. It allocates space for sensitive data within a separate memory region, 

which is maintained by a dedicated shadow stack pointer. The shadow stack 

mechanism maintains return addresses of currently active functions. After 

modification, the hardened functions become able to protect their return address 

as part of the function's prologue. The return address is stored on the shadow 

stack before any space for local variables is allocated on the stack and any 

function related instruction is executed. Before function return, as part of the 

epilogue, the modified functions perform integrity checks by comparing their 

return address with its copy on the shadow stack. 

 

Figure 2: Basic block including initial prologue or epilogue information is transformed. 

Affected information is encapsulated within its own basic block, and subsequently 

exchanged with a new basic block. 

Basic Block Transformation: BinProtect, in combination with PatchAPI, 

considers binaries as a flow of basic blocks interconnected by edges in form of a 

CFG. Since the size of basic blocks is determined by control flow properties of 

the code, the function's prologue and epilogue often present only a part of a basic 

block belonging to a particular function. To modify or replace a function's 

prologue or epilogue on the basis of control flow information, BinProtect first 
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localizes and encapsulates the affected part of the basic block. This is performed 

with help of information determined by common calling conventions. Calling 

conventions present a set of steps to be performed when calling and returning 

from functions. Thus, the tasks to be performed at function calls are clearly 

distributed among the caller and callee. Conventions to be performed by the 

callee, are usually performed within function's prologue and epilogue. With this 

information, BinProtect localizes the start and end of both prologue and epilogue 

within the associated basic block. After these locations have been determined, 

BinProtect transforms the basic blocks to enable code injection (Figure 2). 

Code Injection: After the CFG transformations, presented within the previous 

step, the prologue or epilogue information has been extracted and encapsulated 

within its own basic block, as presented in Figure 2. The next step performed by 

BinProtect is the injection of raw binary code containing modified prologue or 

epilogue information. To achieve this, BinProtect creates a new basic block, 

inserts code into this basic block, and finally redirects edges previously directed 

to and from the initial prologue or epilogue to the created basic block. Figure 2 

presents the steps performed by BinProtect to inject new prologue and epilogue 

information into the binary. The modified prologue becomes responsible for 

saving the function's return address within the shadow stack. Respectively, the 

modified epilogue contains instructions to perform integrity checks. 

5.3 Standard C Library Consolidation 

BinProtect intercepts and redirects calls to unsafe standard C library functions. 

Instead, equally named wrapper functions are executed. These are provided in 

form of a shared library. The wrapper functions are basically integrated as an 

intermediate layer between the binary itself and libc. Therefore, our prototype 

first determines whether libc has been statically or dynamically linked against the 

binary in question. This is done by means of the static analysis capabilities of 

Dyninst. In case libc has been statically linked against the target application, our 

prototype injects safe wrapper implementations directly into the binary. For this, 

Dyninst extracts wrapper raw binary code information from the provided shared 

object file and subsequently injects the gathered information into the ELF file to 

be modified. Dyninst prepares a new section, containing the injected code and 

assigns it to a new code segment of the target ELF file. Thus, the new code 

segment may be loaded into memory at program start. To allow the wrappers to 

call functions of further libraries, Dyninst integrates additional library 

dependencies into the ELF file and appropriately modifies the sections required 

for dynamic relocation. Finally, to redirect calls towards integrated wrappers, 

trampolines are injected in place of the original function's first instruction. 

In case the libc has been dynamically linked against the target ELF file, our 

prototype inserts a dependency to the shared library containing safe wrapper 

implementations. To make the dynamic linker populate the GOT with addresses 

to our wrapper functions, BinProtect makes the dynamic linker load the provided 

library before libc. The ELF format determines the order of the dynamically 



Retrospective Protection utilizing Binary Rewriting 

10 14. Deutscher IT-Sicherheitskongress des BSI 

linked libraries to be loaded within the section .dynamic. This means, in order to 

intercept specific functions of libc, BinProtect swaps the library dependency 

entries in favor of our implementation. In addition, to allow the intercepted 

library functions call the original functions, BinProtect statically rewrites the 

function _init() of the original binary in a way that it resolves the affected symbol 

names and stores the associated libc function addresses within static variables 

before execution of the function main() is initiated.  

5.4 Global Offset Table Protection 

The part of the .data segment, which maintains addresses of functions and DSOs, 

may be potentially abused for malicious purposes if not marked as read-only. 

Partial RELRO reduces the attack vector by making the dynamic linker mark the 

affected part of the .data segment as read-only after it has completed relocations 

at load-time. The exact position and size of the affected memory region is stated 

within the ELF program header PT_GNU_RELRO. As discussed in section 3.1, 

the NX-bit protects execution on a per page basis. This implies that the linker is 

able to safely mark relocations as read-only only if they precede the page 

boundary to the .data section. Thus, in case partial RELRO has been activated, 

the linker arranges the .data segment (which comprises among others the sections 

.init_array, .fini_array, .got, .got.plt, .data, .bss, etc.) in such a way that the 

section .got is aligned with the end of a page that is positioned adjacently to the 

page containing the .data section. This is shown in Figure 3. Hence, the memory 

region containing relocations may be safely marked as read-only, whereas 

permissions of the section .got.plt, being located in the same page as the .data 

section, may not be changed as the adjacent .data section is part of the same page. 

To make the program benefit from security advantages provided by the full 

RELRO mechanism, BinProtect performs the following steps:  

 

Figure 3: For partial RELRO, the linker distributes sections across different pages so 

that the .got.plt must remain writable after dynamic relocations have been performed. 

Eager binding: The section .dynamic maintains information required during the 

process of dynamic linking. To make the dynamic linker perform all relocations 

at load-time, BinProtect integrates entries of type DT_BIND_NOW and 

DT_FLAGS_1 into the .dynamic section of the original ELF file.  

Relocation of .got.plt: To safely mark the entire GOT as read-only without 

affecting the remaining .data segment, BinProtect relocates the section .got.plt to 

a dedicated segment that is incorporated into the ELF file. This is done by 

specifying the virtual address of the .got.plt section to be within the range of the 

integrated segment. This address needs to be passed to the dynamic linker by 

adopting the .dynamic section entry of the type DT_PLTGOT. This way, the 

dynamic linker can find the relocated .got.plt section. In addition, to make sure 

that symbols of shared library objects are correctly relocated, offsets of entries 
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inside .rel.plt need to be adopted. Finally, to retain original functionality of the 

application, our prototype redirects pointers of the PLT to the relocated .got.plt.  

Relocation read-only: The transformed application needs to be able to mark the 

entries inside .got.plt as read-only. To achieve this, BinProtect extends the 

function _init() in the same way as presented in section 5.3. The function _init() 

utilizes mprotect() to change permissions of the dedicated segment comprising 

the .got.plt at run-time and hence completes the protection of the GOT. 

6. Evaluation 

We evaluated BinProtect by effectively eliminating the effects of a security bug, which 

we have implemented for testing purposes into a local version of the GNU tar archiving 

utility. We demonstrate the potential of BinProtect by showing how BinProtect mitigates 

the security impacts of the bug. Also, to make concise deductions about the additional 

overhead induced by BinProtect, we assess measurements of the code size and execution 

time of three retrospectively hardened computational intensive applications.  

The security bug exposes the unsafe libc function strcpy(), which allows to spill over 

bounds of buffers. Consequently, the attacker is able to inject and execute malicious 

code on the stack or heap by adapting the function’s control flow structures. In addition, 

the bug enables a direct manipulation of GOT entries. The protection mechanisms of 

BinProtect successfully apply on different levels: The NX bit prevents execution on the 

stack and heap. Full RELRO hinders the attacker from modifying GOT entries. The 

stack protection detects return address corruptions. And finally, BinProtect intercepts 

the function strcpy() and prevents modifications of the function’s control flow in the 

first place. As a result, BinProtect completely eliminates the security impacts of the bug. 

Binary Hardened functions Size increase Time increase 

GNU tar, v1.27.1 807 (of 807) 38.7 % 4,7 % 

Gzip, v1.6 67 (of 67) 86.3 % 2.3 % 

Bzip2, v1.0.6 36 (of 36) 137.5 % 3.5 % 

Table 1: Size and execution time increase after applications have been processed by BinProtect. 

Measurements have been taken of presented applications compressing 500 MB of data. 

BinProtect adds overhead concerning code size and execution time to the original 

binaries. Table 1 illustrates the number of hardened functions and the resulted increase 

in code size and average execution time of three archiving utilities. Therefore, we 

collected 20 time measurements of each application by compressing data of 500 MB in 

size. The stated increase in size is the result of the performed binary transformations: To 

enable object code modifications of variable size, Dyninst extracts the targeted parts of 

the code and copies them to a separate location in the binary. Trampoline-based code 

constructs are inserted into the original code regions in order to access the applied 

modifications. Thus, the original code remains in the binary and hence blows up its size. 

This may present an issue for systems with limited resources. The increase in execution 

time, however, may be neglected within the context of general purpose applications. 
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7. Outlook and Conclusion 

We have presented BinProtect, a static binary hardening tool, capable of mitigating 

potential buffer overflow vulnerabilities. This is achieved by means of cutting-edge 

static analysis and binary rewriting capabilities of Dyninst and PatchAPI. BinProtect 

performs instruction level binary modification based on function and control flow 

information, without the need for source code or debugging information. Applied binary 

transformations preserve structural validity of resulting binaries by utilizing PatchAPI's 

CFG transformation algebra. In addition, BinProtect directly modifies the ELF structure 

to utilize run-time security mechanisms that are enforced by both, the dynamic linker 

and Linux kernel. Concluding, our evaluation shows effective protection against a 

security bug, inserted into a copy of the tar archiving tool, with negligible time overhead.  
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