
  

● Problem: The currently used Control-Flow
Integrity (CFI) protection schema in [1] is 
too permissive; it allows too many (and 
impermissible) call-targets per call-site.

● Current Solutions:
 a)Compiler-based techniques: 
      [Bounov et al. NDSS'16][1]  
      [ShrinkWrap, ACSAC'15][2], [IFCC/VTV, USENIX'14][3], 
 b)Binary-based techniques: [vTint, NDSS'15][4], [TypeArmor, S&P'16][5]
 c)Run-time-based techniques: Intel CET [6], Windows CFGuard [7].
● Limitations of Current Solutions:
       a) Precision: of caller/callee mapping can still be improved.
       b) Performance: worst-case run-time overhead,7-8%; drops to 2%.

   c) Identification: accuracy of call-site/call-target (for binaries) is low 
● Our Insight: The number of call-targets per call-site can be 
reduced by carefully analyzing the class and virtual table hierarchies. 

   → we use the call-site object type (base class) and the virtual table of 
       the calling object.

● We reduced the number of call-targets per call-site, thus improving 
the precision of our mapping. (precision)

● We decreased the performance overhead w.r.t [1]. (performance)
● We shrinked the binary blow-up size. (binary size)
● We improved the protection coverage. (increased security level)
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● Research Questions
    RQ1: How precise is vTableShield? (call-site/call-targets mapping) 
    RQ2: What is the performance of vTableShield?
    RQ3: What is the binary blow-up after adding the CFI checks?
    RQ4: What is the protection coverage (sec. level) w.r.t. other tools?
● Test Programs
    Google Chrome, Google V8 Engine, SPEC 2006, etc.
● Methodology
    We run vTableShield on each program in order to compute the 
    smallest possible range for each call-site; next range checks habe     
    been added during LLVM link time.
● Experimental Setup

        For testing purpose we use a system having an 64-bit Linux kernel,   
        and the Intel i5-3230 CPU@2.60GHz×4.

● Results
  RQ1(precision): The number of call-targets per call-site was reduced 
   of up to 50% w.r.t. [1] on average.  
  RQ2 (performance): We improved the run-time performance              
   overhead w.r.t. previous work.           
  RQ3 (binary size blow-up): The binary size has been reduced           
   w.r.t. previous work. 
  RQ4 (increased level of security): By reducing the call-targets per    
   call-site ratio (i.e., thousands of call-targets per call-site are no            
   longer available to the attacker) we raised the bar for any attacker      
   who tries to use the remaining attack surface. 
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● Obtain the object type and the virtual table used during the object 
dispatch.

● We interleave the virtual table layouts such that we obtain the 
smallest possible range for each indirect call site.

● We filter the resulted ranges based on virtual table inheritance 
  paths such that we obtain the smallest candidate range per call-site.

  6. Implementation

● Consider: Base1* obj2 = new Base1(); obj2→ vfN();
● The virtual pointer can be corrupted (i.e., red arrow from above Figure) 
to point into a different virtual table. The new virtual table is (not) in the 
expected class or virtual table hierarchy.

  3. Motivating Example

● The Clang (LLVM front-end) is extended in order to provide the
virtual tables as meta data during LLVM link time.

● The class hierarchy analysis (CHA) is used do compute virtual table 
inheritance paths.

● The virtual table inheritance paths are analyzed in order to derive 
permissible and impermissible ranges for each call-site.

● The new range checks are added before each indirect call site.
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● In this work, we presented vTableShield, a compiler based tool used 
during run-time to enforce the most precise range of virtual tables 
per call-site.

● The results depicted in Section 7 considerably raise the bar for any 
attacker who wants to exploit: Google Chome, Google V8 Engine, etc. 

● In future, we want to further improve the forward CFI protection 
schema and provide a similar protection schema for backward edges 
(e.g., virtual function returns).

1

Supported by the Bavarian State Ministry of Education, Science and the Arts as part of the FORSEC research association.

4

Circles represent C++ classes, squares represent virtual tables, 
thick arrows represent the first inherited class, thin arrows represent other 
inherited classes and dashed arrows represent inheritance relations
between the virtual tables.
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