
Phase Transition and the ComputationalComplexity of Generating r-
ontiguous Dete
torsThomas StiborDepartment of Computer S
ien
eDarmstadt University of Te
hnologystibor�se
.informatik.tu-darmstadt.deAbstra
t. The problem of generating r-
ontiguous dete
tors in nega-tive sele
tion 
an be transformed in the problem of �nding assignmentsets for a Boolean formula in k-CNF. Knowing this 
ru
ial fa
t enablesus to explore the 
omputational 
omplexity and the feasibility of �nd-ing dete
tors with respe
t to the number of self bit strings |S|, the bitstring length l and mat
hing length r. It turns out that �nding dete
torsis hardest in the phase transition region, whi
h is 
hara
terized by 
er-tain 
ombinations of parameters |S|, l and r. This insight is derived byinvestigating the r-
ontiguous mat
hing probability in a random sear
happroa
h and by using the equivalent k-CNF problem formulation.1 Introdu
tionTheoreti
al immunologists have proposed the r-
ontiguous mat
hing fun
tionto abstra
t the a�nity between an antibody and an antigen in immune systemmodels [1℄. In the �eld of arti�
ial immune systems, the r-
ontiguous mat
hingfun
tion is applied as a mat
hing rule for 
hange dete
tion [2℄ or more generallyfor anomaly dete
tion problems. In these domains, antibodies (
alled dete
tors)and antigens are abstra
ted as bit strings and the r-
ontiguous mat
hing ruleis applied for dete
ting (anomalous) antigens. More spe
i�
ally, in this immuneinspired anomaly dete
tion approa
h, the problem is to �nd dete
tors, su
h thatno dete
tor mat
h with any self antigen. This form of dete
tor generation forthe 
omplementary spa
e is 
alled negative sele
tion [3℄.In re
ent years, many attempts were made (see [4,5℄ for an overview) togenerate dete
tors e�
iently, i.e. in polynomial time and with polynomial spa
eo

upation with regard to the mat
hing length r and number of self antigens
|S|. All attempts in designing e�
ient algorithms for generating r-
ontiguousdete
tors were limited su

essful. The proposed algorithms either have a time ora spa
e 
omplexity whi
h is exponential1 in the mat
hing length r, i.e. O(2r) orin the number of self elements |S|, i.e. O(e|S|). Stibor et al. [6℄ proved that the1 There exists a linear time dete
tor generating algorithm [2℄, however this algorithmstill requiresO(2r) time and spa
e o

upation. It is termed linear, be
ause it runs lin-ear in |S| under the assumption that |S| = O(2r). For real-world problems however,the assumption |S| ≪ 2r is justi�able.



problem of generating r-
ontiguous dete
tors 
an be transformed in a k-CNFsatis�ability problem and argued that at least Ω(2r) bit string evaluations arerequired to �nd all r-
ontiguous dete
tors.In this paper we go one step further and explore the 
omputational 
om-plexity of generating dete
tors with the Davis-Logemann-Loveland algorithm.Furthermore, we rigorously analyze, when dete
tors 
an be generated with re-spe
t to the number of self bit strings |S|, the bit string length l and mat
hinglength r. It will turn out that generating r-
ontiguous dete
tors is 
omputation-ally not equally �hard�. More spe
i�
ally, it is relatively 
heap 
omputationally,to verify that no dete
tors 
an be generated or that a large number of dete
tors
an be generated. However, there also exists a phase transition region whi
h is
hara
terized by 
ertain 
ombinations of parameters |S|, l and r where �ndingdete
tors is hardest. This insight will be derived from two dire
tions, namelyby investigating the r-
ontiguous mat
hing probability in a random sear
h ap-proa
h and by using the problem transformation of generating dete
tors into the
k-CNF satis�ability problem.2 Bit String Mat
hing Rule and Generating Dete
torsRandomlyLet U be a universe whi
h 
ontains all 2l distin
t bit strings of length l.De�nition 1. A bit string b ∈ U with b = b1b2 . . . bl and dete
tor d ∈ U with
d = d1d2 . . . dl, mat
h with r-
ontiguous rule, if a position p exists where bi = difor i = p, . . . , p + r − 1 and p ≤ l − r + 1.Loosely speaking, two bit strings, with the same length, mat
h if at least r
ontiguous bits are identi
al. In the remaining se
tions the expression �dete
tors�will refer to r-
ontiguous dete
tors. Sets are denoted in 
alligraphi
 letters, e.g.
S and |S| denotes the 
ardinality. Throughout the paper, we will assume that S
ontains pairwise distin
t bit strings randomly drawn from U .2.1 Randomly Generating Dete
tors in Negative Sele
tionGiven U and its partition into distin
t subsets S and N . In negative sele
-tion one has to �nd dete
tors su
h that no dete
tor mat
hes (see Def. 1) withany bit string from S. Dete
tors whi
h satisfy this property mat
h with �not ne
essarily all � bit strings from the 
omplementary spa
e U \ S. Algo-rithm (1) is a straightforward random sear
h to generate, i.e. to �nd dete
-tors. A bit string d is randomly sampled from U and mat
hed against all bitstrings in S. When no r-
ontiguous mat
h o

urs, d is added to the dete
torset D. This random sampling is repeated until a 
ertain number of dete
torsis found. It is obvious that this straightforward random sear
h is not an e�-
ient sear
h te
hnique. However, a thorough probabilisti
 analysis of algorithm(1) reveals valuable insights, whether dete
tors 
an or 
an not be generated.



Algorithm 1: Random sear
h for dete
tors in negative sele
tioninput : l, r, t ∈ N where 1 ≤ r ≤ l and S ⊂ Uoutput: Set D ⊂ U of r-
ontiguous dete
torsbegin1
D := ∅2 while |D| < t do3 Sample randomly a bit string d ∈ U4 if d does not mat
h with any bit string of S then5

D := D ∪ {d}6 end72.2 Probability of Mat
hing in Random Dete
tor GenerationThe probability that two randomly drawn bit strings from U are not mat
hingwith the r-
ontiguous rule 
an be determined with approa
hes from probabilitytheory, namely re
urrent events and renewal theory [7℄. In Feller's textbook [7℄on probability theory an equivalent2 problem is formulated as follows:�A sequen
e of n letters S and F 
ontains as many S-runs of length ras there are non-overlapping uninterrupted blo
ks 
ontaining exa
tly rletters S ea
h�.Given a Bernoulli trial with out
omes S (su

ess) and F (failure), the probabilityof no su

ess running of length r in l trials is a

ording to Feller
PWF =

1 − px

(r + 1 − rx)q
·

1

xl+1
(1)where

p = q =
1

2
and x = 1 + qpr + (r + 1)(qpr)2 + . . .A simpler approximation � however only valid for r ≥ l/2 � is provided byPer
us et al. [1℄:

PJP = 1 − 2−r [(l − r)/2 + 1] . (2)From (1) one 
an straightforwardly 
on
lude that the probability of �nding tdete
tors when given l, r and |S| results in:Prob[�nd t dete
tors] = t−1 · (PWF )|S|. (3)2 The Link between re
urrent events, renewal theory and the r-
ontiguous mat
hingrule was dis
overed originally by Per
us et al. [1℄ and redis
overed by Ranang [8℄.Per
us et al. presented in [1℄ the approximation (2) whi
h is only valid for r ≥ l/2,but mentioned the full approximation for 1 ≤ r ≤ l indire
tly by mentioning thename de Moivre and 
iting Uspensky's textbook (see pp. 77 in [9℄).



Moreover, from (3) one 
an 
on
lude how often on average step 4 in algorithm(1) is exe
uted when given t, or in other words how many bit strings one has tosample before �nding t̂ dete
tors.
t̂ =

1

t−1 · P
|S|
WF

. (4)Result (4) is equivalent to an earlier result on negative sele
tion [3℄, when PWFis repla
ed by PJP .
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(a) Mat
hing probability for �nding a de-te
tor randomly for l := 24, r := [1 . . . 24]and |S| := {1, 10, 100, 1000, 10000}.
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(b) If r lies within interval i1, then withhigh probability no dete
tors will befound, whereas if r lies within interval
i3, then with high probability, dete
torswill be found. There also exists an interval
i2 where the probability rapidly 
hangesfrom 0 to 1.Fig. 1. Coheren
e between the probability of �nding a dete
tor randomly andthe parameters l, r and |S|. There exists a sharp transition boundary where theprobability rapidly 
hanges from 0 to 1.2.3 Probability Transition in r-
ontiguous Mat
hingKnowing the probability PWF enables us to investigate the 
ombinations ofparameters |S|, l and r where, with high probability dete
tors 
an be generated(i.e. exist) or with high probability 
an not be generated. The graphs in �gure 1show the probability for �nding a dete
tor for �xed l and variable r and |S|a

ording to term (3). One 
an see, that the larger the 
ardinality of S, thelarger the interval for r where the resulting probability is nearly 0 to �nd adete
tor, or in other words where no dete
tors exist. On the other hand, the



smaller the 
ardinality of S, the larger the interval for r where the resultingprobability is nearly 1 to �nd a dete
tor. In �gure 1(b) the same graph, but onlyfor |S| = 1000 is highlighted. One 
an see in detail that three di�erent intervals
(i1, i2, i3) exist. One 
an either �nd with high probability a dete
tor in interval
i1, or �nd with high probability no dete
tor in interval i3. Moreover there existsa third interval i2 where the probability rapidly 
hanges from 0 to 1. For thesake of 
onformity with the subsequent se
tions, we denote the interval i2 asphase transition region. We will later see, that �nding dete
tors in this region,whi
h is 
hara
terized by 
ertain 
ombinations of parametes |S|, l, r is hardestfrom the perspe
tive of 
omputationally 
omplexity.To summarize this se
tion, if parameters |S|, l and r are 
hosen su
h thatterm (3) results in a value very 
lose to 0, then in the worst 
ase no dete
tors
an be generated, never mind whi
h algorithms, i.e. sear
h te
hniques are appliedto generate dete
tors, be
ause there exist no dete
tors. On the other hand, ifterm (3) is 
lose to 1, then a large number of dete
tors exist.2.4 Coheren
e of Mat
hing Length r, Self Set S and RandomDete
tor Sear
hIn the arti�
ial immune system 
ommunity seems to exist some 
onfusion re-garding the time 
omplexity of algorithm (1). More spe
i�
ally, authors in [3℄argued that generating dete
tors when applying the random sear
h approa
h 
anbe performed linearly in |S|. Their argument is based on the observation that t̂in (4) is minimized by 
hoosing 1− PJP ≈ 1/|S|. In other words, the number ofbit strings one has to sample before �nding t dete
tors is linear proportionallyto |S|, when using algorithm (1). This observation implies that the mat
hingthreshold r purely depends on the 
ardinality of S when l is �xed. To be morepre
ise, suppose r ≥ l/2, then

2−r [(l − r)/2 + 1] ≈ |S|−1 ⇐⇒ r ≈ l + 2 −
W (8 ln(2)2l/|S|)

ln(2)
(5)where W (x) is the Lambert W -fun
tion whi
h 
an be expressed as the seriesexpansion

W (x) =

∞∑

k=1

(−1)k−1kk−2

(k − 1)!
xk. (6)Pra
ti
ally speaking, on
e |S| and l are �xed, the mat
hing length r is su
h
hosen that it will fall in interval i3 (see Fig. 1(b)) and 
onsequently this impliesthat a large number of dete
tors 
an be generated.With regards to anomaly dete
tion problems, it is known [10,11,12℄ that the

r-
ontiguous mat
hing rule is a positional biased dete
tion rule. That meansthat the value of r is inextri
ably linked to the underlying data being analyzed.The assumption 1 − PJP ≈ 1/|S| however, implies that r grows with |S| (seeterm (5)), and does not 
onsider the positional bias. On the other side, if l and r



are �xed3 and |S| is 
onsidered as the variable parameter then t̂ = O(e|S|), thatis, r will lie within interval i1 for some large |S| and this 
onsequently impliesthat a random sear
h for dete
tors results in an exponential time 
omplexity �when dete
tors exist.2.5 Average Number of Dete
tors and HolesFor the sake of 
ompleteness, we present results on the average number of de-te
tors that 
an be generated and the resulting holes. The results are straight-forward 
on
lusions from the previous se
tion 2.2.Re
all, algorithm (1) fails to �nd any dete
tor when a 
ertain parameter
ombination of S, l and r exists. More spe
i�
ally, the universe U is not only
omposed of sets S,D and N , but also of set H. Re
all, the set N 
ontains allbit strings whi
h are dete
table by the dete
tors from D and hen
e D ⊂ N . Theset H, termed hole set 
ontains all bit strings whi
h are not dete
table by anydete
tor, however, H does not 
ontain any bit strings from S, i.e. H∩S = ∅ andhen
e, |H| is dire
tly linked with interval i1 (see Fig.1(b)). More spe
i�
ally, ifa parameter 
ombination of l, r and S is 
hosen su
h that term (3) is very 
loseto 0, then |N | ≪ |H| or in the extreme 
ase |N | = 0, i.e. the universe U is only
omposed of sets S and H.Knowing this 
oheren
e between term (3) and the universe 
omposition, theaverage number of dete
tors that 
an be generated results in
E[|D|] = 2l · (PWF )|S|. (7)As the universe is 
omposed of U = S ∪ N ∪ H when applying the negativesele
tion, the number of holes results in
|H| = |U| − |N | − |S| (8)where

E[|N |] = 2l − 2l · (PWF )E[|D|]

︸ ︷︷ ︸Number of bit stringsnot dete
ted by E[|D|]dete
tors (9)
and hen
e the average number of holes results in

E[|H|] = 2l · (PWF )E[|D|] − |S|. (10)3 Link between r-
ontiguous Dete
tors and k-CNFSatis�abilityStibor et al. [6℄ proved that the problem of generating dete
tors in negative se-le
tion 
an be transformed in an equivalent problem of �nding assignment sets3 To 
apture the semanti
al representation of the data being analyzed.



for a Boolean formula in k-CNF. Satisfying a Boolean formula in k-CNF is aninstan
e of the satis�ability problem [13℄, where one has to de
ide if there issome assignment of true and false values that will make a Boolean formula in
onjun
tive normal form true. For the sake of 
larity, we summarize the trans-formation steps presented in [6℄.Let b ∈ {0, 1} and L(b) a mapping de�ned as:
L(b) →

{
x if b = 0
x otherwisewhere x, x are literals. Moreover, let k, l ∈ N, where k ≤ l and s ∈ U , where s[i]denotes the bit at position i of bit string s. A mapping from bit string s into the

l-k-CNF4 is de�ned as follows:
C(s, k) → (L(s[1]) ∨ L(s[2]) ∨ . . . ∨ L(s[k])) ∧

(L(s[2]) ∨ L(s[3]) ∨ . . . ∨ L(s[k + 1])) ∧...
(L(s[l − k + 1]) ∨ . . . ∨ L(s[l])) .The resulting Boolean formula is 
onstru
ted by an AND-
ombination of all bitstrings in S, i.e.

φ̂rcb := C(s1, k) ∧ C(s2, k) ∧ . . . ∧ C(s|S|, k) for si ∈ S, i = 1, . . . , |S|Proposition 1 (Stibor et al. [6℄). Given a universe U whi
h 
ontains all 2ldistin
t bit strings of length l, a set S ⊂ U and the set D whi
h 
ontains allgenerable r-
ontiguous dete
tors, whi
h do not mat
h any bit string from S. TheBoolean formula φ̂rcb whi
h is obtained by C(s, r) for all s ∈ S is satis�able onlywith the assignment set D.To summarize, instead of sear
hing for dete
tors e.g. by means of algorithm(1), one 
an use SAT-Solvers [14℄ to �nd assignments sets of φ̂rcb. This 
ru
ialfa
t 
an be exploited for quantifying the 
omputational 
omplexity of �nding de-te
tors. However, one must estimate the average number of distin
t 
lauses afterapplying the transformation steps, otherwise one would 
onsider equal 
lausesseveral times � and this 
onsequently would make the problem �harder� then itis.3.1 Average Number of Distin
t ClausesLet S be a subset of U whi
h 
ontains pairwise distin
t bit strings s1, s2, . . . , s|S|whi
h are randomly drawn from U . The 
onstru
ted Boolean formula φ̂rcb doesnot ne
essarily 
ontains pairwise distin
t 
lauses. Two 
lauses are distin
t fromea
h other, if they di�er in at least one literal.4 The Boolean formula is denoted as l-k-CNF, be
ause it is a spe
ial type of a k-CNF.



Example 1. Let S := {0101, 1101} and r = 3, hen
e φ̂rcb results in
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).Example 1 shows that the se
ond and the fourth 
lause are equal, be
ause thelast three bits of 0101 and 1101 are equal.Proposition 2. Given bit string length l, mat
hing length r and let S be a subsetof U whi
h 
ontains pairwise distin
t bit strings s1, s2, . . . , s|S| randomly drawnfrom U . The average number of pairwise distin
t 
lauses is

E[|φ̂rcb|] = 2r (l − r + 1) −

(
1 −

1

(l − r + 1) 2r

)|S|(l−r+1)

(l − r + 1) 2r. (11)Proof. Constru
t a lookup table T whi
h 
ontains all 2r · (l− r +1) 
lauses withlabel T and is of the form
clause label

(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T
(x2 ∨ x3 ∨ . . . ∨ xr ∨ xr+1) T... ...
(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) T
(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T
(x2 ∨ x3 ∨ . . . ∨ xr ∨ ∨ xr+1) T... ...
(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) T... ...
(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T
(x2 ∨ x3 ∨ . . . ∨ xr ∨ xr+1) T... ...
(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) TTransform S into the 
orresponding Boolean formula φ̂rcb and set the label to

F whenever a 
lause in T is member of φ̂rcb. As S is randomly drawn withoutrepla
ement from U , the F and T labels are binomially distributed in T. Theprobability of �nding no 
lauses whi
h are labeled with F when randomly drawn
|S| · (l − r + 1) 
lauses from T results in

(
1 −

1

(l − r + 1) 2r

)|S|(l−r+1)and hen
e, the total number of 
lauses with label F results in
2r (l − r + 1) −

(
1 −

1

(l − r + 1) 2r

)|S|(l−r+1)

(l − r + 1) 2r.

⊓⊔



4 Computational Complexity of Generating Dete
torsA 
ommon approa
h to quantify the 
omputational �hardness� of an instan
e ofa Boolean formula in k-CNF is to 
ount the number of ba
ktra
king attemptsin the Davis-Logemann-Loveland (DLL5) algorithm. The DLL algorithm [17℄ isbased on the elimination rules proposed by Davis and Putnam [18℄ and termi-nates either with result unsatis�able (empty 
lause) or satis�able (empty φ).More spe
i�
ally, the algorithm is a depth-�rst sear
h te
hnique and uses re
ur-sive ba
ktra
king for guiding the exploration. The algorithm 
onstru
ts a de
i-sion tree, where assignments of the variables 
oin
ide with paths from the rootto the leafs. If a path leads to an unsatis�able result, then the algorithm ba
ksup to a di�erent bran
h. This re
ursive sear
h is reiterated until it terminateswith a satis�able or unsatis�able result. In the worst 
ase the whole de
isiontree has to be inspe
ted, i.e. it will take an exponential number of evaluations� similar to an exhaustive sear
h. However on average the DLL algorithm ismu
h faster be
ause it 
an prune whole bran
hes from the de
ision tree withoutexploring the leaves.Given a Boolean formula φ in CNF, a literal l in φ and the redu
tion fun
tion
R(φ, l) that outputs the residual formula of φ by:� removing all the 
lauses that 
ontain l,� deleting l from all the 
lauses that 
ontain l,� removing both l and l from the list of literals.A 
lause that 
ontains one literal is 
alled unit 
lause, and a literal l is 
alledmonotone, if l appears in no 
lause of φ. In lines 2-7 the redu
tion fun
tion isapplied whenever a unit 
lause or a monotone literal is found. The subsequentre
ursive 
all is performed in lines 11, 13 respe
tively. �Easy� input instan
es im-ply that the DLL algorithm requires few ba
ktra
king attempts be
ause 
lausesand literals 
an be e�
iently eliminated by means of R(φ, l) without exe
utingmany subsequent re
ursive 
alls. On the other hand, �hard� instan
es imply thatmany re
ursive 
alls or ba
ktra
king attempts are required. In the next se
tion,the terms �easy� and �hard� are 
lari�ed. More spe
i�
ally, it will be shown thatparameters |S|, l and r spe
ify the ratio of the number of 
lauses to variables ofthe φ̂rcb instan
es and therefore 
hara
terize the 
omputational 
omplexity ofthe DLL algorithm.4.1 Phase Transition in k-CNF Satis�abilityThe k-CNF satis�ability problem is NP-
omplete for k > 2, however, this fa
tdoes not imply that all instan
es of the k-CNF satis�ability problem are in-tra
table to solve. In point of fa
t, there exists many problem instan
es whi
hare �easy� to solve, i.e. one 
an e�
iently de
ide whether the instan
e is satis-�able or is unsatis�able. On the other hand there also exists problem instan
es5 The DLL algorithm is sometimes also 
alled DPL or DPLL algorithm [15,16℄.



Algorithm 2: Davis-Logemann-Loveland algorithm (DLL(·))input : φ (Boolean formula in CNF)output: SATISFIABLE or UNSATISFIABLEbegin1 forall unit 
lauses {l} in φ do2
φ← R(φ, l)3 if φ in
ludes empty 
lause then4 return UNSATISFIABLE5 forall monotone literals l in φ do6
φ← R(φ, l)7 if φ is empty then8 return SATISFIABLE9 
hoose a literal l in φ10 if DLL(R(φ, l)) = SATISFIABLE) then11 return SATISFIABLE12 if DLL(R(φ, l)) = SATISFIABLE) then13 return SATISFIABLE14 return UNSATISFIABLE15 end16whi
h are �hard�, i.e. one 
an not e�
iently de
ide whether the instan
e is satis-�able or is not satis�able. The 
omputational �hardness� of �nding assignmentssets for randomly generated instan
es is 
hara
terized by the ratio [19℄

rk =
number of 
lausesnumber of variables . (12)If the Boolean formula φ has many variables and few 
lauses, then φ is under-
onstrained and as a result it exists many assignment sets. The DLL algorithmrequires for under-
onstrained problem instan
es few ba
ktra
king attempts andtherefore �easily� dedu
es the satis�ability. On the other hand, if the ratio of thenumber of 
lauses to variables is large, then φ is over-
onstrained and almost hasno satisfying assignment set. Su
h over-
onstrained instan
es are likewise �easily�dedu
ible for the DLL algorithm. However, there also exists a transition fromunder-
onstrained to the over-
onstrained region. In su
h a phase transition re-gion the probability of the instan
es being satis�able equals 0.5 and thus one hasthe largest un
ertainty whether the instan
es are satis�able or are unsatis�able.For the 3-CNF satis�ability problem, the ratio (phase transition threshold)is experimentally approximated by ≈ 4.24 [15,20℄. That means, when r3 is 
lose6to 4.24, the DLL algorithm has to ba
ktra
k most frequently to determine the6 It is still an open problem to prove where the exa
t phase transition thresholdis lo
ated. Latest theoreti
al work showed that the threshold rk lies within theboundary 2.68 < rk < 4.51 for k = 3 [21℄.



�nal result. If the Boolean formula is under-
onstrained (r3 < 4.24) or over-
onstrained (r3 > 4.24), then the algorithm prunes whole bran
hes from thede
ision tree without exploring the leaves and terminates after few re
ursive
alls.5 Experiment with φ̂rcb Instan
esThe 
omputational 
omplexity of �nding dete
tors is experimentally investigatedwith the DLL algorithm. More spe
i�
ally, the parameters l = 75, r = 3 are
hosen and |S| is varied from 1 to 25, i.e. for ea
h 
ardinality value from 1to 25, S 
ontains distin
t bit strings whi
h are randomly drawn from U . As aresult, one obtains Boolean formulas φ̂rcb in 75-3-CNF with 75 variables and
(75 − 3 + 1) · |S| 
lauses, E[|φ̂rcb|] distin
t 
lauses, respe
tively. To obtain alarge number of di�erent φ̂rcb instan
es, for ea
h value of |S|, 300 instan
es arerandomly generated. The DLL algorithm is applied on ea
h instan
e and theresults: satis�able/unsatis�able and the number of ba
ktra
king attempts arenoted. The result is depi
ted in �gure 2. The abs
issa denotes the ratio of theaverage number of distin
t 
lauses to variables. The ordinate denotes the numberof ba
ktra
king attempts (
omputational 
osts). The resulting ordinate valuesare 
olored gray if the DLL algorithm outputs satis�able, otherwise it outputsunsatis�able and the values are 
olored bla
k.
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Fig. 2. Number of ba
ktra
king attempts (
omputational 
osts) of the DLL algorithmto de
ide whether a bφrcb instan
e is satis�able or unsatis�able. The gray points denotesatis�able instan
es whereas bla
k points denote unsatis�able instan
es. The �hardest�instan
es are lying in the interval 4 to 5, termed phase transition region.



One 
an see in �gure 2 that for (r3 < 4) a large number of satis�able instan
esexist. Or to say it the other way around, for small values of |S| the resultingBoolean formula φ̂rcb is under-
onstrained and therefore a large number of satis-�able instan
es exist. The DLL algorithm hen
e �easily� dedu
es a satis�abilityresult. The number of satis�able and unsatis�able instan
es is nearly equal for(4 < r3 < 5). These instan
es have the largest un
ertainty for the DLL algo-rithm. As a 
onsequen
e, the DLL algorithm requires the most ba
ktra
kingattempts to determine whether the instan
es are satis�able or are unsatis�able.A ratio (r3 > 5) implies that a large number of over-
onstrained instan
es existand hen
e, the DLL algorithm �easily� dedu
es the unsatis�able result. Another
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Fig. 3. Coheren
e between the per
entage of satis�able instan
es and the ratio of
E[|bφrcb|]/l. The �hardest� instan
es live in the region where the number of satis�ableand unsatis�able instan
es is equal, or in other words, the probability of instan
es beingsatis�able equals 0.5.way to visualize this �easy-hard-easy� pattern, is to plot the per
entage of satis-�able instan
es on the ordinate (see Fig. 3). One 
an see that the probability ofthe instan
es being satis�able equals 0.5 when (4 < r3 < 5) and rapidly 
hangesto 1 for (r3 < 4) and to 0 for (r3 > 5).6 Con
lusionWe have rigorously analyzed the feasibility of generating dete
tors with respe
tto the number of self bit strings |S|, the bit string length l and mat
hing length r.



With high probability dete
tors either 
an be generated or in 
ontrast, 
an notbe generated. However, there also exists a region where the probability rapidly
hanges from 0 to 1. This behavior 
an be explained by transforming the prob-lem of �nding dete
tors into the k-CNF satis�ability problem. If a large numberof self bit strings exist and r is 
lose to 0, then the resulting Boolean formulais over-
onstrained and no assignment sets exist. In 
ontrast, if a small numberof self bit strings exist and r is 
lose to l, then the resulting Boolean formulais under-
onstrained and as a result a large number of assignment sets exist.Moreover we exploited the problem transformation to investigate the 
omputa-tional 
omplexity of �nding dete
tors by means of the DLL algorithm. Findingdete
tors is �easy� for under-
onstrained Boolean formulas. It is also �easy� todetermine for over-
onstrained Boolean formulas that no dete
tors exist. How-ever, for parameter 
ombinations of |S|, l and r where the resulting ratio of theaverage number of distin
t 
lauses to variables is 
lose to the phase transitionthreshold, �nding dete
tors is �hardest�. For su
h �hard� instan
es the DLL al-gorithm requires the most ba
ktra
king attempts, be
ause the probability of theinstan
es being satis�able equals 0.5 and thus one has the largest un
ertaintywhether the instan
es are satis�able or are unsatis�able.A
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