Phase Transition and the Computational
Complexity of Generating r-contiguous Detectors

Thomas Stibor

Department of Computer Science
Darmstadt University of Technology
stibor@sec.informatik.tu-darmstadt. de

Abstract. The problem of generating r-contiguous detectors in nega-
tive selection can be transformed in the problem of finding assignment
sets for a Boolean formula in k-CNF. Knowing this crucial fact enables
us to explore the computational complexity and the feasibility of find-
ing detectors with respect to the number of self bit strings |S|, the bit
string length /[and matching length r. It turns out that finding detectors
is hardest in the phase transition region, which is characterized by cer-
tain combinations of parameters |S|,! and r. This insight is derived by
investigating the r-contiguous matching probability in a random search
approach and by using the equivalent k-CNF problem formulation.

1 Introduction

Theoretical immunologists have proposed the r-contiguous matching function
to abstract the affinity between an antibody and an antigen in immune system
models [1]. In the field of artificial immune systems, the r-contiguous matching
function is applied as a matching rule for change detection [2] or more generally
for anomaly detection problems. In these domains, antibodies (called detectors)
and antigens are abstracted as bit strings and the r-contiguous matching rule
is applied for detecting (anomalous) antigens. More specifically, in this immune
inspired anomaly detection approach, the problem is to find detectors, such that
no detector match with any self antigen. This form of detector generation for
the complementary space is called negative selection [3].

In recent years, many attempts were made (see [4,5] for an overview) to
generate detectors efficiently, i.e. in polynomial time and with polynomial space
occupation with regard to the matching length r» and number of self antigens
|S|. All attempts in designing efficient algorithms for generating r-contiguous
detectors were limited successful. The proposed algorithms either have a time or
a space complexity which is exponential' in the matching length r, i.e. O(2") or
in the number of self elements |S|, i.e. O(el!). Stibor et al. [6] proved that the

! There exists a linear time detector generating algorithm [2], however this algorithm
still requires O(2") time and space occupation. It is termed linear, because it runs lin-
ear in |S| under the assumption that |S| = O(2"). For real-world problems however,
the assumption |S| < 2" is justifiable.

problem of generating r-contiguous detectors can be transformed in a k-CNF
satisfiability problem and argued that at least {2(2") bit string evaluations are
required to find all r-contiguous detectors.

In this paper we go one step further and explore the computational com-
plexity of generating detectors with the Davis-Logemann-Loveland algorithm.
Furthermore, we rigorously analyze, when detectors can be generated with re-
spect to the number of self bit strings |S|, the bit string length [and matching
length 7. It will turn out that generating r-contiguous detectors is computation-
ally not equally “hard”. More specifically, it is relatively cheap computationally,
to verify that no detectors can be generated or that a large number of detectors
can be generated. However, there also exists a phase transition region which is
characterized by certain combinations of parameters |S|,l and r where finding
detectors is hardest. This insight will be derived from two directions, namely
by investigating the r-contiguous matching probability in a random search ap-
proach and by using the problem transformation of generating detectors into the
k-CNF satisfiability problem.

2 Bit String Matching Rule and Generating Detectors
Randomly

Let U be a universe which contains all 2! distinct bit strings of length 1.

Definition 1. A bit string b € U with b = biby...b; and detector d € U with
d = didsy . ..d;, match with r-contiguous rule, if a position p exists where b; = d;
fori=p,....p+r—1landp<l—r+1.

Loosely speaking, two bit strings, with the same length, match if at least r
contiguous bits are identical. In the remaining sections the expression “detectors”
will refer to r-contiguous detectors. Sets are denoted in calligraphic letters, e.g.
S and |S| denotes the cardinality. Throughout the paper, we will assume that S
contains pairwise distinct bit strings randomly drawn from .

2.1 Randomly Generating Detectors in Negative Selection

Given U and its partition into distinct subsets S and A. In negative selec-
tion one has to find detectors such that no detector matches (see Def. 1) with
any bit string from S. Detectors which satisfy this property match with —
not necessarily all — bit strings from the complementary space U \ S. Algo-
rithm (1) is a straightforward random search to generate, i.e. to find detec-
tors. A bit string d is randomly sampled from U and matched against all bit
strings in S. When no r-contiguous match occurs, d is added to the detector
set D. This random sampling is repeated until a certain number of detectors
is found. It is obvious that this straightforward random search is not an effi-
cient search technique. However, a thorough probabilistic analysis of algorithm
(1) reveals valuable insights, whether detectors can or can not be generated.

Algorithm 1: Random search for detectors in negative selection
input :[,r,t € Nwherel <r<land S ClU
output: Set D C U of r-contiguous detectors

1 begin

2 D:=1

3 while |D| < t do

4 Sample randomly a bit string d € U

5 if d does not match with any bit string of S then
6 L D:=DU{d}

7 end

2.2 Probability of Matching in Random Detector Generation

The probability that two randomly drawn bit strings from U/ are not matching
with the r-contiguous rule can be determined with approaches from probability
theory, namely recurrent events and renewal theory [7]. In Feller’s textbook [7]
on probability theory an equivalent? problem is formulated as follows:

“A sequence of n letters S and F contains as many S-runs of length r
as there are non-overlapping uninterrupted blocks containing exactly r
letters S each”.

Given a Bernoulli trial with outcomes S (success) and F' (failure), the probability

of no success running of length r in [trials is according to Feller
1—px 1

r+1—rx)g !

Pyr = ((1)

where

1
p:q:i and x:l—l—qpr—l—(r—i-l)(qpr)z—i-...

A simpler approximation however only valid for r > [/2 is provided by
Percus et al. [1]:

Pjp=1=2""[1-r)/2+1]. (2)

From (1) one can straightforwardly conclude that the probability of finding ¢
detectors when given [, and |S| results in:

Prob|find ¢ detectors| = t~1 - (Py). (3)

2 The Link between recurrent events, renewal theory and the r-contiguous matching
rule was discovered originally by Percus et al. [1] and rediscovered by Ranang [8].
Percus et al. presented in [1] the approximation (2) which is only valid for r > /2,
but mentioned the full approximation for 1 < r < [indirectly by mentioning the
name de Moivre and citing Uspensky’s textbook (see pp. 77 in [9]).

Moreover, from (3) one can conclude how often on average step 4 in algorithm
(1) is executed when given ¢, or in other words how many bit strings one has to
sample before finding ¢ detectors.

1

o
_ |S|
t—1 'PWF

(4)

Result (4) is equivalent to an earlier result on negative selection [3], when Py p
is replaced by Pjp.

18] = 1000
—_—

. o sl=1
Z ol | | <af---f-- ____|SI=10
E 06 [S] 06
s 1 | | <44 IS| = 100
A
o4 | | | | «f----= |S] = 1000 04
- - — - |S] =10000

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

:

e . A A

matching length — n —— 2 e

(a) Matching probability for finding a de- (b) If r lies within interval i1, then with

tector randomly for [:= 24, r :=[1...24] high probability no detectors will be

and |S] := {1, 10, 100, 1000, 10000}. found, whereas if r lies within interval

i3, then with high probability, detectors

will be found. There also exists an interval

i2 where the probability rapidly changes
from O to 1.

Fig. 1. Coherence between the probability of finding a detector randomly and
the parameters [, and |S|. There exists a sharp transition boundary where the
probability rapidly changes from 0 to 1.

2.3 Probability Transition in r-contiguous Matching

Knowing the probability Py r enables us to investigate the combinations of
parameters |S|,! and r where, with high probability detectors can be generated
(i.e. exist) or with high probability can not be generated. The graphs in figure 1
show the probability for finding a detector for fixed | and variable r and |S]|
according to term (3). One can see, that the larger the cardinality of S, the
larger the interval for r where the resulting probability is nearly 0 to find a
detector, or in other words where no detectors exist. On the other hand, the

smaller the cardinality of S, the larger the interval for r where the resulting
probability is nearly 1 to find a detector. In figure 1(b) the same graph, but only
for |S| = 1000 is highlighted. One can see in detail that three different intervals
(i1,142,13) exist. One can either find with high probability a detector in interval
i1, or find with high probability no detector in interval i3. Moreover there exists
a third interval 75 where the probability rapidly changes from 0 to 1. For the
sake of conformity with the subsequent sections, we denote the interval iy as
phase transition region. We will later see, that finding detectors in this region,
which is characterized by certain combinations of parametes |S|,[,r is hardest
from the perspective of computationally complexity.

To summarize this section, if parameters |S|,I and r are chosen such that
term (3) results in a value very close to 0, then in the worst case no detectors
can be generated, never mind which algorithms, i.e. search techniques are applied
to generate detectors, because there exist no detectors. On the other hand, if
term (3) is close to 1, then a large number of detectors exist.

2.4 Coherence of Matching Length r, Self Set S and Random
Detector Search

In the artificial immune system community seems to exist some confusion re-
garding the time complexity of algorithm (1). More specifically, authors in [3]
argued that generating detectors when applying the random search approach can
be performed linearly in |S|. Their argument is based on the observation that ¢
in (4) is minimized by choosing 1 — Pyp & 1/|S|. In other words, the number of
bit strings one has to sample before finding ¢ detectors is linear proportionally
to |S|, when using algorithm (1). This observation implies that the matching
threshold r purely depends on the cardinality of S when [is fixed. To be more
precise, suppose r > [/2, then

W (81n(2)2'/|S])

—r _ ~ —1 ~ _
27Tl =r)2+ 1= |S| T =r=l+2 n(2)

(5)
where W (z) is the Lambert W-function which can be expressed as the series
expansion

X \k—17.k—2
W(z)=> %xk. (6)
k=1

Practically speaking, once |S| and [are fixed, the matching length r is such
chosen that it will fall in interval i3 (see Fig. 1(b)) and consequently this implies
that a large number of detectors can be generated.

With regards to anomaly detection problems, it is known [10,11,12] that the
r-contiguous matching rule is a positional biased detection rule. That means
that the value of r is inextricably linked to the underlying data being analyzed.
The assumption 1 — Pyp ~ 1/|S| however, implies that r grows with |S| (see
term (5)), and does not consider the positional bias. On the other side, if I and r

are fixed® and |S]| is considered as the variable parameter then t = O(elS!), that
is, r will lie within interval ¢; for some large |S| and this consequently implies
that a random search for detectors results in an exponential time complexity
when detectors exist.

2.5 Average Number of Detectors and Holes

For the sake of completeness, we present results on the average number of de-
tectors that can be generated and the resulting holes. The results are straight-
forward conclusions from the previous section 2.2.

Recall, algorithm (1) fails to find any detector when a certain parameter
combination of §,1 and r exists. More specifically, the universe U is not only
composed of sets S,D and N, but also of set H. Recall, the set N contains all
bit strings which are detectable by the detectors from D and hence D C N. The
set H, termed hole set contains all bit strings which are not detectable by any
detector, however, H does not contain any bit strings from S, i.e. HNS = 0 and
hence, |H| is directly linked with interval i; (see Fig.1(b)). More specifically, if
a parameter combination of [, and S is chosen such that term (3) is very close
to 0, then |N] < |H| or in the extreme case |N| = 0, i.e. the universe U is only
composed of sets S and H.

Knowing this coherence between term (3) and the universe composition, the
average number of detectors that can be generated results in

E[|D|] =2' - (Pwp)'Sl. (7)

As the universe is composed of Y = S UN U H when applying the negative
selection, the number of holes results in

(H| = [U| = N —S] (8)
where
E(N]=2" - 2" (Pwp)®lPl (9)
—_———

Number of bit strings
not detected by E[|D]]
detectors

and hence the average number of holes results in

E[H[] = 2" (Pwr)®IPI — 5. (10)

3 Link between r-contiguous Detectors and k-CNF
Satisfiability

Stibor et al. [6] proved that the problem of generating detectors in negative se-
lection can be transformed in an equivalent problem of finding assignment sets

3 To capture the semantical representation of the data being analyzed.

for a Boolean formula in k-CNF. Satisfying a Boolean formula in k-CNF is an
instance of the satisfiability problem [13], where one has to decide if there is
some assignment of true and false values that will make a Boolean formula in
conjunctive normal form true. For the sake of clarity, we summarize the trans-
formation steps presented in [6].

Let b € {0,1} and £(b) a mapping defined as:
x if b=0

T otherwise

£(b) — {

where 2, T are literals. Moreover, let k,1 € N, where k£ <! and s € U, where s][i]
denotes the bit at position ¢ of bit string s. A mapping from bit string s into the
I-k-CNF* is defined as follows:

(s, k) — (L(s[1]) Vv £(s[2]) V ... Vv L(s[k])) A
VooV E(slk+1]) A

(L(s[l =k +1)) Vv ...V £(s[l])).

The resulting Boolean formula is constructed by an AND-combination of all bit
strings in S, i.e.

Grep = C(s1,k) A C(sa,k) A ... A C(sig, k) for s; €S, i=1,...,|S]|

Proposition 1 (Stibor et al. [6]). Given a universe U which contains all 2!
distinct bit strings of length |, a set S C U and the set D which contains all
generable r-contiguous detectors, which do not match any bit string from S. The
Boolean formula ¢..cp which is obtained by €(s,r) for all s € S is satisfiable only
with the assignment set D.

To summarize, instead of searching for detectors e.g. by means of algorithm
(1), one can use SAT-Solvers [14] to find assignments sets of ¢,.,. This crucial
fact can be exploited for quantifying the computational complexity of finding de-
tectors. However, one must estimate the average number of distinct clauses after
applying the transformation steps, otherwise one would consider equal clauses
several times and this consequently would make the problem “harder” then it
is.

3.1 Average Number of Distinct Clauses

Let S be a subset of & which contains pairwise distinct bit strings s1, s2,..., 85

which are randomly drawn from U. The constructed Boolean formula QZM, does
not necessarily contains pairwise distinct clauses. Two clauses are distinct from
each other, if they differ in at least one literal.

* The Boolean formula is denoted as I-k-CNF, because it is a special type of a k-CNF.

Ezample 1. Let S := {0101,1101} and r = 3, hence (ETCb results in
(Il\/fQ\/Ig)/\(fQ\/ng\/fAl)/\(fl\/EQ\/Ig)/\(EQ\/Ig\/EAL).

Example 1 shows that the second and the fourth clause are equal, because the
last three bits of 0101 and 1101 are equal.

Proposition 2. Given bit string length |, matching length r and let S be a subset
of U which contains pairwise distinct bit strings si, sz, ..., s|s| randomly drawn
from U. The average number of pairwise distinct clauses is

1 |S|(l—r+1)
)2T> (I—r+1)27. (11)

Ell¢ral] =2 (1 —7+1) — <1 R wyoT

Proof. Construct a lookup table ¥ which contains all 2" (I —r + 1) clauses with
label T" and is of the form

clause label
(21 V 2o V..V o1 Voxy) T
(22 V w3 V ...V z, V Zpg1) | T
(xl—r-l-l V Zj—pqyo V ...V 211 V ;vl) T
(.Il \ T VvV ...V Tpr—1 \ TT) T
(.IQ \ T3 vV ...V Ty VvV Vv frJrl) T
(xl—r-l-l V Zj—pqyo V ...V 211 V fz) T
(T4 V T V...V Ty VT T
(T2 V T3 V ...V T, V Tpy1) | T
(El—r-i-l V Tj—pqy2 V ...V Ty V fz) T

Transform S into the corresponding Boolean formula amb and set the label to
F whenever a clause in ¥ is member of ¢,.¢. As S is randomly drawn without
replacement from U, the F' and T labels are binomially distributed in ¥. The
probability of finding no clauses which are labeled with F' when randomly drawn
|S] - (I —r+1) clauses from ¥ results in

1 |S|(1—r+1)
10— =
< (l—r+1) 2T>

and hence, the total number of clauses with label F' results in

1 |SI(1—r+1)
)2T> (l—r+1)2".

2T(l—r+1)—<1—m

4 Computational Complexity of Generating Detectors

A common approach to quantify the computational “hardness” of an instance of
a Boolean formula in k-CNF is to count the number of backtracking attempts
in the Davis-Logemann-Loveland (DLL?) algorithm. The DLL algorithm [17] is
based on the elimination rules proposed by Davis and Putnam [18] and termi-
nates either with result unsatisfiable (empty clause) or satisfiable (empty ¢).
More specifically, the algorithm is a depth-first search technique and uses recur-
sive backtracking for guiding the exploration. The algorithm constructs a deci-
sion tree, where assignments of the variables coincide with paths from the root
to the leafs. If a path leads to an unsatisfiable result, then the algorithm backs
up to a different branch. This recursive search is reiterated until it terminates
with a satisfiable or unsatisfiable result. In the worst case the whole decision
tree has to be inspected, i.e. it will take an exponential number of evaluations

similar to an exhaustive search. However on average the DLL algorithm is
much faster because it can prune whole branches from the decision tree without
exploring the leaves.

Given a Boolean formula ¢ in CNF, a literal [in ¢ and the reduction function
R(¢,1) that outputs the residual formula of ¢ by:

— removing all the clauses that contain [, B
— deleting [from all the clauses that contain [,
— removing both [and [from the list of literals.

A clause that contains one literal is called unit clause, and a literal [is called
monotone, if [appears in no clause of ¢. In lines 2-7 the reduction function is
applied whenever a unit clause or a monotone literal is found. The subsequent
recursive call is performed in lines 11, 13 respectively. “Easy” input instances im-
ply that the DLL algorithm requires few backtracking attempts because clauses
and literals can be efficiently eliminated by means of R(¢,[) without executing
many subsequent recursive calls. On the other hand, “hard” instances imply that
many recursive calls or backtracking attempts are required. In the next section,
the terms “easy” and “hard” are clarified. More specifically, it will be shown that
parameters |S|,! and r specify the ratio of the number of clauses to variables of
the amb instances and therefore characterize the computational complexity of
the DLL algorithm.

4.1 Phase Transition in k-CNF Satisfiability

The k-CNF satisfiability problem is N’P-complete for k > 2, however, this fact
does not imply that all instances of the k-CNF satisfiability problem are in-
tractable to solve. In point of fact, there exists many problem instances which
are “easy” to solve, i.e. one can efficiently decide whether the instance is satis-
fiable or is unsatisfiable. On the other hand there also exists problem instances

® The DLL algorithm is sometimes also called DPL or DPLL algorithm [15,16].

Algorithm 2: Davis-Logemann-Loveland algorithm (DLL(-))

input : ¢ (Boolean formula in CNF)
output: SATISFIABLE or UNSATISFIABLE

1 begin

2 forall unit clauses {l} in ¢ do

5 6 — R(6,1)

4 if ¢ includes empty clause then
5 | return UNSATISFIABLE

6 forall monotone literals | in ¢ do
7 L ¢ — R(p,1)

8 if ¢ is empty then

9 L return SATISFIABLE

10 choose a literal [in ¢

11 if DLL(R(¢,l)) = SATISFIABLE) then
12 L return SATISFIABLE

13 if DLL(R(¢,1)) = SATISFIABLE) then
14 L return SATISFIABLE

15 return UNSATISFIABLE

16 end

which are “hard”, i.e. one can not efficiently decide whether the instance is satis-
fiable or is not satisfiable. The computational “hardness” of finding assignments
sets for randomly generated instances is characterized by the ratio [19]

number of clauses

T = (12)

number of variables’
If the Boolean formula ¢ has many variables and few clauses, then ¢ is under-
constrained and as a result it exists many assignment sets. The DLL algorithm
requires for under-constrained problem instances few backtracking attempts and
therefore “easily” deduces the satisfiability. On the other hand, if the ratio of the
number of clauses to variables is large, then ¢ is over-constrained and almost has
no satisfying assignment set. Such over-constrained instances are likewise “easily”
deducible for the DLL algorithm. However, there also exists a transition from
under-constrained to the over-constrained region. In such a phase transition re-
gion the probability of the instances being satisfiable equals 0.5 and thus one has
the largest uncertainty whether the instances are satisfiable or are unsatisfiable.

For the 3-CNF satisfiability problem, the ratio (phase transition threshold)
is experimentally approximated by a 4.24 [15,20]. That means, when 73 is closeS
to 4.24, the DLL algorithm has to backtrack most frequently to determine the

61t is still an open problem to prove where the ezact phase transition threshold
is located. Latest theoretical work showed that the threshold rx lies within the
boundary 2.68 < r, < 4.51 for k = 3 [21].

final result. If the Boolean formula is under-constrained (rs < 4.24) or over-
constrained (rs > 4.24), then the algorithm prunes whole branches from the

decision tree without exploring the leaves and terminates after few recursive
calls.

5 Experiment with (ﬁrcb Instances

The computational complexity of finding detectors is experimentally investigated
with the DLL algorithm. More specifically, the parameters [= 75,7 = 3 are
chosen and |S] is varied from 1 to 25, i.e. for each cardinality value from 1
to 25, § contains distinct bit strings which are randomly drawn from U. As a
result, one obtains Boolean f0£mulas Grep in 75-3-CNF with 75 variables and
(75 — 34 1) - |S| clauses, E[|¢,e|] distinct clauses, respectively. To obtain a
large number of different meb instances, for each value of |S|, 300 instances are
randomly generated. The DLL algorithm is applied on each instance and the
results: satisfiable/unsatisfiable and the number of backtracking attempts are
noted. The result is depicted in figure 2. The abscissa denotes the ratio of the
average number of distinct clauses to variables. The ordinate denotes the number
of backtracking attempts (computational costs). The resulting ordinate values
are colored gray if the DLL algorithm outputs satisfiable, otherwise it outputs
unsatisfiable and the values are colored black.

250 4

200

150 1

Computational costs

100 4

50 4

1 2 3 4 5 6 7

Ratio of E[\(ETCbH to number of variables (I = 75)

Fig. 2. Number of backtracking attempts (computational costs) of the DLL algorithm
to decide whether a (;Aﬁmb instance is satisfiable or unsatisfiable. The gray points denote
satisfiable instances whereas black points denote unsatisfiable instances. The “hardest”
instances are lying in the interval 4 to 5, termed phase transition region.

One can see in figure 2 that for (r3 < 4) a large number of satisfiable instances
exist. Or to say it the other way around, for small values of |S| the resulting
Boolean formula amb is under-constrained and therefore a large number of satis-
fiable instances exist. The DLL algorithm hence “easily” deduces a satisfiability
result. The number of satisfiable and unsatisfiable instances is nearly equal for
(4 < rg < 5). These instances have the largest uncertainty for the DLL algo-
rithm. As a consequence, the DLL algorithm requires the most backtracking
attempts to determine whether the instances are satisfiable or are unsatisfiable.
A ratio (rs > 5) implies that a large number of over-constrained instances exist
and hence, the DLL algorithm “easily” deduces the unsatisfiable result. Another

1.0+

0.8 1

0.6 1

0.4

Percent satisfiable

0.2 9

0.0 1

1 2 3 4 5 6 7

Ratio of E[|¢,c|] to number of variables (I = 75)

Fig. 3. Coherence between the percentage of satisfiable instances and the ratio of
E[|¢reb]]/l. The “hardest” instances live in the region where the number of satisfiable
and unsatisfiable instances is equal, or in other words, the probability of instances being
satisfiable equals 0.5.

way to visualize this “easy-hard-easy” pattern, is to plot the percentage of satis-
fiable instances on the ordinate (see Fig. 3). One can see that the probability of
the instances being satisfiable equals 0.5 when (4 < r3 < 5) and rapidly changes
to 1 for (r3 < 4) and to 0 for (rg > 5).

6 Conclusion

We have rigorously analyzed the feasibility of generating detectors with respect
to the number of self bit strings |S|, the bit string length [and matching length r.

With high probability detectors either can be generated or in contrast, can not
be generated. However, there also exists a region where the probability rapidly
changes from 0 to 1. This behavior can be explained by transforming the prob-
lem of finding detectors into the k-CNF satisfiability problem. If a large number
of self bit strings exist and 7 is close to 0, then the resulting Boolean formula
is over-constrained and no assignment sets exist. In contrast, if a small number
of self bit strings exist and r is close to [, then the resulting Boolean formula
is under-constrained and as a result a large number of assignment sets exist.
Moreover we exploited the problem transformation to investigate the computa-
tional complexity of finding detectors by means of the DLL algorithm. Finding
detectors is “easy” for under-constrained Boolean formulas. It is also “easy” to
determine for over-constrained Boolean formulas that no detectors exist. How-
ever, for parameter combinations of |S|,I and r where the resulting ratio of the
average number of distinct clauses to variables is close to the phase transition
threshold, finding detectors is “hardest”. For such “hard” instances the DLL al-
gorithm requires the most backtracking attempts, because the probability of the
instances being satisfiable equals 0.5 and thus one has the largest uncertainty
whether the instances are satisfiable or are unsatisfiable.

Acknowledgment

The author thanks Erin Gardner for her valuable suggestions and comments.

References

1. Percus, J.K., Percus, O.E., Perelson, A.S.: Predicting the size of the T-cell receptor
and antibody combining region from consideration of efficient self-nonself discrim-
ination. Proceedings of National Academy of Sciences USA 90 (1993) 1691 1695

2. D’haeseleer, P., Forrest, S., Helman, P.: An immunological approach to change
detection: algorithms, analysis, and implications. In: Proceedings of the Sympo-
sium on Research in Security and Privacy, IEEE Computer Society Press (1996)
110 119

3. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination
in a computer. In: Proceedings of the Symposium on Research in Security and
Privacy, IEEE Computer Society Press (1994) 202 212

4. Ayara, M., Timmis, J., de Lemos, R., de Castro, L.N., Duncan, R.: Negative selec-
tion: How to generate detectors. In: Proceedings of the 1nd International Confer-
ence on Artificial Immune Systems (ICARIS), University of Kent at Canterbury
Printing Unit (2002) 89 98

5. Stibor, T., Timmis, J., Eckert, C.: On the appropriateness of negative selection
defined over hamming shape-space as a network intrusion detection system. In:
Proceedings of Congress On Evolutionary Computation (CEC), IEEE Press (2005)
995-1002

6. Stibor, T., Timmis, J., Eckert, C.: The link between r-contiguous detectors and
k-CNF satisfiability. In: Proceedings of Congress On Evolutionary Computation
(CEQ), IEEE Press (2006) 491 498

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Feller, W.: An Introduction to Probability Theory and its Applications. 3. edn.
Volume 1. John Wiley & Sons (1968)

Ranang, M.T.: An artificial immune system approach to preserving security in
computer networks. Master’s thesis, Norges Teknisk-Naturvitenskapelige Univer-
sitet (2002)

Uspensky, J.V.: Introduction to Mathematical Probability. McGraw-Hill (1937)

. Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems:

A problem-oriented perspective. In: Proceedings of the 2nd International Confer-
ence on Artificial Immune Systems (ICARIS). Volume 2787 of Lecture Notes in
Computer Science., Springer-Verlag (2003) 229 241

Gonzalez, F., Dasgupta, D., Gomez, J.: The effect of binary matching rules in
negative selection. In: Genetic and Evolutionary Computation — GECCO-2003.
Volume 2723 of Lecture Notes in Computer Science., Chicago, Springer-Verlag
(2003) 195 206

Stibor, T., Timmis, J., Eckert, C.: Generalization regions in hamming negative
selection. In: Intelligent Information Processing and Web Mining. Advances in
Soft Computing, Springer-Verlag (2006) 447 456

Cormen, T.H., Leiserson, C.E., Rivest, R.L.; Stein, C.: Introduction to Algorithms.
Second edn. MIT Press (2002)

Kullmann, O.: The SAT 2005 solver competition on random instances. Journal on
Satisfiability, Boolean Modeling and Computation 2 (2006) 61-102

Freeman, J.W.: Hard random 3-SAT problems and the Davis-Putnam procedure.
Artificial Intelligence 81(1-2) (1996) 183-198

Ouyang, M.: How good are branching rules in DPLL. Discrete Applied Mathe-
matics 89(1-3) (1998) 281 286

Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7) (1962) 394-397

Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM (JACM) 7(3) (1960) 201-215

Gent, I.P., Walsh, T.: The SAT phase transition. In: Proceedings of the 11th
European Conference on Artificial Intelligence, John Wiley & Sons (1994) 105 109
Selman, B.; Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems.
Artificial Intelligence 81(1-2) (1996) 17-29

Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard
optimization problems. Nature 435 (2005) 759-764

