
On the Appropriateness of Negative Selection for Anomaly
Detection and Network Intrusion Detection

Dissertationsschrift

in englischer Sprache
vorgelegt

am Fachbereich Informatik
der Technischen Universität Darmstadt von

Dipl.-Inf. Thomas Stibor

geboren am 7.4.1976 in Schlackenwerth

zur Erlangung des Grades eines
Doktor der Naturwissenschaften (Dr. rer. nat.)

Darmstadt 2006
Hochschulkennziffer D17

Erstreferent: Prof. Dr. Claudia Eckert
Korreferent: Prof. Dr. Werner Dilger
Korreferent: Dr. Jonathan Timmis

Tag der Einreichung: 16.01.2006
Tag der Disputation: 07.03.2006

“Of course it is very interesting to know how humans can learn. However,
this is not necessarily the best way for creating an artificial learning

machine. It has been noted that the study of birds flying was not very useful
for constructing the airplane”

Vladimir N. Vapnik [The Nature of Statistical Learning Theory]

Kurzfassung (Deutsch)

Das Immunsystem ist ein komplexes System welches Menschen und Tiere
gegen Krankheiten schützt, die durch fremde Eindringlinge wie z.B. Viren,
Bakterien und Pilze hervorgerufen werden. Aus Sicht der Informatik scheinen
die Erkennungs- und Abwehrmechanismen des Immunsystems neuartige Kon-
zepte und Techniken zur Eindringlingserkennung in Computer-Netzwerke
(engl. network intrusion detection) und im Bereich Anomalieerkennung zu
bieten. In dieser Arbeit wird das Prinzip der “negativen Selektion” als
Paradigma für Eindringlingserkennung in Computer Netzwerke und Anoma-
lieerkennung untersucht. Unter negativer Selektion versteht man in der Im-
munologie die Zerstörung von unreifen Antikörpern, die körpereigene Anti-
gene erkennen. Antikörper, die die negative Selektion überstehen, sind selbst-
tolerant und besitzen die Fähigkeit nahezu jegliche fremde Körpersubstanz
zu erkennen. Das Immunsystem is also in der Lage mittels der negativen
Selektion, “selbst” und “fremd” zu unterscheiden. Abstrahiert man dieses
Prinzip und kodiert Antigene als binäre Netzwerk-Pakete oder als reelle n-
dimensionale Datenpunkte und Antikörper als binäre Detektoren oder hochdi-
mensionale Kugeln, so erhält man eine immun-inspirierte Technik für o.g.
Anwendungsbereiche. Man spricht von künstlichen Immunsystemen, wenn
Prinzipien und Abläufe im Immunsystem abstrahiert und zum Problemlösen
angewandt werden.

In dieser Arbeit wird untersucht, ob sich die negative Selektion des künst-
lichen Immunsystems zur Eindringlingserkennung und für Anomalieerken-
nungs Probleme eignet. Hierfür wird erst die immunlogische negative Selek-
tion beschrieben und anschließend die künstliche Immunsystem negative Se-
lektion dargestellt. Weiterhin wird beschrieben, welche Netzwerk-Informati-
onen notwendig sind, um ein Eindringen zu erkennen. Es zeigt sich, dass
die bisherigen Arbeiten auf dem Gebiet die mittels negativer Selektion eine
Eindringlingserkennung versuchen, nicht für reale Eindringlingserkennung
geeignet sind. Ebenfalls wird untersucht, ob eine andere Antikörper-Antigen
Kodierungsform, d.h. reelle n-dimensionale Datenpunkte und hochdimen-
sionale Kugeln als Erkennungseinheiten zur Anomalieerkennung geeignet sind.

i

ii Chapter 0. Kurzfassung (Deutsch)

Auch hier zeigen die erzielten Resultate, insbesondere beim Vergleich zu
statistischen Anomalieerkennungs-Methoden, dass diese Kodierungsform in
Anwendung mit der negativen Selektion unbefriedigende Ergebnisse liefert.

Als zusammenfassendes Resultat bleibt leider ein negatives Ergebnis zu-
rück, welches zeigt, dass die negative Selektion nicht zur Eindringlingserken-
nung in Computer Netzwerke und Anomalieerkennung geeignet ist.

Abstract (English)

The immune system is a complex system which protects humans and ani-
mals against diseases caused by foreign intruders such as viruses, bacteria
and fungi. It appears as if the recognition and protection mechanism of
the immune system can lead to the development of novel concepts and tech-
niques for detecting intrusions in computer networks, particularly in the area
of anomaly detection. In this thesis, the principle of “negative selection” as
a paradigm for detecting intrusions in computer networks and anomaly de-
tection is explored. Negative selection is a process of the immune system,
which destroys immature antibodies which are capable of recognizing self-
antigens. Antibodies which survive the negative selection process are self-
tolerant and are capable of recognizing almost any foreign body substance.
Roughly speaking one can say that the negative selection endows the immune
system with an ability to distinguish between self and non-self. Abstracting
the principle of negative selection, and coding antigens as bit-strings (to rep-
resent network packets) or as real-valued n-dimensional points and antibod-
ies as binary detectors or as hyperspheres, one obtains an immune-inspired
technique for use in the above mentioned areas of application. We are talk-
ing about artificial immune systems, when principles and processes of the
immune system are abstracted and applied for solving problems.

In this thesis, we explore the appropriateness of the artificial immune sys-
tem negative selection for intrusion detection and anomaly detection prob-
lems. In the first instance, we describe the immune system negative selection
principle, and the subsequent the artificial immune system negative selection
principe. We then describe which network information are required to de-
tect an intrusion. Results reveal that previous works that apply the negative
selection for this application area, are not appropriate for real-world intru-
sion detection problems. Moreover we explore if a different antibody-antigen
representations, i.e. real-valued n-dimensional points and high-dimensional
hyperspheres are appropriate for anomaly detection problems. The results
obtained, reveal that negative selection is not appropriate for anomaly de-
tection problems, especially when compared to statistical anomaly detection

iii

iv Chapter 0. Abstract (English)

methods.
In summary, we can unfortunately state that negative selection, is not

appropriate for network intrusion detection and anomaly detection problems.

Preface

At the beginning of the first PhD year, my research attitude began very
optimistically and euphoric, trying to develop an intrusion detection system
by means of negative selection for real-world security problems. However time
progressed, and the optimism and euphoria changed to disappointment. Of
course, it seems to be obvious and intuitive to apply the negative selection
for anomaly and intrusion detection problems. However, a closer and deeper
view on the negative selection, reveals a lot of fundamental problems. To
summarize, the negative selection is a very intuitive and attractive immune
inspired approach, but it is not appropriate and not applicable for real-world
anomaly detection and (network) intrusion detection problems.

Acknowledgments

A lot of friends and researcher from all over the world have helped me for
achieving the results present in this thesis. First of all, I would like to greatly
thank Prof. Dr. Claudia Eckert for giving me the opportunity of doing a PhD
and for her continuous support and listening to my problems “the negative
selection can never work”. I would also like to thank Prof. Dr. Werner Dilger
for being the co-referent. During my PhD years, I had the opportunity to
attend quite a few conferences all over world. The places include countries
like England, Canada, Scotland and the United States. At the first attended
conference I met Dr. Jon Timmis from whom I learned so much during our
fruitful cooperation. Jon invited me for a research visit of 6 months at
the University of Kent at Canterbury in England. During those 6 months,
most of the research work was done. I will never forget the wonderful time
in Canterbury. Finally, my greatest thanks goes to my parents Georg &
Tamara Stibor and the rest of our family, for supporting me during my whole
academic and non-academic life.

v

vi Chapter 0. Preface

Contents

Kurzfassung (Deutsch) i

Abstract (English) iii

Preface v

Contents vii

1 Introduction 1
1.1 Motivation . 1
1.2 State Of The Art . 2
1.3 Outline Of This Thesis . 3

2 Immune System 5
2.1 B- and T-Lymphocytes . 6
2.2 Antibody Diversity . 7
2.3 Negative Selection . 8
2.4 Positive Selection . 9
2.5 Summary . 9

3 Artificial Immune Systems 11
3.1 Shape-Space Formalism . 12

3.1.1 Hamming Shape-Space and Matching Rules 12
3.1.2 Real-Valued Shape-Space and Euclidean Distance . . . 15

3.2 Generic Negative Selection Algorithm 16
3.2.1 Probability of Detection for Random Detector Gener-

ation . 19
3.3 Summary . 21

4 Anomaly Detection and Network Intrusion Detection 23
4.1 Statistical Novelty Detection Techniques 24

4.1.1 Parzen-Window Estimators 27

vii

viii CONTENTS

4.1.2 One-Class Support Vector Machine 29
4.2 Network Intrusion Detection Systems 32
4.3 Summary . 35

5 Hamming Negative Selection 37
5.1 Generalization by Undetectable Elements 37
5.2 Number of Holes . 40
5.3 Detector Generation Algorithm 41
5.4 Number of Detectors . 43

5.4.1 Higher Alphabets . 44
5.5 Empirical Formula Verifications 47
5.6 Controling Number of Detectors and Holes with r-chunk length

r . 48
5.7 Generalization Regions Experiments 49
5.8 Detector Generating Algorithms with Exponential Complexity 52

5.8.1 The Link between r-contiguous Detectors and k-CNF
Satisfiability . 53

5.9 Permutation Masks . 61
5.9.1 Permutation Masks for Inducing other Holes 63
5.9.2 Permutation Masks Experiments 64
5.9.3 Experimental Results 65

5.10 Hamming Negative Selection as a Network Intrusion Detection
Technique . 66

5.11 Summary . 70

6 Real-Valued Negative Selection 73
6.1 Generic Real-Valued Negative Selection 73
6.2 Real-Valued Negative Selection

with Variable-Sized Detectors 74
6.2.1 Algorithm Visualization 74
6.2.2 Algorithm Termination 78

6.3 Real-Valued Positive Selection 78
6.4 Review of Real-Valued Negative/Positive Selection 79
6.5 Summary . 81

7 Classification Results and Comparative Study 83
7.1 ROC Analysis . 83
7.2 Determining Optimal Self-Radius 84
7.3 Low-Dimensional Data Sets and Experimental Settings 87
7.4 Results . 88
7.5 High-Dimensional Data Set and Experimental Settings 101

CONTENTS ix

7.6 Results . 103
7.7 Summary . 104

8 Limitation of Real-Valued Negative Selection in Higher Di-
mensions 107
8.1 Volume of Hyperspheres . 107
8.2 Curse of Dimensionality . 109
8.3 Volume Extrema . 111
8.4 Results and Observations . 112
8.5 Empty Space Phenomenon . 113
8.6 Summary . 114

9 Conclusions 115
9.1 Future Work . 118
9.2 Epilogue . 118

A Appendix 119
A.1 Figures of Generalization Regions Experiment 119
A.2 Figures of Entropy Experiment 124
A.3 Figures of Permutation Masks Experiment 124
A.4 Monte Carlo Integration . 129
A.5 Monte Carlo Hyperspheres Volume Integration 129

Bibliography 131

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

The task of the immune system is to protect the body against invaders (e.g.
viruses, bacteria) which cause diseases, and in the worst case, can lead to
death. To recognize the invaders efficiently the immune system utilize many
detection techniques which in total makes the immune system to an effective
pattern classification system. One outstanding recognition property is the
detection of previously unseen invaders, or in other words, the immune system
can detect and react to invaders that the body has never encountered before.
This outstanding recognition property is achieved by means of the negative
selection. Negative selection is one of the earliest proposed immune inspired
algorithms and also one of the most frequently used technique in the field of
artificial immune systems (AIS). The negative selection algorithm is applied
to anomaly detection problems and also to (network) intrusion detection
problems. However, negative selection has been criticized in recent times
in the field of AIS [46, 20, 32]. It is interesting to note that in published
papers dealing with negative selection, the classification performance is never
compared to well established and understood techniques from the field of
statistics or machine learning. Many comparative studies have compared the
performance of negative selection algorithm version 1 to negative selection
algorithm version n. It is not the objective of this thesis to find a reason
for these studies. However, the author is convinced and hopefully the reader
of this thesis will be, that negative selection is a technique that is not well
suited and not applicable to real-world classification problems. This hard
statement is theoretically and empirically explored in this thesis. It is also
interesting to note, that problems with negative selection were (more or less)
mentioned [46, 20, 32] previously, but it was never investigated and discussed

1

2 Chapter 1. Introduction

further in terms of a pure pattern classification problem. In this thesis we
explore the negative selection as a (pure) pattern classification technique for
anomaly detection and network intrusion detection problems.

1.2 State Of The Art

Historically seen, Forrest et al. [31] were the first who proposed a negative
selection algorithm for detecting data manipulations caused by computer
viruses. Antibodies and antigens were abstracted as bit-strings and the affin-
ity between both bit-strings were calculated as the number of consecutive
matching bits. In Forrest’s et al. approach, unmodified files, i.e. files with
correct integrity were represented as bit-strings and antibodies were gener-
ated by means of negative selection against these bit-strings. Files which
were modified by viruses, should be recognized by the generated antibodies.
Forrest’s et al. proposed negative selection algorithm has several drawbacks
which where informally discussed and criticized in [32]. In succeeding works,
D’haeseleer et. al [17, 16] proposed several improvements1 of the negative
selection algorithm, however most of the problems still remained. In the
year 1996, Hofmeyr started to investigate the negative selection algorithm
as a technique for network intrusion detection. Hofmeyr et al. [41, 40] con-
sidered self-antigens as normal network traffic and attempted to apply the
negative selection algorithm to detect unnormal i.e. malicious network traf-
fic. In Hofmeyr’s et al. approach only IP addresses and TCP ports were
considered to build a meaningful “self-profile” of the normal network traf-
fic. However this approach was also criticized [46], as the primitive fields2

were not enough to build a meaningful profile. In the years 2003 and 2004,
Esponda et al. [26, 27, 24] published several outstanding papers in the field
of negative representations of information and lies the cornerstone for better
understanding the representation of data in the complementary space.

Another different negative selection approach were proposed by González
et al. [35, 34]. Antibodies were not represented as bit-strings, instead they
were represented as hyperspheres. González called this approach, real-valued
negative selection. González focused not on intrusion detection problems,
but instead on real-valued anomaly detection problems. More concrete, he
proposed a real-valued negative selection algorithm, which generates hyper-
spheres with equal radius lengths. A new unseen point which falls inside
a hypersphere is considered as an anomalous point, otherwise as a normal
point. In subsequent works Ji et al. [44, 45] proposed a real-valued negative

1time and space complexity
2IP addresses and TCP ports

1.3. Outline Of This Thesis 3

selection algorithm with variable-sized radii. They argued that hyperspheres
with variable-sized radii possess several advantages, as the complementary
space can be covered with fever hyperspheres with variable-sized radii then
with fixed-sized radii.

1.3 Outline Of This Thesis

The second chapter of this thesis briefly describes the immune system and
the necessary immunological principles, which are abstracted and applied
in this thesis. To aid understanding, the core immunological principles and
the immunological coherences are simplified. The third chapter, presents the
step from an immune system to an artificial immune system, and the artificial
immune system framework is illustrated. Furthermore, the generic negative
selection is presented and the probabilistic approximation on the number of
randomly generated detectors is discussed. In chapter 4, the anomaly detec-
tion problem is motivated and two known statistical techniques for compara-
tive studies are described. Furthermore, the concept of an intrusion detection
system is motivated and two different network intrusion detection models are
presented. In chapter 5, the Hamming negative selection with the r-chunk
affinity rule is exhaustively explored and the appropriateness as an network
intrusion detection system is discussed. In chapter 6, a real-valued negative
selection algorithm for anomaly detection problems is described and stud-
ied. In chapter 7, a technique called ROC analysis is motivated and applied
for exploring the classification performance of real-valued negative selection
when compared to the statistical anomaly detection approaches. The classi-
fication performance is explored on a low and high dimensional problem set.
In chapter 8, general limitations of real-valued negative selection on high-
dimensional problem sets are shown. In chapter 9, the obtained results are
summarized and final conclusions are drawn.

4 Chapter 1. Introduction

Chapter 2

Immune System

The immune system is a fascinating complex system which protects the body
against diseases and infections caused by pathogens [43, 64]. Pathogens are
foreign substances like viruses, fungi, parasites and bacteria which attack
the body continuously, and in the worst case, can lead to death. To detect
and eliminate pathogens efficiently, the immune system possesses a multi-
layered protection, detection and elimination architecture (see Fig. 2.1).
The skin is the first barrier and prevents the physical intrusion of pathogens
in the bloodstream. A further barrier is physiological, where conditions such
as pH and temperature provide inappropriate living conditions for intruded
pathogens. Once pathogens overcome these barriers, the innate or adaptive
immune response is triggered. The innate immune system can detect only a
limited number of pathogens and is not able to detect unknown or unseen
pathogens. However, the reaction and elimination process is very fast com-
pared with adaptive immune response. This is accomplished by phagocytes,
which are able to ingest and to destroy pathogens via a process known as

Elimination

Physical barrier

Physiological barrier

Lymphocyte

Phagocyte

Skin

Innate immune response

Adaptive immune response

Pathogens

Figure 2.1: Multi-layered protection and elimination architecture

5

6 Chapter 2. Immune System

phagocytosis. The adaptive immune system is not able to react in such a
fast manner. Instead, it is able to detect and eliminate pathogens, never
encountered before. This capability also encompasses pathogens which are
synthetically produced by chemical laboratories and would never appear in
the nature. To detect and eliminate pathogens of such diversity, the adap-
tive immune system contains certain types of white blood cells called lym-
phocytes. Lymphocytes do not recognize whole complete pathogens, instead
they recognize pathogenic patterns, called antigens. Antigens are any sub-
stances built out of amino acids which induce an innate or adaptive immune
responds. To recognize antigens, lymphocytes carry recognition units (called
antibodies) on their surface which have the capability to recognize and clas-
sify proteins1, which belong to the body (called self) and foreign substances
(called non-self). Lymphocytes are subdivided in two different classes: B
and T-Lymphocytes. B-Lymphocytes mature in the bone marrow and man-
ufacture soluble antibodies. T-Lymphocytes mature in the thymus and do
not produce soluble antibodies, instead this class support B-Lymphocytes
in their detection and elimination process and recognize antigens which are
associated with a host cell.

2.1 B- and T-Lymphocytes

B-Lymphocytes search in the extracellular spaces, such as the bloodstream,
for pathogens and produce antibodies against antigens unless they are stim-
ulated by (helper) T-Lymphocytes. T-Lymphocytes are divided in two sub-
classes. The first subclass called helper T-Lymphocytes support B-Lympho-
cytes in their detection and activation process with proteins called lym-
phokines. B-Lymphocytes which recognize an antigen are not able to cause
an immune response. In addition, they require an activation signal (the lym-
phokines) from the helper T-lymphocytes which also recognizes these anti-
gen. The second subclass, called killer T-Lymphocytes, recognize infected
cells (intracellular infections) and produce cytotoxic substances which kill
directly the infected cells. T-Lymphocytes are able to recognize such intra-
cellular infections by means of MHC molecules. A major histocompatibility
complex (MHC) is a cellular molecule which is found in every host cell. More
precisely, there are two classes of MHC molecules, called MHC-I and MHC-
II. MHC-I molecules are found in all host cells, where MHC-II molecules are
found in antigen presenting cells called APC.

1organic compound that consists of amino acids

2.2. Antibody Diversity 7

Constant Region

Variable Region

Heavy chains

Light chains

(a) BCR antibody consists of two heavy and two light
chains. Each chain consists of a variable and a constant
region

Constant Region

Variable Region

(b) TCR antibody consists
of a variable and a constant
region

Figure 2.2: B-Lymphocyte antibody (BCR) and T-Lymphocyte antibody
(TCR)

2.2 Antibody Diversity

An antibody is, from the chemical point of view, a protein and recognizes
a specific antigen unique to its target. A B-Lymphocyte antibody (termed
BCR) has a Y-shaped form consisting of two heavy and two light chains
(see Fig. 2.2(a)). The heavy chains are so called, because they weigh more
than the light chains. The heavy chain consists of approximately 450-500
amino acids, the light chain of approximately 220 amino acids. Each chain
consists of a constant and a variable region. The constant region consists of
an amino acid sequence which is essentially the same for all antibodies in the
body and encodes information, how the antigen should be eliminated, once
it is bound. The variable region determines the specificity2 of the antibody
and consists of an amino acid sequence which is the same for all antibodies of
a B-Lymphocyte, but will vary from one B-Lymphocyte to another. The
heavy chain of the BCR is built out of three gene segments : V (variable), D
(diversity) and J (joining) and the light chain only of the V and J segment.
Each gene segment is composed again of certain gene combinations. The total
number of possible BCR protein encodings is calculated as the product of
the number of possible gene combinations for each segment. In human body
this results in approximately 3, 4 · 106 different BCR protein encodings [43].

A T-Lymphocyte antibody (termed TCR) is likewise built out of three
gene segments (V-D-J), but has a non Y-shaped form (see Fig. 2.2(b)). The

2binding affinity to the antigen

8 Chapter 2. Immune System

specificity of the variable region is generated similar to the specificity of the
BCR, but with deviations in the number of possible gene combinations [43].
The total number of TCR protein encodings in human body results in 5, 8·106

possibilities [43].

The actual number of antigens that the immune system can recognize
with antibodies is far greater than 106. It has been estimated to be greater
than 1016 [43]. An interesting question is : how can the immune system rec-
ognize such a high number of antigens with a far lower number of BCR and
TCR encodings ? The answer lies in the junctional diversity and somatic
hypermutation. The junctional diversity causes additional diversity by cour-
tesy of adding and removing N-Nucleotides3 during the assembly of the gene
segments. The somatic hypermutation causes a high level of mutations in
the variable regions of the gene segments.

2.3 Negative Selection

Lymphocytes are able to recognize (foreign) antigens but also cells and
molecules that belong to the body (called self-antigens). These self-reactive
lymphocytes cause autoimmune diseases and can lead to death in the worst
case. Negative selection is a process that eliminates self-reactive lympho-
cytes. Self-reactive lymphocytes can occur, because the BCRs and TCRs
are randomly composed from different gene segments and undergo a junc-
tional diversity and somatic hypermutation process. This (random) pro-
cess can therefore produce lymphocytes which are able to recognize self-
antigens. The negative selection of T-Lymphocytes occurs within the thy-
mus. The thymus forms a highly impermeable barrier to macromolecules
called blood-thymic barrier. The blood-thymic barrier allows Thymocytes
(immature T-Lymphocytes) to mature and undergo selection in an environ-
ment protected from contact with foreign antigens. During the selection
process, APCs present self-peptide/MHC complexes to the T-Lymphocytes.
T-Lymphocytes that react strongly (bind with high affinity) with the self-
peptide/MHC complexes are eliminated through a controlled cell death (called
apoptosis). As a result, only those T-Lymphocytes remain which can recog-
nize foreign antigens and are not self-reactive (see Fig. 2.3).

3N-Nucleotide regions are encoded by a special enzym (termed TdT), instead of the
V-D-J gene segments

2.4. Positive Selection 9

selection
negative

selection
positive

T−Lymphocytes
mature

T−Lymphocytes
immature

high affinity binding

useless antibodies

self−peptide/MHC

antibody

low affinity binding

Figure 2.3: Positive and negative selection process

2.4 Positive Selection

T-Lymphocytes not only undergo a negative, but also a positive selection
process. T-Lymphocytes which carry “useless” antibodies are not useful in
the recognition process. The positive selection rescues those T-Lymphocytes
from apoptosis that carry convenient antibodies and react weakly with self-
peptide/MHC complexes (see Fig. 2.3). Experiments and observations reveal
that most of the immature T-Lymphocytes die in the thymus and only 2 %−
5 % survive and leave the thymus as mature T-Lymphocytes.

An open question currently in Immunology is : how exactly is the weak
and strong affinity expressed [70] ? If the binding strength is similar in the
negative and positive selection, then no T-Lymphocytes would survive these
two selection processes. The positive selection would keep T-Lymphocytes
with a certain affinity and the negative selection would eliminate then these
T-Lymphocytes.

It is out of the scope of this thesis, and also the author’s lack of knowledge
to answer this immunological question. Nevertheless, the latest immunolog-
ical hypothesis supports the weak-strong affinity theory [70].

2.5 Summary

The main task of the immune system is to defend the body against diseases
caused by pathogens. To detect and eliminate pathogens, the immune sys-

10 Chapter 2. Immune System

tem contains certain types of white blood cells called lymphocytes, which can
recognize pathogenic patterns, called antigens. Lymphocytes can be thought
of as detectors, as they carry recognition units (termed antibodies) on their
surface which have the capability to recognize and classify proteins, which
are produced inside the host (termed self) and outside the host (termed
non-self). To avoid a misclassification of self proteins by lymphocytes, the
immune system eliminates self reactive lymphocytes in a censoring process
called negative selection. After this censoring process, the immune system
contains lymphocytes which recognize non-self proteins. Since the amount
of lymphocytes at any given time is limited, lymphocytes which are not in-
volved in a recognition process (stimulated) are removed by a mechanism
called apoptosis (cell death) and new lymphocytes are added by the immune
system. This continual turnover of new and old lymphocytes enables the
immune system to recognize all possible non-self proteins over time with a
limited number of antibodies. More precisely, the immune system disposes
about 106 different proteins which are randomly composed from different gene
segments. This random composition, together with the junctional diversity
and the somatic hypermutation, achieves a potential repertoire greater than
1016. As explained above, the negative selection process eliminates self re-
active lymphocytes. In addition, the immune system also performs positive
selection. A cell which is infected with a virus is not directly detectable by
antibodies, because the cell carries no binding information on their surface.
To solve this problem, all cells contain MHC molecules which are able to
present intruded viral peptides on the cell surface. The MHC presented in-
formation consists of non-self peptides, but also of self peptides. The process
of positive selection ensures that those lymphocytes are selected, whose anti-
bodies are capable of recognizing and binding weakly with self-peptide/MHC
complexes associated with non-self peptides.

Roughly speaking, one can say that the negative selection allows the
immune system to recognize non-self and the positive selection allows the
immune system to recognize self.

Chapter 3

Artificial Immune Systems

An artificial immune system (AIS) is a paradigm inspired by the immune
system and is used for solving computational and information processing
problems. A widely accepted definition of an AIS is by de Castro and Tim-
mis [15]:

Definition 3.1. Artificial immune systems are adaptive systems, inspired
by theoretical immunology and observed immune functions, principles and
models, which are applied to problem solving.

An AIS can be described and developed using a framework (see Fig. 3.1)
which contains the following basic elements:

• A representation for the artificial immune elements.

• A set of functions, which quantifies the interactions of the artificial
immune elements.

• A set of algorithms which is based on observed immune principles and
methods.

Immune elements are e.g. antibodies, antigens or MHC molecules which
represent (encode) solutions for problems. The quality1 of the represented
solutions is quantified by functions. Typical functions are metric functions
(distance measurements), which quantify the interactions between antibodies
and antigens. Immune algorithms are motivated by the observed immuno-
logical principles, e.g. the negative, positive or the clonal selection principle
and are abstracted as algorithms for solving problems.

This 3-step formalization (representation, affinity, algorithm) for using
the AIS framework is explained in the following sections.

1Fitness values in genetic algorithms

11

12 Chapter 3. Artificial Immune Systems

Representation

Affinity Measures

Immune Algorithms

AIS

Solution

Application Domain

r−contiguous

Real−Valued
Hamming, Integer

negative selection
positive selection
clonal selection

r−chunk
Euclidean distance

Figure 3.1: The AIS framework proposed by de Castro and Timmis

3.1 Shape-Space Formalism

The notion of shape-space was introduced by Perelson and Oster [57] and
allows a quantitative affinity description between antibodies and antigens.
More precisely, a shape-space is a metric space with an associated distance
(affinity) function. All artificial immune elements, like antibodies and anti-
gens, are represented in a shape-space. The affinity can be described with
a multitude number of distance functions — a detailed overview is provided
in [15]. In this work, we consider two different shape-spaces and affinity func-
tions only, because the investigated immune algorithms operate on these.

3.1.1 Hamming Shape-Space and Matching Rules

The Hamming shape-space UΣ
l is built out of all elements of length l over a

finite alphabet Σ.

Example 3.1.

Σ = {0, 1}

000 . . . 000
000 . . . 001
.
.
111 . . . 111︸ ︷︷ ︸

l

Σ = {A, C, G, T}

AAA . . . AAA
AAA . . . AAC
.
.
TTT . . . TTT︸ ︷︷ ︸

l

In example 3.1 two Hamming shape-spaces for different alphabets and al-
phabet sizes are presented. At the left side, a hamming shape-space defined
over the binary alphabet with elements of length l is shown. At the right

3.1. Shape-Space Formalism 13

side, a hamming shape-space defined over the DNA bases alphabet (Adenine,
Cytosine, Guanine, Thymine) is presented. A formal description of antigen-
antibody interactions not only requires an encoding, but also appropriate
affinity functions. Percus et. al [56] proposed the r-contiguous matching rule
for abstracting the affinity of an antibody needed to recognize an antigen.

Definition 3.2. An element e ∈ UΣ
l with e = e1e2 . . . el and detector d ∈ UΣ

l

with d = d1d2 . . . dl, match with r-contiguous rule, if a position p exists where
ei = di for i = p, . . . , p + r − 1, p ≤ l − r + 1.

Informally, two elements, with the same length, match if at least r con-
tiguous characters are identical.

Example 3.2.

Σ = {0, 1}

l︷ ︸︸ ︷
0 1 1 0 1 0 1
0 0 1 0 1 1 0

︸ ︷︷ ︸
r

element
detector

Example 3.2 shows an element and a detector of length l = 7. The
detector recognizes the element for r ≤ 3 with the r-contiguous matching
rule. This example shows one possible detector. The number of all possible
detectors is 24 and can be characterized with the generic r-contiguous detector

∗ ∗ 1 0 1 ∗ ∗

where ∗ the asterisk represents either a 1 or 0.
An additional rule, which subsumes2 the r-contiguous rule is the r-chunk

matching rule [4].

Definition 3.3. An element e ∈ UΣ
l with e = e1e2 . . . el and detector

d ∈ N × DΣ
r with d = (p | d1d2 . . . dr), for r ≤ l, p ≤ l − r + 1 match with

r-chunk rule, if a position p exists where ei = di for i = p, . . . , p + r − 1.

Informally, element e and detector d match if a position p exists, where
all characters of e and d are identical over a sequence of length r.

2include within a larger entity

14 Chapter 3. Artificial Immune Systems

Example 3.3.

Σ = {0, 1}

l︷ ︸︸ ︷
0 1 1 0 1 0 1

︸ ︷︷ ︸
r

element

detectors {1|011, 2|110, 3|101, 4|010, 5|101}
?

Example 3.3 shows the same element as in example 3.2 and all possible
generable r-chunk detectors. As l = 7 and r = 3, one obtains l − r + 1 =
5 possible r-chunk detectors. The arrow points to an r-chunk detector of
position p = 2.

We use the term subsume as any r-contiguous detector can be represented
as a set of r-chunk detectors. Consider element 0110101 in example 3.3 as an
r-contiguous detector of length l = 7. This r-contiguous detector can be rep-
resented as five r-chunk detectors (see example 3.3). This implicates that any
set of elements from UΣ

l that can be recognized with a set of r-contiguous
detectors can also be recognized with some set of r-chunk detectors. The
converse statement is surprisingly not true, i.e. there exists a set of elements
from UΣ

l that can be recognized with a set of r-chunk detectors, but not rec-
ognized with any set of r-contiguous detectors. We demonstrate this converse
statement on an example, a formal approach is provided in [27].

Example 3.4. Given a Hamming shape-space U
{0,1}
5 , a set

S = {01011, 01100, 01110, 10010, 10100, 11100} of self elements and a detec-
tor length r = 3.

All possible generable r-contiguous detectors for the complementary space
U

{0,1}
5 \ S are Dr−contiguous = {00000, 00001, 00111, 11000, 11001}.

All possible generable r-chunk detectors are
Dr−chunk = {1|000, 1|001, 1|110, 2|000, 2|011, 2|100, 3|000, 3|001, 3|101, 3|111}.
The set Dr−contiguous recognizes the elements

P1 = U
{0,1}
5 \ (S ∪ {01010, 01101, 10011, 10101, 11101, 11110}),

whereas the set Dr−chunk recognizes the elements

P2 = U
{0,1}
5 \ (S ∪ {10011, 01010, 11110}). Hence |P1| ≤ |P2|.

Example 3.4 shows, that the set of r-chunk detectors Dr−chunk recog-

nizes more elements of U
{0,1}
5 than then the set of r-contiguous detectors

Dr−contiguous and therefore the r-chunk matching rule subsumes the r-contiguous
rule.

3.1. Shape-Space Formalism 15

x1 − y1

y2 − x2

x

y
d(x,y)

Figure 3.2: Euclidean distance between the vectors x = (x1, x2) and y =
(y1, y2)

Another shape-space proposed by theoretical immunologists [57, 58] is
the real-valued shape-space also referred to as generalized shape. From a
physical point of view, the binding between antibody and antigen involves
short-range noncovalent interactions based on electrostatic charge, hydrogen
binding and van der Waals interactions. This physical binding properties can
be formulated as a geometric quantity3 in real-valued shape-space.

3.1.2 Real-Valued Shape-Space and Euclidean Distance

Real-valued shape-space is a n-dimensional Euclidean space R
n, where ev-

ery element is represented as a n-dimensional point, or simply as a vector
represented by a list of n real numbers. The Euclidean distance4 d, is the
(standard) distance between any two vectors x,y in R

n (see Fig. 3.2) and is
defined as :

d(x,y) =
√

(x1 − y1)2 + . . . + (xn − yn)2

Moreover, the Euclidean distance d(·, ·) satisfies the metric properties :

non-negativity : d(x,y) ≥ 0

reflexivity : d(x,y) = 0 iff x = y

symmetry : d(x,y) = d(y,x)

triangle inequality : d(x,y) + d(y, z) ≥ d(x, z)

3n-dimensional point
4also termed 2-norm

16 Chapter 3. Artificial Immune Systems

for all vectors x,y, z ∈ R
n

and therefore is frequently applied as a distance measurement in AIS al-
gorithms. More specifically, an antibody and an antigen is represented as a
n-dimensional point. The interaction is quantified by means of Euclidean dis-
tance, i.e. the smaller the distance, the higher the affinity between antibody
and antigen.

3.2 Generic Negative Selection Algorithm

Negative selection — as mentioned in section 2.3 — is a mechanism of the
immune system to protect the body against self reactive lymphocytes. As
a result, only those lymphocytes survive this selection process, that do not
bind strongly with self-antigens. This principle inspired Forrest et al. [31] to
propose a generic negative selection algorithm for detecting data anomalies,
and in later works, this principle was applied for detecting (network) intru-
sions [1, 40, 34, 5, 69, 89] and also for detection anomalies in time series [14].
The basic idea is to generate a number of detectors in the complementary
space5, and then to apply these detectors to classify new (unseen) data as self
(no data manipulation) or non-self (data manipulation). For this purpose,
the whole shape-space U is divided in a self set S and a non-self set N with

U = S ∪N and S ∩N = ∅.
The generic negative selection algorithm proposed by Forrest et al. is illus-
trated in figure 3.3 and summarized in the following steps :

Algorithm 1: Generic Negative Selection Algorithm

input : S = set of self elements
output: D = set of generated detectors
begin

1. Define self as a set S of elements in shape-space U
2. Generate a set D of detectors, such that each fails to match any
element in S
3. Monitor S for changes by continually matching the detectors in
D against S

end

The first version of the negative selection algorithm [31] mirrored closely

5space which contains no seen self elements

3.2. Generic Negative Selection Algorithm 17

Generate Random Match Detector Set D

Reject

yes

no

Self Set S

Elements

(a) Generation of Detector Set

Match

yes

Detector Set D

Detected

no

Non−Self

Protected
Self Set S

(b) Monitor Protected Strings for Ma-
nipulation

Figure 3.3: Generic Negative Selection Algorithm proposed by Forrest et al.

the generation of T-Lymphocytes in the immune system. Candidate detec-
tors6 were drawn at random from U

{0,1}
l and checked against all elements in

S. This process of random generation and checking was repeated until the
required number of detectors was generated. Freitas and Timmis [32] noted
several weaknesses of the detector generation and problems of this anomaly
detection technique in general. To summarize, the algorithm is inefficient,
since a vast number of randomly generated detectors need to be discarded,
before the required number of suitable ones are obtained — this is a simple
random search. And second, this algorithm [31] and later proposed algo-
rithms [17, 88, 2, 71] are defined over the Hamming shape-space associated
with affinity matching functions which induces additional “positional bias”
problems. This second problem, is investigated and discussed in detail in
chapter 5.

Subsequently, we summarize and present results of the first version of the
negative selection algorithm [31] — the random search method.

Forrest’s et al. [31] theoretical analysis on the number of randomly drawn
detectors based on a mathematical approximation proposed by Percus et
al. [56] which is unfortunely incorrect for r ≤ l. Percus et al. approximate
the probability PS that a random detector recognizes7 a random antigen with

PS = m−r [(l − r)(m− 1)/m + 1] (3.1)

where m is the alphabet size8 and l, r the parameters from definition 3.2.
Percus et al. mentioned that this approximation is valid when m−r ≪ 1. In

6r-contiguous
7with r-contiguous matching rule
8in our notation |Σ|

18 Chapter 3. Artificial Immune Systems

a succeeding work, Wierzchoń [87] has shown that approximation 3.1 is only
valid when r ≥ l/2.

The correct probability approximation9 for r ≤ l and alphabet size 2 was
originally derived by William Feller and is presented in his textbook [29].
To approximate the probability that a random detector recognizes with r-
contiguous matching rule a random antigen is formally defined by Feller as
follows :

“A sequence of n letters S and F contains as many S-runs of length r as
there are non-overlapping uninterrupted blocks containing exactly r letters S
each”.

Given a Bernoulli trial with outcomes S (success) and F (failure), the prob-
ability of no success run of length r in l trials is, according to Feller

1− px

(r + 1− rx)q
· 1

xl+1
(3.2)

where

p = q =
1

2
and x = 1 + qpr + (r + 1)(qpr)2 + . . .

as term 3.2 gives the probability of no success run of length r in l trials, the
correct approximation that a random detector recognizes with r-contiguous
matching rule a random antigen results in

PWF = 1−
(

1− px

(r + 1− rx)q
· 1

xl+1

)
(3.3)

We like to emphasize here that the link between r-contiguous matching rule
and term 3.3 was first demonstrated by Ranang [59] with a simple counter-
example. Ranang shows that for m = 2, l = 49 and r = 4 the approxima-
tion 3.1 results in

PS = 2−4

[
(49− 4)(2− 1)

2
+ 1

]
= 1.46875

which is greater than 1 and therefore does not describe a correct probability
distribution.

Verifying term 3.3 for l = 49 and r = 4 results in PWF ≈ 0.82. The
difference between term 3.1 and 3.3 for small values of r are extremely large
(see Fig. 3.4). Reaching a certain value for r, both terms adjust and de-
crease asymptotically to 0 — probably this is the reason that nobody, except
Ranang, noticed this incorrect approximation.

9also presented in Ranang master thesis

3.2. Generic Negative Selection Algorithm 19

6

5

1412

2

62 8

3

4

4
0

10

1

r

PS

PWF

r-
co

n
ti

gu
ou

s
m

at
ch

in
g

p
ro

b
ab

il
it
y

Figure 3.4: Difference between Percus et al. and Feller’s (probability) ap-
proximation for l = 49 and r = {2, . . . , 15}

3.2.1 Probability of Detection for Random Detector
Generation

In this section we summarize results on the number of required r-contiguous
detectors when generated randomly shown in [31]. We replace the wrong
probability approximation (PS) — used in [31] — with the correct one
(PWF) and discuss the obtained results.

Forrest et al. [31] proposed a straightforward calculation on the number
of required r-contiguous detectors by allowing with probability Pfail that the
randomly generated detectors fail to detect a data manipulation.

Let U
{0,1}
l be a Hamming shape-space, {D0, D, S} ⊆ U

{0,1}
l and

|D0| = number of initial detectors (before negative selection)

|D| = number of detectors (after negative selection)

|S| = number of self elements in S

PWF = probability according to Feller’s approximation (3.3)

P¬S = probability of a random element from U
{0,1}
l not matching any

element from S

20 Chapter 3. Artificial Immune Systems

= (1− PWF)|S| ≈ e−PWF ·|S|

Pfail = probability that |D| detectors fail to detect a data manipulation

= (1− PWF)|D| ≈ e−PWF ·|D|

Given a pre-defined number of randomly drawn initial detectors |D0|, |S|
and PWF , one obtains the number of suitable detectors |D| not matching
any element in S

|D| = |D0| · P¬S (3.4)

The number of detectors |D| that fails to detect a data manipulation with
probability Pfail is

|D| = − ln(Pfail)

PWF

(3.5)

Combining (3.4) and (3.5)

|D0| =
− ln(Pfail)

PWF · P¬S

(3.6)

one obtains the number of initial detectors |D0|. That means, for detecting a
data manipulation by allowing with probability Pfail that |D| detectors fail
to detect a data manipulation, one requires a size of |D0| initial detectors.

3.3. Summary 21

800600400200

50000

40000

30000

20000

10000

0
1000

|S|

|D0|

Figure 3.5: Coherence between the number of self elements |S| and the
number of initial detectors |D0| according to − ln(Pfail)/(PWF · P¬S) for
l = 49, r = 12 and Pfail = 0.1

In figure 3.5 one can see the exponential grow of term 3.6 with respect
to the number of self elements. The value Pfail = 0.1 is chosen, as in [31],
the values l = 49 and r = 12 are chosen as proposed in [40, 5] — the chosen
parameters are explained in section 5.10 and become clear in the context of
network intrusion detection.

By transforming term 3.6 in (ePWF ·|S| · (− ln(Pfail)/PWF)) it appears that
term 3.6 grows exponentially in |S|, i.e. this random search approach be-
comes infeasible for large |S|.

3.3 Summary

An artificial immune system is a paradigm inspired by the immune system
and is used for solving computational and information processing problems.
Mistakenly an artificial immune system is often only considered — outside
the artificial immune system community — as an approach for solving se-
curity problems, like viruses or worms attacks, as it seems to be perfectly
related to such problems. In this chapter we have shown the 3-step formal-
ization (representation, affinity, algorithm) approach proposed by de Castro

22 Chapter 3. Artificial Immune Systems

and Timmis. The approach requires a proper immune element representa-
tion, suitable affinity functions and immune algorithms. In artificial immune
systems, the Hamming shape-space and the real-valued shape-space is used.
For the Hamming shape-space the binding strength (affinity) is abstracted by
means of the r-contiguous and r-chunk matching rules. For the real-valued
shape-space, the Euclidean distance is applied. Furthermore the generic neg-
ative selection proposed by Forrest et al. is presented and also the proba-
bilistic results on the number of finding suitable detectors when generated
randomly. The detector generation process in the generic negative selection
was strongly criticized by Freitas and Timmis as it is a simple random search
method. Moreover, Ranang has shown with a simple counter-example that
the approximation proposed by Percus et al. is incorrect. We have revised
the probabilistic results with the correct approximation and have shown the
infeasible time complexity of the random detector generation process.

Chapter 4

Anomaly Detection and
Network Intrusion Detection

In this chapter, we provide an overview of anomaly detection and present
established statistical anomaly detection techniques. This techniques will
be later used for a comparative study to the real-valued negative selection
(chapter 7). Additionally, we describe two network intrusion detection mod-
els here, for later discussing the appropriateness and applicability of Ham-
ming negative selection for these models (chapter 5).

Anomaly detection, also referred to as novelty detection [51], outlier de-
tection [51] or one-class learning is a pattern classification problem. The goal
of (supervised) pattern classification, also referred to as pattern recognition,
is to find a functional mapping between input data X to a class label Y so
that Y = f(X). The mapping function is the pattern classification algorithm
which is trained (or learned) with a given number of labeled data called train-
ing data. The aim is to find the mapping function, which gives the smallest
possible error in the mapping, i.e. the minimum number of samples where Y
is the wrong label, especially for test data not seen by the algorithm during
the learning phase. In the simplest case there are only two different classes
C0, C1 and the task is to estimate function paramters fp : R

N → {C0, C1}, us-
ing training data pairs generated i.i.d.1 according to an unknown probability
distribution

P (x, y) := (x1, y1), . . . , (xn, yn) ∈ R
N × Y, Y ∈ {C0, C1}

such that f will correctly classify unseen samples x. When the training data
consists only of samples from a single class (x, y ∈ C0) or a single class and

1independently drawn and identically distributed

23

24
Chapter 4. Anomaly Detection and Network Intrusion Detection

a strongly under-represented second class (x, y ∈ {C0, C1}) where |C0| ≫ |C1|
and the test data contains samples from two or more classes, the classifi-
cation task is called anomaly detection. Examples of anomaly detection are
machine fault recognition or medical diagnosis, where only training data con-
taining normal behavior is available, as it is difficult or impossible to obtain
abnormal behavior. In a probabilistic sense, anomaly detection is equivalent
to deciding whether an unknown test sample is produced by the underlying
probability distribution that corresponds to the training set of normal ex-
amples. Such approaches are based on the assumption that anomalous data
are not generated by the source of normal data (see Fig. 4.1). Before
we start to introduce the statistical novelty detection techniques, we show a
dilemma which arises in any pattern classification techniques. The dilemma
is termed overfitting/underfitting and can occur as a result of wrong func-
tion flexibility and a limited number of seen training samples. A sufficiently
flexible mapping function can always perfectly fit the training data, i.e. the
function completely adapts to all available training samples (see Fig. 4.2(a)).
However, this results in a poor generalization as unseen samples are not suffi-
ciently integrated in the mapping function. On the other hand, the opposite
effect can occur, i.e. the mapping function has limited flexibility to capture
all characterists in the data (see Fig. 4.2(b)). The best way to avoid overfit-
ting/underfitting effects is to use a sufficiently large number of training data,
as only a large number of samples reveal the true distribution more closely
(see Fig. 4.2(d)) and to control the flexibility of the mapping function.

We present this dilemma as we attempt to explain the overfitting/under-
fitting effects in Hamming negative selection (see chapter 5).

4.1 Statistical Novelty Detection Techniques

Through the application of statistical methods, novelty can be quantified as a
deviation from a probability distribution p(x) which is generated from normal
data. The quantity can be expressed by a threshold, where (unseen) data
samples for which p(x) falls below this threshold, are considered as abnormal
samples. By applying such a threshold, all new data samples can be classified
into two classes C0 or C1, where the training data are assumed to be drawn
entirely from C0. To minimize the probability of misclassification, a new data
sample x is assigned to the class with the larger posterior probability [19].
This classification decision is based on the Bayes theorem and can be written
as :

Decide C0 if p(x|C0) >
p(x|C1)P (C1)

P (C0)
; otherwise decide C1

4.1. Statistical Novelty Detection Techniques 25

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(a) A “typical” anomaly detection problem with two given classes (C0 = circles and C1 =
triangles), where the anomalous class C1 is strongly under-presented (|C0| = 200, |C1| = 20)

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(b) The underlying probability distribution of class C0 is depicted as a density plot. One can
see that the anomalous data is not generated by the probability distribution of class C0

Figure 4.1: Anomaly detection

26
Chapter 4. Anomaly Detection and Network Intrusion Detection

(a) A mapping function
which is extremely flexible
and overtrained (overfitting)

(b) A mapping function
which is insufficiently flex-
ible (allows only a linear
separation) and results
in a poor generalization
(underfitting)

(c) A mapping function
which generalizes well,
especially on unseen data
samples

(d) Only with a large num-
ber of samples we are able
to see the true distribution
more closely

Figure 4.2: Overfitting-Underfitting dilemma

4.1. Statistical Novelty Detection Techniques 27

R0 R1R1

p(x|C0)P (C0)

p(x|C1)P (C1)

x

Figure 4.3: Bayesian decision for determining whether an input sample be-
longs to class C0 (falling in region R0) or C1 (falling in region R1) modeled
with class-conditional density functions (taken from [7]).

where P (Ck) is the prior probability of a sample belonging to class Ck with
k ∈ {0, 1} and p(x|Ck) is the class-conditional density. The class-conditional
density p(x|C1) of the novel data represents the threshold and is unknown
a-priori. Therefore, it can be modeled as a uniformly distributed density
(see Fig. 4.3), which is constant over some large region of the input space [7].
The point of intersections divide the input space into two decision regions
R0 and R1. An input sample falling in region R0 is assigned to class C0,
otherwise it falls in region R1 and is assigned to class C1.

4.1.1 Parzen-Window Estimators

Parzen-Window is a nonparametric method for estimating density functions [68].
Given a set A = {x1,x2, . . . ,xn} of n i.i.d. samples drawn according to an
unknown density function p(x). The Parzen-Window method estimates p(x)
based on the n samples in A by

p̂(x) =
1

nh

n∑

i=1

K

(
x− xi

h

)

where K is a kernel function which must satisfy the condition

∫ +∞

−∞
K(x)dx = 1

28
Chapter 4. Anomaly Detection and Network Intrusion Detection

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 4.4: Density threshold anomaly detection

and h is the window width (also called smoothing parameter). A commonly
used kernel function is the multivariate Gaussian kernel function

p̂(x) =
1

n(2π)d/2σd

n∑

i=1

exp

{
−||x− xi||2

2σ2

}

where xi are training samples which characterize the normal behavior and
d is the dimensionality of the data space. The Gaussian kernel function is
completely specified by the variance parameter σ which controls the degree
of smoothness of the estimated density function.

By combining the Parzen-Window method and the Bayes classification
method, one can obtain a statistical classification technique. First, a density
function p̂(x) is estimated based on the “normal” training samples and sec-
ond, a uniformly distributed density function2 pu(x) is modeled a-priori. An
unseen sample which falls in region R0 is classified as normal, otherwise it
falls in region R1 and is classified as an anomalous sample. Figure 4.4 shows
200 data samples (circles) generated by a (known) probability distribution
which is composed of three Gaussian distributions with different means and
variances. The threshold of the uniformly distributed density function is de-

2the threshold

4.1. Statistical Novelty Detection Techniques 29

fined as pu = 0.02 (bold curve). Three anomalous samples (triangles) are
misclassified, all other are detected as anomalous.

The Parzen-Window method estimates the unknown probability distri-
bution with a certain accuracy, when a certain amount of data samples is
available and the variance parameter σ is properly chosen — this is illustrated
in figure 4.5. Figure 4.5 shows a Gaussian (µ = 0, σ = 1) probability distri-
bution and Parzen-Window estimated probability distributions with different
parameter settings. For σ = 0.5 and 50 given data samples (see Fig. 4.5(b)),
the Gaussian distribution is properly estimated. In contrast, for 10 given
data samples, the Gaussian probability distribution cannot be properly es-
timated (see Fig. 4.5(c)). Similar skewed results are obtained, when the
variance parameter is incorrectly chosen (see Fig. 4.5(d) and Fig. 4.5(e)).

However, a large amount of data samples strongly bias the computational
efficiency — each training sample is required to estimate the density for each
single test sample — and makes this method computational infeasible for
very large data sets.

4.1.2 One-Class Support Vector Machine

In many applications for instance machine fault detection or medical diag-
nosis, it is sufficient to estimate the support of the probability distribution,
as opposed to the full density. A one-class Support Vector Machine (termed
one-class SVM) [65] avoids estimating the full density. Instead, it estimates
quantiles of the probability distribution, i.e. its support. The one-class SVM
maps the input data into a higher-dimensional feature space F via a non-
linear mapping Φ and treats the origin as the only member of the second
class. In addition, a fraction ν of “outliers” are allowed, which lie between
the origin and the hyperplane, where the hyperplane has maximum distance
to the origin (see Fig. 4.6). In other words, the one-class SVM algorithm
returns a function f that takes the value +1 in a region where the density
“lives” and −1 elsewhere. Therefore, for a new point x, the value f(x) is
determined by evaluating which side of the hyperplane it falls on in feature
space.
More precisely, the optimal hyperplane is constructed, by solving the opti-
mization problem

min
α

1

2

l∑

i,j=1

αiαjk(xi,xj)

subject to 0 ≤ αi ≤ 1/(νl), i = 1, . . . , l

30
Chapter 4. Anomaly Detection and Network Intrusion Detection

0,4

4

0,2

0,1

0,3

0
20-2-4

(a) The known Gaussian (µ = 0, σ =
1) probability distribution

0,4

0,3

4
0

x

0,2

0,1

20-2-4

(b) σ = 0.5 and 50 samples

0,35

x

0,25

0,15

0,2

4

0,05

2
0

0-2-4

0,3

0,1

(c) σ = 0.5 and 10 data samples

1

0,8

0,6

0,4

0,2

0

x

420-2-4

(d) σ = 0.05 and 50 data sam-
ples

0,14

0,12

0,1

0,08

0,06

x

420-2-4

(e) σ = 2.5 and 50 data samples

Figure 4.5: Parzen-Window (Gaussian Kernel) estimated probability distri-
bution with different variance parameter σ and number of data samples

4.1. Statistical Novelty Detection Techniques 31

origin

F

νl outliers

Φ

Figure 4.6: Map the training data into a high-dimensional feature space F
via Φ. Construct a separating hyperplane with maximum distance to the
origin, with the constrains that ν · l outliers, lie between the origin and the
hyperplane.

l∑

i=1

αi = 1

where α1...l are Lagrange multipliers, k the kernel function and x1...l the
training samples.
By solving this optimization problem, one obtains the decision function for
testing sample x

f(x) = sgn

(
l∑

i=1

αik(x,xi)− ρ

)

which will be positive for most examples xi in the training set. The value of
ρ can be recovered by exploiting the fact, that for any Lagrange multipliers
αi, the corresponding pattern xi satisfies

ρ = (w · Φ(xi)) =
∑

j

αjk(xj,xi)

where w is the normal vector of the hyperplane.
An equivalent3 one-class SVM approach is proposed by Tax and Duin [82].

Their approach is based on the idea of constructing a minium enclosing hyper-
sphere in the feature space F and allowing a number of outliers, i.e. elements
not supporting the data distribution, which lie outside the hypersphere. It
is interesting to note, that both one-class SVM [65, 82] approaches can be
transformed in a threshold Parzen-Window Estimator.

3By using the radial basis function kernel

32
Chapter 4. Anomaly Detection and Network Intrusion Detection

4.2 Network Intrusion Detection Systems

Intrusion Detection Systems (IDSs) [3, 55] are software and hardware systems
that automate the process of monitoring the events occurring in a computer
system or network and analyze them for signs of intrusions. Heady et al. [37]
defined an intrusion as “any set of actions that attempt to compromise the
integrity, confidentially and availability of information resources”. Intru-
sions are caused by attackers accessing the system, authorized users of the
systems who attempt to gain additional privileges for which they are not au-
thorized, and computer worms and viruses which carry malicious code. IDSs
are based on the belief that an intruder’s behavior will be noticeably different
from that of a legitimate user and that many unauthorized actions are de-
tectable. Typically, IDSs employ anomaly and ruled based misuse models in
order to detect intrusions and are different in host-based and network-based
systems. Host-based systems employ the host operating system’s audit trails
as the main source of input to detect intrusive activity, while network-based
IDSs build their detection mechanism on monitored network traffic. One of
the most popular network-based IDS is the open source program Snort [48].
Snort is a rule-based IDS which contains a database, where known malicious
patterns (termed signatures) are stored. Each network packet monitored by
Snort is disassembled in several distinct packet components and compared
to the signatures in the database. When a signature matches with a packet
component, an event is triggered and appropriate actions can be executed.
The following examples show different Snort rules, to detect a DDoS4 com-
munication, a worm and a buffer overflow attack.

Example 4.1. alert icmp

$EXTERNAL_NET any -> $HOME_NET any

(msg:"DDOS Stacheldraht client spoofworks";

icmp_id:1000; itype:0; content:"spoofworks";

classtype:attempted-dos; sid:227; rev:6;)

Example 4.2. alert udp $EXTERNAL_NET any ->

$HOME_NET 1434 (msg:"MS-SQL Worm propagation

attempt"; content:

"|81 F1 03 01 04 9B 81 F1 01|";

classtype:misc-attack; sid:2003; rev:8;)

4Distributed Denial of Service

4.2. Network Intrusion Detection Systems 33

Example 4.3. alert tcp $EXTERNAL_NET any ->

$HOME_NET 143

(msg:"IMAP partial body buffer overflow

attempt";content:"PARTIAL"; nocase;

content:"BODY["; distance:0; nocase;

pcre:"/\sPARTIAL.*BODY\[[^\]]{1024}/smi";

classtype:misc-attack; sid:1755; rev:14;)

In example 4.1, a snort signature is shown, which indicates the presence
of a variant of the Stacheldraht DDoS tool [18]. Stacheldraht is a distributed
denial of service tool, uses a tiered structure of compromised hosts to co-
ordinate and participate in a denial of service attack. There are “handler”
hosts that are used to coordinate the attacks and “agent” hosts that launch
the attack. Communication between the handler and the agent is conducted
using icmp echoreply. The communication information is located inside an
ICMP packet and consists of the ASCII string “spoofworks”. Example 4.2
shows the snort signature in hexadecimal representation of the “well known”
SQL worm, which infected millions of computers, where an un-patched Mi-
crosoft SQL database was running. Example 4.3 shows the snort signature
of a buffer overflow exploit to an IMAP Server. This event is generated when
a remote authenticated user sends a malformed request for partial mailbox
attributes to an IMAP server. The examples(4.1,4.2,4.3) emphasize the fact
that it is necessary to inspect the network packet payload, to recognize and
determine the type of the intrusion.

In contrast, Intrusion Detection Systems which employ anomaly models,
establish profiles of normal activities of the operating system or the network
traffic and detect intrusions by identifying significant deviations from the
observed profiles. Network-based IDSs establish profiles based on connection
vectors. A connection vector consists of different fields which characterize a
network packet and the established connection such as source, destination,
length of the message, time it was sent, the frequency of the communication,
etc.

Table 4.1 shows a connection vector, which encompasses 15 fields with char-
acteristics about the network packet and the connection, but without payload
information. The fields described in table 4.1 are required to characterize a
network session.

Ideally, a combination of anomaly and ruled based misuse model is ap-
plied, due to the drawbacks of both models. A ruled based misuse model
cannot detect attacks for which it has no signatures — they do not react

34
Chapter 4. Anomaly Detection and Network Intrusion Detection

Table 4.1: Connection Vector for Anomaly based Network Intrusion Detec-
tion (taken from [55])

Component Description
Connection ID Unique integer used to reference the particular connec-

tion.
Initiator address The internet address of the host which initiated the con-

nection.
Receiver address The internet address of the host to which the connection

was made.
Service An integer used to identify the particular service used

for this connection.
Start time The time stamp on the first packet received for this con-

nection.
Delta time The difference between the time stamp of the most re-

cent packet of this connection and the Start time.
Connection state The state of the connection. States for a connection

include information such as: NEW-CONNECTION,
CONNECTION-IN-PROGRESS, and CONNECTION-
CLOSED.

Security state The current evaluation of the security state of this con-
nection.

Initiator pkts The number of packets the host which initiated the con-
nection has placed on the network.

Initiator bytes The number of bytes, excluding protocol headers, con-
tained in the packets.

Receiver pkts The number of packets the host which received the con-
nection has placed on the network.

Receiver bytes The number of bytes, excluding protocol headers, con-
tained in the packets.

Dimension The dimension of the Initiator X and the Receiver X
vectors. This value is the number of strings patterns
being looked for in the data.

Initiator X A vector representing the number of strings matched in
Initiator bytes.

Receiver X A vector representing the number of strings matched in
Receiver bytes.

4.3. Summary 35

well to the unknown. Anomaly based models have the weakness of high false
alarm rates, i.e. “normal” is recognized as an intrusion.

4.3 Summary

The first part of this chapter presents the anomaly detection problem by
means of a statistical approach. Anomaly detection can be considered as a
pattern classification problem, where typically only a single class of data is
available, or a second class of data is under-represented e.g. machine fault
detection or medical diagnosis. In a probabilistic sense, novelty detection
is equivalent to deciding whether an unknown test sample is produced by
the underlying probability distribution that corresponds to the training set
of normal examples. Such approaches are based on the assumption that
anomalous data are not generated by the source of normal data.

The second part of this chapter, motivates and presents two different
network intrusion detection models. Intrusion can be defined as any set of
actions that attempt to compromise the integrity, confidentiality and avail-
ability of information resources. Network intrusion detection models are
divided in ruled based misuse model and anomaly model. A ruled based
misuse model contains a database, where known malicious patterns (termed
signatures) are stored. In contrast, an anomaly model establishes profiles
of normal activities of the operating system or the network traffic, and de-
tects intrusions by identifying significant deviations from the observed profiles
which are based on connection vectors. A connection vector must contain a
required amount of network information for characterizing profiles of normal
network activities — the required fields of a connection vector is shown in
table 4.1.

36
Chapter 4. Anomaly Detection and Network Intrusion Detection

Chapter 5

Hamming Negative Selection

The generic negative selection algorithm can be used with arbitrary shape-
spaces and affinity functions. In this chapter, we investigate the negative
selection algorithm defined over the Hamming shape-space and the r-chunk
matching rule. More specifically, the learning capability of the Hamming
negative selection is explored. Furthermore, an r-chunk detector algorithm is
proposed and analyzed in regard to the number of generable detectors and the
space and runtime complexity. The results obtained are empirically verified,
and discussed in the context of the applicability for a network intrusion
detection system.

5.1 Generalization by Undetectable Elements

All matching rules (e.g. r-contiguous and r-chunk) which compare character
sequences defined over a Hamming shape-space cause undetectable elements
— termed holes [33]. Holes are elements of N , or self elements not seen
during the training phase. For these elements, it is not possible to generate
detectors and therefore, they cannot be recognized and classified as non-self
elements. The term holes is an improper expression, because holes are neces-
sary to generalize beyond the training set. A detector set which generalizes
well, ensures that seen and unseen self elements are not recognized by any
detector, whereas all other elements are recognized by detectors and classified
as non-self (see Fig. 5.1(a)). A detector set which covers all non-self elements
and all unseen self elements overfits, because no holes (no generalization) ex-
ists (see Fig. 5.1(b)). In contrast, a large number of holes implies that a
large number of unseen self elements and non-self elements as well, are not
covered by the detector set and therefore the detector set underfits (see Fig.
5.1(c)). Balthrop et al. [4] proposed a method (termed crossover-closure)

37

38 Chapter 5. Hamming Negative Selection

unseenseen

detectors
Covered by

S S

S = S + Sseen unseen

N

Generalization
(Holes)

(a) The detector set generalizes well,
as all unseen self elements Sunseen

(holes) are classified as self and the rest
as non-self .

S S

Covered by detectors

S = S + Sseen unseen

unseenseen N

(b) The detector set overfits, because
no holes exist and therefore unseen self
elements Sunseen are classified as non-
self e lements.

seenS

detectors
Covered by

unseenS holesN N

(Holes)
Generalization

(c) The detector set underfits, because
a larger number of non-self elements
Nholes are not recognized by the detec-
tors and therefore are classified as self.

Figure 5.1: Holes are necessary to generalize beyond the training set. Too
many holes results in an underfitting, whereas, no holes results in an overfit-
ting.

5.1. Generalization by Undetectable Elements 39

010

011

100

101

111

111

101

110

011

100

110

010

100

001

010

 = { S1, H1 }

S1:={01011}

S2:={01100}

S3:={01110}

S4:={10010}

S5:={10100}

S6:={11100}

H1:={10011}

H2:={01010}

H3:={11110}

 = { S2, , S S

S

5 6

6

 }

 = { S3, H3 }

 = { S4, H2 }

 = { S2, , S5 }

r−1

r−1

Figure 5.2: Construction to find holes for r = 3 and l = 5 for the r-chunk
matching rule for S = {01011, 01100, 01110, 10010, 10100, 11100}. For el-
ements H1 = {10011}, H2 = {01010}, H3 = {11110} it is not possible
to generate a detector which recognizes H1, H2, H3 as non-self. All pos-
sible generable detectors are D = {0|000, 0|001, 0|110, 1|000, 1|011, 1|100,
2|000, 2|001, 2|101, 2|111}

to find holes for the r-chunk matching rule by given parameters l, r and S.
We have summarized Balthrop’s method algorithmically (see algorithm 2)
and show (see Fig. 5.2) an illustrative example of the construction for a set
S = {01011, 01100, 01110, 10010, 10100, 11100} and l = 5, r = 3.

From algorithm 2, it can be seen that holes arise in commonly occurring
distinct self strings. The number of holes depends on the number of self ele-
ments, the element length l and the r-chunk length r. The runtime complex-
ity of this algorithm is dominated by the instructions in line 4 and results
in a total runtime complexity of O(|S|l−r). The instructions in line 4 are
equivalent to l− r + 1 nested for-loops, where each for-loop iterating from 1
to n = |S|. Therefore, in total |S|l−r+1 substring comparisons are required.
In the next section, we show formulas to calculate the number of generable
detectors and the number of holes, under the assumption that S is randomly
drawn from UΣ

l .

40 Chapter 5. Hamming Negative Selection

Algorithm 2: Construct-Holes

input : Set S = {S1, S2, . . . , Sn} of self strings, element length l and
r-chunk length r

output: Set H of undetectable elements (holes)
begin1

Cut Si in l − r + 1 substrings Si,j := Si[j, . . . , r − 1 + j]2

for j = 1, . . . , l − r + 1 , i = 1, . . . , n3

Connect substring Si,j to Sk,j+1 with a direct edge, if the last r − 14

characters of Si,j and the first r − 1 characters of Sk,j+1 are
identical, for i = 1, . . . , n, k = 1, . . . , n and j = 1, . . . , l − r + 1

Traverse direct edges and shuffle all coincident substrings Si,j for5

i = 1, . . . , n and j = 1, . . . , l − r + 1 to obtain the set
H = (S ∪H) \ S of undetectable elements

end6

5.2 Number of Holes

Esponda et al. [27] discussed and described formulas for estimating the num-
ber of holes for the binary alphabet Σ = {0, 1}. Summarizing Esponda et al.
derivation, the number of holes |H| can be calculated as follows :

|H| = CC(l, r, |S|)− |S| (5.1)

where

CC(l, r, |S|) =

(
2r − 2r

(
1− 1

2r

)|S|
)
· (1 + P (r, |S|))(l−r) (5.2)

The subterm (5.2) yields the number of all strings, which can be constructed
by algorithm 2. As stated above, this algorithm will also construct the input
self set S (see Fig. 5.2) and therefore, this proportion must be subtracted (see
Eq. (5.1)). The subterm P (r, |S|) results from the likelihood of a substring
si having outgoing edges.

P (r, |S|) = 1− 1

2
(P0 + P1)

where

P0(r, |S|) =

(
1− 1

2r+1

)4|S|

5.3. Detector Generation Algorithm 41

P1(r, |S|) = 4

(
1− 1

2r+1

)2|S|
− 4

(
1− 1

2r+1

)3|S|

P0 is the probability of a substring to have no outgoing edges and P1 to have
one outgoing edge. Using the subterm P (r, |S|) and simplifying term (5.2)
one obtains

H(|S|, l, r) = T1 · T2 − |S| (5.3)

where

T1 = 2r − 2r

(
1− 1

2r

)|S|

T2 =

[
2− 1

2

(
1− 1

2r+1

)4|S|
− 2

((
1− 1

2r+1

)2|S|
−
(

1− 1

2r+1

)3|S|
)](l−r)

To summarize, given an alphabet of cardinality 2, l, r and |S| randomly

drawn self elements from U
{0,1}
l , the number of holes (undetectable elements)

is described by formula 5.3.

5.3 Detector Generation Algorithm

We propose an algorithm called Build-Rchunk-Detectors which generates all
possible r-chunk detectors, which will not cover any element in S. This
algorithm uses a hashtable H data structure to insert, delete, and search
efficiently for boolean values which are indexed with a key composed of an
r-chunk string concatenated with a detector position p. Since the algorithm
requires all keys from {0, . . . , |Σ|r} concatenated with p, H contains p|Σ|r
elements, where r is the r − chunk length. In addition, the hashtable is
an appropriate data structure to analyse randomized operations. Figure 5.3
shows the hashtable with generated detectors for alphabet Σ = {0, 1}. The
symbol | means concatenation of two elements.

The Build-Rchunk-Detectors algorithm takes four input parameters, r-chunk
length r, self set S, element length l, alphabet Σ and outputs an array of
all possible detectors, which do not match self elements. The algorithm is
divided into three phases. The initial phase (line 2 to 4) initializes all keys
with the boolean value true. The label phase (line 5 to 10) iterates with a

42 Chapter 5. Hamming Negative Selection

Algorithm 3: Build-Rchunk-Detectors

input : S = Set of self elements, r = r-chunk length, l = element
length, Σ = alphabet

output: D = Set of generated r-chunk detectors
begin1

for i← 0 to |Σ|r − 1 do2

for p← 0 to l − r do3

H.put(i|p, true)4

foreach s ∈ S do5

c← 06

while r + c < length[s] do7

rchunk ← substring[s, r + c]8

H.put(rchunk|c, false)9

c← c + 110

for i← 0 to |Σ|r − 1 do11

for p← 0 to l − r do12

C ←H.get(i|p)13

if C = true then14

D[k]← H.get(i|p)15

k ← k + 116

return D17

end18

5.4. Number of Detectors 43

value
boolean

000...00 | p

000...01 | p

111...11 | p

binary key

true , false

true , false

true , false

p · 2r

Figure 5.3: Hashtable H configuration with Σ = {0, 1}

length r sliding window1 over all self elements s and replaces the hashtable
boolean value, whose key matched the r-chunk with false. The last phase
named find (line 11 to 16), iterates over all hashtable elements and extracts
those which have a boolean value of true. The returned array D contains all
possible detectors which do not cover any self element. The space complexity
is determinated by r and position p, where p is negligible. The hashtable uses
keys of length r and, therefore the total space size results in O(|Σ|r). The
runtime complexity is determinated by r, S and the self elements length l.
The three phases need O((l − r) · |Σ|r) + O(|S| · (l − r)) + O(|Σ|r) time
to generate all possible detectors. The total runtime complexity results in
O(|Σ|r) and therefore is exponential in the length r.

5.4 Number of Detectors

In this section, we estimate the average number of generable r-chunk detec-
tors. This number is determinated by the cardinality |S|, the element length
l of S and the r-chunk length r. We use the hashtable H in algorithm 3 to
estimate the average number of generable detectors.

Proposition 5.1. Given a universe UΣ
l which contains all elements of length

l over the alphabet Σ, r-chunks length r and a self set S randomly drawn from
UΣ

l , the average number of detectors which do not cover any element in S is
(

1− 1

(l − r + 1) · |Σ|r
)|S|·(l−r+1)

· (l − r + 1) · |Σ|r (5.4)

1substring operation

44 Chapter 5. Hamming Negative Selection

Proof 5.1. The hashtable H contains p|Σ|r elements. We draw n = |S| · (l−
r + 1) elements and want to find zero labeled false elements. The probability
distribution therefore is P (k) =

(
n
k

)
qk · (1 − q)n−k. For k = 0 and q =

((l − r + 1) · |Σ|r)−1 this results in

(
1− 1

(l − r + 1) · |Σ|r
)|S|·(l−r+1)

and the total average number results in

|D| =

(
1− 1

(l − r + 1) · |Σ|r
)|S|·(l−r+1)

· (l − r + 1) · |Σ|r (5.5)

5.4.1 Higher Alphabets

In this section, we investigate the parameter dependencies of |Σ|, |S|, r and
their effects on the number of generable detectors. Therefore, we plot term (5.4)
with small computable parameters, since term (5.4) increases exponentially.
We choose l = 16, r = 8, . . . , l−1, |Σ| = 2, 3, 4, 5 and select S randomly from
UΣ

l with a percentage proportion of |S|/|UΣ
l | = 0%, . . . , 25% of the total uni-

verse UΣ
l . In the plots the ordinate depicts the amount of generable detectors

in proportion to the total universe. Since the universe and the amount of
detectors increased with higher alphabets, we represent the relative number
between |D| and |UΣ

l |. As it can be seen in figure 5.4(a) to 5.4(c), detectors
can be only generated for |Σ| = 2 and |S|/|UΣ

l | < 5%. For higher alphabets
it is not possible to generate detectors for r ≤ 10. This phenomenon results
from the r-chunk matching rule, which is not suitable for higher alphabets,
since increased alphabet sizes influence the amount of generable detectors.
As it can be seen in figures 5.4(a) to 5.5(d), most detectors are generable
for an alphabet of size two. It is clear that these detectors recognize less
elements from UΣ

l than higher alphabets detectors for same value of l and
r. But, as we see in figures 5.4(a) to 5.5(d), increasing the alphabet size
implies less generable detectors for a fixed r. To generate a destined amount
of detectors for arbitrary alphabet sizes, the r-chunk length must lie near l,
which results in larger space complexity. If |Σ| > 5 and r > 16 it is not
feasible to generate all possible detectors, due to the large space complexity.

5.4. Number of Detectors 45

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

|S|
|UΣ

l |

|D|
|UΣ

l |

|Σ| = 2

(a) r = 8

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

|S|
|UΣ

l |

|D|
|UΣ

l |

|Σ| = 2

(b) r = 9

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

|S|
|UΣ

l |

|D|
|UΣ

l |

|Σ| = 2

(c) r = 10

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

|S|
|UΣ

l |

|D|
|UΣ

l |

|Σ| = 2

|Σ| = 3

(d) r = 11

Figure 5.4: Plots of term (5.4), with l = 16, r = {8, 9, 10, 11} and
|Σ| = {2, 3, 4, 5}

46 Chapter 5. Hamming Negative Selection

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

|S|
|UΣ

l |

|D|
|UΣ

l |

|Σ| = 2

|Σ| = 3

|Σ| = 4

(a) r = 12

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

|S|
|UΣ

l |

|D|
|UΣ

l |

|Σ| = 2

|Σ| = 3

|Σ| = 4

|Σ| = 5

(b) r = 13

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

|S|
|UΣ

l |

|D|
|UΣ

l |

|Σ| = 2

|Σ| = 3

|Σ| = 4

|Σ| = 5

(c) r = 14

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

|S|
|UΣ

l |

|D|
|UΣ

l |

|Σ| = 2

|Σ| = 3|Σ| = 4

|Σ| = 5

(d) r = 15

Figure 5.5: Plots of term (5.4), with l = 16, r = {12, 13, 14, 15} and
|Σ| = {2, 3, 4, 5}

5.5. Empirical Formula Verifications 47

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

Number of self elements |S|

N
um

be
r

of
 d

et
ec

to
rs

 |D
| &

 N
um

be
r

of
 h

ol
es

 |H
|

holes empirical

holes theoretical

detectors theoretical

detectors empirical

hole peak

Figure 5.6: Numbers of detectors and numbers of holes, for l = 15,
r = 11, |Σ| = 2 and |S| = {0, . . . , 215}, calculated with Eqs. (5.4) and
(5.3) and empirically by the algorithm output

5.5 Empirical Formula Verifications

In this section, the formulas to estimate the number of generable detectors
and the number of holes are empirically verified and investigated. Therefore
the proposed algorithm2 (3) which generates all possible r-chunks detectors
given the alphabet size Σ, string length l and r-chunk length r is used. With
simple modifications — we count the number of non-self strings not detected
by any detector, the algorithm also outputs the number of holes. Since the
algorithm first initializes a hashtable of size |Σ|r · (l− r + 1), we perform our
simulations on a small value of l. The values l = 15, r = 11 and |Σ| = 2 were
used. For each |S| = {0, . . . , 215} (randomly determined) a detector gener-
ation (algorithm) run was performed and the resulting number of detectors
and holes were depicted in a graph (see Fig. 5.6). To verify the accuracy of
Eq. (5.4) which calculates the number of detectors and Eq. (5.3) which cal-
culates the number of holes, these results were also depicted in the graph (see
Fig. 5.6). One can see, that the theoretical derived formulas, approximate
well the empirical results. More interesting is the fact that for l = 15, r = 11,
the number of generable detectors exponentially decrease to the number of
self elements, whereas the number of holes exponentially increase. Reaching
a certain proportion of self elements, no detectors can be generated and all
non-self elements and unseen self elements are holes. In figure (5.6) this is
termed hole peak. After the hole peak is passed, the holes decrease nearly

2This is also verified with algorithm (2)

48 Chapter 5. Hamming Negative Selection

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5000 10000 15000 20000 25000 30000

Number of self elements |S|

N
um

be
r

of
 h

ol
es

 |H
|

r = 9

r = 10

r = 11

r = 12

Figure 5.7: Number of holes for r-chunks length r = {9, 10, 11, 12},
l = 15, |Σ| = 2 and |S| = {0, . . . , 215}

linear to 0, because the number of self elements increase and the relation
U = S ∪N must hold.

5.6 Controling Number of Detectors and Holes

with r-chunk length r

Investigating equations (5.4) and (5.3), one can see, that the exponential
curves behavior can be controlled by the parameters |S|, l, r. Commonly,
the length l is fixed a-priori. The number of self elements |S| depends on
the element length l and is not adaptable, if the length l is defined a-priori.
Therefore, the parameter r can be used to control the number of generable
detectors and the number of holes. In figures (5.7) and (5.8) the effects for
different r-chunks lengths are depicted. One can see, that increasing r closer
to l, the number of holes decrease and the number of generable detectors
increase. Furthermore, the hole peak moves toward a larger amount of self
elements. This is an important property, since not all self elements are seen
during the training phase. When r is not close to l, the number of holes
(the generalization) increases exponentially with the number of self elements
until the hole peak is reached. This means that the detector set exponentially
underfits.

5.7. Generalization Regions Experiments 49

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000 30000

Number of self elements |S|

N
um

be
r

of
 d

et
ec

to
rs

 |D
|

r = 9

r = 11

r = 12

r = 10

Figure 5.8: Number of generable detectors for r-chunks length
r = {9, 10, 11, 12}, l = 15, |Σ| = 2 and |S| = {0, . . . , 215}

5.7 Generalization Regions Experiments

Proposition 5.1 and formula 5.3 provide results under the assumption that
the set S is randomly drawn from U . However these results provide no in-
formation where holes occur. Holes must occur in regions where most self
elements are concentrated. As holes are not detectable by any detector,
holes must represent unseen self elements (generalization). For studying the
number, and the occurrence of holes which are dependent on the r-chunk
length, we have created a number of artificial data sets (illustrated in fig-
ures A.1,A.2,A.3,A.4 and can be found in the Appendix). The first data set
contained 1000 random points p ∈ [0, 1]2 which lie within a single circular
cluster with centre (0.5, 0.5) and radius r = 0.1. Each point p is mapped to
a binary string

b1, b2, . . . , b8︸ ︷︷ ︸
bx

, b9, b10, . . . , b16︸ ︷︷ ︸
by

,

where the first 8 bits encode the integer x-value ix := ⌈255 · x + 0.5⌉ and the
last 8 bits the integer y-value iy := ⌈255 · y + 0.5⌉, i.e.

[0, 1]2 → (ix, iy) ∈ [1, . . . , 256× 1, . . . , 256]→ (bx, by) ∈ U
{0,1}
8 × U

{0,1}
8 (5.6)

This mapping is proposed in [33] — it satisfies a straightforward visualization
of real-valued encoded points in Hamming negative selection. The second
and third data set contains 1000 randomly generated self elements which are
lying within an ellipse and a rectangle. The fourth data set contains 1000
Gaussian (µ = 0.5, σ = 0.1) generated points.

50 Chapter 5. Hamming Negative Selection

In figures A.1,A.2,A.3,A.4, one can see that for r < 8, holes occur in
regions which lie outside of the self region — or put another way, only a
limited number of holes exists at all (see e.g. Fig. A.2). Furthermore, it was
observed that for 8 ≤ r ≤ 11, holes occur in the generated self region (as
they should) and a detector length of r = 10 provides the best generalization
results. However, for r > 11 the detector length is too large and as a result,
the self region is covered by the detectors rather than by the holes. It is worth
noting, that a certain detector length — also called detector specificity —
must be reached to obtain holes within the generated self region.

By calculating the entropy [50] of the binary representation of S for dif-
ferent r-chunk length r, it is possible to obtain an explanation for why a
detector specificity r ≥ 8 is required to obtain holes close or within the self
region.

Entropy is defined as

H(X) =
∑

x∈AX

P (x) log2

(
1

P (x)

)
[bits] (5.7)

where the outcome x is the value of a random variable which takes one of the
possible values AX = {a1, a2, . . . , an}, having probabilities {p1, p2, . . . , pn}
with P (x = ai) = pi. Roughly speaking, the entropy is a measurement of
randomness (uncertainty) in a sequence of outcomes. The entropy is max-
imal3, when all outcomes have an equal probability. This can be simply
verified by finding the extremum of H(X) by means of a Lagrange multi-
plier4 α.

Let

H(p1, p2, . . . , pn) = p1 · log2

(
1

p1

)
+ p2 · log2

(
1

p2

)
+ . . . + pn · log2

(
1

pn

)

be a multivariate function subject to the constraint

g(p1, p2, . . . , pn) = p1 + p2 + . . . + pn − 1 = 0

and α a Lagrange multiplier with∇f = α∇g. Taking the partial derivates ∂f
∂pi

gives
∂f

∂pi
=

ln(1/pi)

ln(2)
− 1

ln(2)
for i = 1, . . . , n

3largest uncertainty
4also used in the one-class SVM for solving the optimization problem

5.7. Generalization Regions Experiments 51

and ∇f = α∇g gives

∂f

∂pi
= α

∂g

∂pi
⇐⇒ pi =

1

e 2α
for i = 1, . . . , n

putting pi in the constraint g gives

1

e 2α
+

1

e 2α
+ . . . +

1

e 2α︸ ︷︷ ︸
n terms

= 1⇐⇒ log2

(n

e

)
= α

hence

p1 = p2 = . . . = pn =
1

e 2α
=

1

e 2log2(n
e)

=
1

n

This shows that uniform distribution5 has the maximum entropy.
In our entropy experiment, all 1000 generated self points are concatenated

to one large bit string LS of length 16 · 103. The bit string LS is divided into
⌊16·103/r⌋ substrings (the outcomes AX). The entropy for r = {2, 3, . . . , 15}
for each data set is calculated and the ratio H(X)/r to the maximum possible
entropy is calculated, and depicted in a graph (see Fig. A.5). The maximum
possible entropy for r-chunk length r is r bits (each r bit sequence is equally
likely). In figure A.5, the coherence between H(X)/r and r for each data set
is presented. One can see that when the r-chunk length r is increased close to
l, the entropy decreases as the bit strings of length r become more specific,
rather than random. Of most interest is the value at r = 8. For this value,
the entropy ratio H(X)/r results in a spiky jump, when compared to the
neighbor values r = 7 and r = 9. Through exploring the mapping function
[0, 1]2 → (ix, iy) ∈ [1, . . . , 256 × 1, . . . , 256] → (bx, by) ∈ U

{0,1}
8 × U

{0,1}
8 , one

can see that the bit string of length 16 is semantically composed of two bit
strings of length 8 which represents the (x, y) coordinates. An r-chunk length
r < 8 destroys the mapping information — the semantic representation of the
(x, y) coordinates — and therefore the bit strings of length r have a random
character rather than a semantic representation of the (x, y) coordinates. As
a consequence, holes occur in regions, where actually no self regions should
be (see Fig. A.1(a)-A.1(f), A.2(a)-A.2(f), A.3(a)-A.3(f), A.4(a)-A.4(f)).

It has been noted, that a similar statement — without empirical results
— was mentioned by Freitas and Timmis [32] with regard to the r-contiguous
matching rule :

“It is important to understand that r-contiguous bits rule have a positional
bias”.

5all outcomes have an equal probability

52 Chapter 5. Hamming Negative Selection

too specific too generic

r−chunk detector

l = 8l = 8 l = 14l = 14

x1 x2 y1 y2

e1 e2

r = 12r = 12

Figure 5.9: Concatenating elements e1, e2 of different length, can result in
wrong generalization, as no suitable r-chunk detector length exists which
capture the representations of e1 and e2.

Our entropy experiments support and empirically confirm this statement.

Furthermore, the observations implicate an additional “positional bias”
problem. When elements of different lengths are concatenated to a data
chunk, and the r-chunk length is too large (too specific) for some small
length elements and also too small (too generic) for some large length el-
ements, then holes occur in the wrong regions (see Fig. 5.9). Figure 5.9
shows elements e1, e2 — which represent coordinates (x1, x2) and (y1, y2) —
of different lengths and an r-chunk detector of length r = 12. This r-chunk
length is too specific for length l = 16 of e1, but likewise too generic for
length l = 28 of e2. As a consequence, no suitable r-chunk detector length
for this example in figure 5.9 exists.

We emphasize this “positional bias” problem here as in Hamming neg-
ative selection approaches, when applied as a network intrusion detection
technique, elements6 of different lengths are concatenated: the implications
are clear and discussed in section 5.10.

5.8 Detector Generating Algorithms with Ex-

ponential Complexity

The first proposed negative selection algorithm (see algorithm 1) was inspired
heavily by the generation of T-Cells in the immune system. Candidate de-
tectors were drawn at random from U and checked against all elements in S.
This process of random generation and checking was repeated until the re-
quired number of detectors was generated. This random search for detectors
has a constant space complexity in |S|, but an exponential runtime complex-
ity in |S| and is therefore not applicable (see term 3.6). In a succeeding work,

6IP-Addresses, Ports, etc.

5.8. Detector Generating Algorithms with Exponential
Complexity 53

D’haeseleer et. al [17] proposed two detector generating algorithms for the r-
contiguous matching rule and the binary alphabet with an improved runtime
complexity. The linear time detector generating algorithm has a linear run-
time complexity in |S| and |D|, but still requires time and space exponential
in r :

Time : O ((l − r) · |S|) +O ((l − r) · 2r) +O (l · |D|)
Space : O

(
(l − r)2 · 2r

)

The second algorithm termed greedy detector generating algorithm has a sim-
ilar complexity :

Time : O ((l − r) · |D| · 2r)

Space : O
(
(l − r)2 · 2r

)

Another algorithm termed binary template for r-contiguous matching rule
was proposed by Wierzchoń [88]. It has also an exponential complexity in r :

Time : O ((l − r) · 2r · |D|) +O (2r · |S|)
Space : O ((l − r) · 2r) +O (|D|)

Ayara et. al [2] proposed an r-contiguous detector generating algorithm
termed NSMutation which based on an evolutionary (mutation operator)
search method. The NSMutation has the following complexity :

Time : O
(
|Σ|l · |S|

)
+O (|D| · |Σ|r) +O (|D|)

Space : O (l · (|S|+ |D|)) +O(|D|)
For the r-chunk matching rule and arbitrary alphabet sizes Σ, Stibor et.
al [71] proposed an algorithm (see algorithm 3) with complexity :

Time : O ((l − r) · |Σ|r) +O (|S| · (l − r)) +O (|Σ|r)
Space : O ((l − r) · |Σ|r)

All five proposed algorithms have a runtime or a space complexity, which
is exponential in r and are only applicable for small values of r. Using for
example a value r = 64 and an alphabet size |Σ| = 2, the space and time
complexity are infeasibly high.

5.8.1 The Link between r-contiguous Detectors and k-
CNF Satisfiability

In this section we show that the problem of generating r-contiguous detec-
tors can be transformed in a k-CNF satisfiability problem. In previous works,

54 Chapter 5. Hamming Negative Selection

Esponda et al. [25, 23] have shown the connection between the boolean satisfi-
ability problem (SAT) and a negative database7. We specialize the approach
presented in [25, 23]. More specifically, we show that the problem of gen-
erating r-contiguous detectors can be transformed in a k-CNF satisfiability
problem. This insight allows for the wider understanding of the problem of
generating r-contiguous detectors and provides arguments and explanations
of exponential algorithms complexities.

K-CNF Satisfiability

The boolean satisfiability problem is a decision problem and can be formu-
lated in terms of the language SAT [12]. An instance of SAT is a boolean
formula φ composed of ∧ (AND), ∨ (OR), ·̄ (NOT),→ (implications), ↔ (if
and only if), variables x1, x2, . . ., and parentheses. In SAT problems, one has
to decide if there is some assignment of true and false values to the variables
that will make the boolean formula φ true. In the following sections, we will
focus on boolean formulas in conjunctive normal form.

A boolean formula is in conjunctive normal form (CNF), if it is expressed
as an AND-combination of clauses and each clause is expressed as an OR-
combination of one or more literals. A literal is an occurrence of a boolean
variable x or its negation x.

Example 5.1.

(

literal︷︸︸︷
x1 ∨ x1 ∨ x2)︸ ︷︷ ︸

clause

∧ (x3 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

A boolean formula is in k-CNF, if each clause has exactly k distinct
literals. Example (5.1) shows a 3-CNF boolean formula. A k-CNF boolean
formula is satisfiable if there exists a set of values (0 ≡ false and 1 ≡ true)
for the literals that causes it to evaluate to 1, i.e. the logical value true. A
possible assignment set of boolean values that evaluate in example (5.1) to
true is, x1 = 1, x2 = 1, x3 = 0, x4 = 0 (or expressed as a bit-string 1100).
In k-CNF-SAT, we are asked whether a given boolean formula in k-CNF is
satisfiable. It is known that for k > 2, k-CNF-SAT is NP-complete [61], i.e.
this problem is verifiable in polynomial time, but nobody has yet discovered
an algorithm for solving8 k-CNF-SAT in polynomial time.

7representing bit-strings in a compress form in the complementary Hamming space
8generating solutions in polynomial time which evaluate to 1

5.8. Detector Generating Algorithms with Exponential
Complexity 55

We will now consider a special subset of boolean formulas in k-CNF which
are defined as follows :

Definition 5.1. A k-CNF boolean formula φrcb is in l-k-CNF, if φrcb has
exactly (l − k + 1) clauses C1, C2, . . . , Cl−k+1 for 1 ≤ k ≤ l with exactly k
distinct (shifted) literals in each clause

C1 = (x1 ∨ x2 ∨ . . . ∨ xk)

C2 = (x2 ∨ x3 ∨ . . . ∨ xk+1)
...

Cl−k+1 = (xl−k+1 ∨ xl−k+2 ∨ . . . ∨ xl)

Example 5.2. Let l = 8, k = 3 and C1, C2, . . . , C6 clauses with for instance
randomly chosen literals

C1 = (x1 ∨ x2 ∨ x3)

C2 = (x2 ∨ x3 ∨ x4)

C3 = (x3 ∨ x4 ∨ x5)

C4 = (x4 ∨ x5 ∨ x6)

C5 = (x5 ∨ x6 ∨ x7)

C6 = (x6 ∨ x7 ∨ x8)

A boolean formula φrcb in l-k-CNF has then the following form :

φrcb = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6

It can be seen that all possible boolean formulas in k-CNF with (l−k+1)
clauses, contain as a subset boolean formulas in l-k-CNF, i.e. l-k-CNF ⊂ k-
CNF.

Even though l-k-CNF ⊂ k-CNF, it is “simple9” to satisfy a boolean for-
mula φrcb in l-k-CNF. This can be performed, by setting in the first clause
C1 each literal to true, and then subsequent in each clause C2, C3, . . . , Cl−k+1

the last literal to true. With this simple construction, it is possible to find a
satisfiability in runtime of Θ(l), where l is the number of variables.

9for one (self) bit-string

56 Chapter 5. Hamming Negative Selection

Transforming r-contiguous detectors into a k-CNF boolean formula

Recall r-contiguous detectors are bit-strings of length l from U
{0,1}
l which do

not match any bit-strings of length l from S with the r-contiguous matching
rule. In this section, we show a transformation of arbitrary bit-strings from
S into l-k-CNF boolean formulas.

Let b ∈ {0, 1} and L(b) a transform mapping defined as :

L(b) →
{

x if b = 0
x otherwise

where x, x are literals.

Let k, l ∈ N, where k ≤ l and s ∈ {0, 1}l, where s[i] denotes the bit at
position i of bit-string s, and C(s, k) a l-k-CNF transform mapping defined
as :

C(s, k) → (L(s[1]) ∨ L(s[2]) ∨ . . . ∨ L(s[k])) ∧
(L(s[2]) ∨ L(s[3]) ∨ . . . ∨ L(s[k + 1])) ∧

...

(L(s[l − k + 1]) ∨ . . . ∨ L(s[l]))

For the sake of clarity we denote a boolean formula in l-k-CNF which is
obtained by C(s, k) for s ∈ S as φrcb. Moreover we denote a boolean formula∧|S|

i=1 φi
rcb which is obtained by C(s1, k) ∧ C(s2, k) ∧ . . . ∧ C(s|S|, k) for

|S| ≥ 1 and all si ∈ S, i = 1, . . . , |S| as φ̂rcb. If |S| = 1, then φrcb ≡ φ̂rcb.

Proposition 5.2. Given an universe U
{0,1}
l which contains all unique bit-

strings of length l, a set S ⊂ U
{0,1}
l and the set D which contains all gener-

able r-contiguous detectors, which do not match any bit-string from S. The
boolean formula φ̂rcb which is obtained by C(s, r) for all s ∈ S is satisfiable
only with the assignment set D.

Proof. Transforming s1 ∈ S with C(s1, k) in a l-k-CNF, where k := r, results
due to L(·) in a boolean formula which is only satisfiable with bit-strings
from
U

{0,1}
l \ F1, where the symbol ∗ represents either a 1 or 0 and

F1 = {s1[1, . . . , r] ∗ ∗ . . . ∗︸ ︷︷ ︸
l−r

,

5.8. Detector Generating Algorithms with Exponential
Complexity 57

∗ s1[2, . . . , r + 1] ∗ ∗ . . . ∗︸ ︷︷ ︸
l−r−1

,

...

∗ ∗ . . . ∗︸ ︷︷ ︸
l−r

s1[l − r + 1, . . . , l]}

Transforming the remaining si = s2, s3, . . . , s|S| with C(si, k) and constructing

φ̂rcb = φ1
rcb ∧ φ2

rcb ∧ . . . ∧ φ
|S|
rcb results in a boolean formula which is only

satisfiable with bit-strings from U
{0,1}
l \(F1∪F2∪. . .∪F|S|). Each r-contiguous

detector from D has no matching bits at si[1, . . . , r], si[2, . . . , r+1], . . . , si[l−
r+1, . . . , l] for i = 1, 2, . . . , |S|. Hence, φ̂rcb is only satisfiable with assignment

set U
{0,1}
l \ (F1 ∪ F2 ∪ . . . ∪ F|S|) = D.

Example 5.3. Let l = 5, r = 3 and S = {s1, s2, s3, s4, s5, s6} with the
following bit-strings :

s1 = {01011}, s2 = {01100}, s3 = {01110},
s4 = {10010}, s5 = {10100}, s6 = {11100}

Generating all possible r-contiguous detectors of length l = 5 and r = 3 by
given the self set S, one obtains the detector set D = {d1, d2, d3, d4, d5} :

d1 = {00000}, d2 = {00001}, d3 = {11000},
d4 = {11001}, d5 = {00111}

Transforming all s ∈ S with C(s, r), one obtains :

φ1
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ2
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ3
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ4
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ5
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ6
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

58 Chapter 5. Hamming Negative Selection

(x3 ∨ x4 ∨ x5)

φ̂rcb = φ1
rcb ∧ φ2

rcb ∧ φ3
rcb ∧ φ4

rcb ∧ φ5
rcb ∧ φ6

rcb

The boolean formula φ̂rcb is satisfied only with the assignment
set {00000, 00001, 11000, 11001, 00111}= {d1, d2, d3, d4, d5} = D.

Of course it is possible to perform the reverse transformation when given
φ̂rcb. However, a k-CNF boolean formula which is in a non l-k-CNF can not
be transformed with this approach. This means that finding a satisfying set
for φ̂rcb is not “harder” then finding a satisfying set for a boolean formula in
non l-k-CNF. However this not implies that finding a satisfying set for φ̂rcb

is a NP-complete problem.

Unsatisfiable CNF Formula and No Generable Detectors

In this section, we use our obtained transformation result (proposition 5.2)
to demonstrate involving properties on the number of generable r-contiguous
detectors. An example is the question : Given S and r, is it possible to
generate any detectors at all ?. By obtaining with C(s, r) a boolean for-

mula φ̂rcb in CNF, this question can be answered by means of the resolution
method [63, 86]. The resolution is a method for demonstrating that a CNF
formula is unsatisfiable, i.e. a deduction to the empty clause (symbol �), or
in our case that no detectors can be generated. Roughly speaking, it is based
on the idea of successively adding resolvents to the formula. Resolvents are
clauses which do not modify the (growing) formula.

Specifically, let Ci and Cj be clauses and let x be a literal which occurs
in Ci and also occurs in Cj as x, i.e. x ∈ Ci and x ∈ Cj. The resolvent of Ci

and Cj is C ′
i ∪ C ′

j, where C ′
i := Ci \ {x} and C ′

j := Cj \ {x}. For example,
(x1 ∨ x3) is the resolvent of (x1 ∨ x2) and (x1 ∨ x2 ∨ x3).

Example 5.4. Let S contain the following bit-strings {110, 000, 010, 001}
and let r = 2. The obtained boolean formula φ̂rcb results in

φ̂rcb = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧
(x1 ∨ x2) ∧ (x2 ∨ x3) ∧
(x1 ∨ x2) ∧ (x2 ∨ x3) ∧
(x1 ∨ x2) ∧ (x2 ∨ x3)

By applying the resolution method (see Fig. 5.10), one can see that φ̂rcb

is reduced to the empty clause �, i.e. φ̂rcb is not satisfiable and therefore no
detectors are generable.

5.8. Detector Generating Algorithms with Exponential
Complexity 59

(x1 ∨ x2) (x2 ∨ x3)

(x1 ∨ x3) (x2 ∨ x3)

(x1 ∨ x2) (x1 ∨ x2)

x2

(x1 ∨ x2)(x1 ∨ x2)

x2

�

Figure 5.10: Resolution method results in the empty clause � and implies
that φ̂rcb is not satisfiable

However, we would like to emphasize here, that the resolution method
for determining if detectors are generable is interesting mainly from the the-
oretical point of view. As unfortunely, it takes an exponential number of
resolution steps until an empty clause is obtained — information on the
complexity of the resolution method is provided in [86].

Another approach to answer the question : is it possible to generate any
detectors at all ?, is to apply a variant of the Lovász Local Lemma [86].
More specifically we define according to [86], vbl(C) as the set of variables
that occur in clause C, i.e. {x ∈ V |x ∈ C or x ∈ C}, where V is a set
of boolean variables. Moreover, as defined in [86], the neighborhood of C in
φrcb is the set of clauses distinct from C in φrcb that depend on C, or more
formally :

Γφrcb
(C) := {C ′ ∈ φrcb |C ′ 6= C and vbl(C) ∩ vbl(C ′) 6= ∅}

Proposition 5.3. Let S be a set of bit-strings of length l, where all s ∈ S are
consisting of pairwise distinct substrings s[1, . . . , r], s[2, . . . , r + 1], . . . , s[l −
r + 1, . . . , l]. R-contiguous detectors are generable, iff

|S| < 2r e−1 + 1

2r − 1

Proof. For each s ∈ S construct a boolean formula φi
rcb in l-k-CNF by

C(s, r). Construct a related k-CNF boolean formula φ̂rcb = φ1
rcb ∧ φ2

rcb ∧
. . . ∧ φ

|S|
rcb. Let Cj

i be the i-th clause in φj
rcb, 1 ≤ j ≤ |S|. Cj

i has at
most 2 (r − 1) many neighborhood clauses in φj

rcb and at most (2 (r − 1) +
1) · (|S| − 1) many neighborhood clauses in all remaining boolean formulas

60 Chapter 5. Hamming Negative Selection

φ1
rcb, φ

2
rcb, . . . , φ

j−1
rcb , φj+1

rcb , . . . , φ
|S|
rcb. In total this results in |S| · (2r − 1) − 1

dependent clauses (see Fig. 5.11).
A variant of the Lovász Local Lemma [86] implies that if |ΓF (C)| ≤

2k−2, k ∈ N for all clauses C in a k-CNF formula F , then F is satisfiable.
Applying the variant of the Lovász Local Lemma results in

|S| · (2r − 1)− 1 ≤ 2r−2 < 2r/e

φ1
rcb = (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧(xi∨xi+1∨...∨xi+r+1)∧...∧(xl−r+1∨xl−r+2∨...∨xl)

φ2
rcb = (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧(xi∨xi+1∨...∨xi+r+1)∧...∧(xl−r+1∨xl−r+2∨...∨xl)

... .

φj
rcb = (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧

Cj
i︷ ︸︸ ︷

(xi∨xi+1∨...∨xi+r+1)︸ ︷︷ ︸
|Γ

φ
j
rcb

(Cj
i)|= 2(r−1)

∧...∧(xl−r+1∨xl−r+2∨...∨xl)

... .

φ
|S|
rcb = (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧(xi∨xi+1∨...∨xi+r+1)∧...∧(xl−r+1∨xl−r+2∨...∨xl)

Figure 5.11: Cj
i has at most 2 (r − 1) many neighborhood clauses in

φj
rcb (r − 1 to left and r − 1 to right) and at most (2 (r − 1) + 1) ·

(|S| − 1) many neighborhood clauses in all remaining boolean formulas

φ1
rcb, φ

2
rcb, . . . , φ

j−1
rcb , φj+1

rcb , . . . , φ
|S|
rcb.

Complexity of l-k-CNF Satisfiability

As previously mentioned, a satisfiability for a boolean formula in l-k CNF
can be obtained in Θ(l). However, in this case a boolean formula for exactly
one bit-string from S is constructed. If there are |S| > 1 distinct bit-strings,
then this simple method of finding a satisfiability does not work.

In this paper, we will not propose an additional r-contiguous algorithm
and determine the complexity. Rather, we attempt to answer the question,
if it is possible to generate r-contiguous detectors with a non-exponential
complexity in r.

By transforming the problem to generate r-contiguous detectors into a
k-CNF satisfiability problem, we assume that at least Ω(2k) evaluations are

5.9. Permutation Masks 61

required for finding a complete assignment set, i.e. generating all possi-
ble detectors. This assumption is justified thereby, that Ω(2k) evaluations
are required for finding a complete satisfying set for the first clause of each
s ∈ S. Additionally, the remaining (l − r) clauses of each s ∈ S must be
verified, which in total could be done in O(|S| · 2k). We would also like
to emphasize here that this assumption is not theoretically verified and re-
quires further exploration. However there is a strong evidence that at least
Ω(2k) evaluations are required for generating all generable detectors, as no
efficient algorithms (for k > 2) are known which are able to solve the k-CNF
satisfiability problem in polynomial time. More specifically, as outlined in
the beginning of section 5.8.1, the k-CNF satisfiability problem is a decision
problem, where the input is a boolean formula f and the output is “Yes”, if
f is satisfiable, and “No”, otherwise. The currently fastest known determin-
istic algorithm that decides the 3-CNF problem, runs in time O(1.473n) [10],
where n is the number of variables. The probabilistic algorithm variant runs
in time O(1.3302n) [39]. For k = 4, 5, 6 the deterministic and probabilistic
algorithms runtimes become slightly worse [66].

We would like to emphasize here, that the (deterministic and probabilis-
tic) k-CNF algorithms proposed in [66, 39] decides if a boolean formula is
satisfiable, however the algorithms not output all satisfiable assignment sets
— in our case, all generable detectors.

Impacts on Negative Selection Algorithms

The efficient generation of r-contiguous detectors is an important building
block in many negative selection approaches, and has been explored in the
recent years intensively [17, 88, 2]. However, all proposed r-contiguous de-
tector generating algorithms have a runtime or space complexity which is
exponential in r [2] — more specifically it is O(2r). Using for instance a
matching length of r = 64 and |S| = 2(r/2) many self bit-strings, one obtains
an algorithm complexity which is infeasible to be computationally practical.

5.9 Permutation Masks

Permutation masks are immunologically motivated by lymphocyte diversity.
Lymphocyte diversity is an important property of the immune system, as it
enables a lymphocyte to reacting to many substances, i.e. it induces diversity
and generalization. This kind of generalization process inspired Hofmeyr [41,
40] to propose a similar counterpart for use in Hamming negative selection.
Hofmeyr introduced permutation masks in order to reduce the number of

62 Chapter 5. Hamming Negative Selection

undetectable elements. It was argued that permutation masks could be useful
for covering the non-self space efficiently when varying the representation by
means of permutation masks (see Fig. 5.12).

Figure 5.12: Visualized concept of varying representations by means of per-
mutation masks to reduce the number of undetectable elements. The light
gray shaded area in the middle represents the self regions (normal class in
terms of anomaly detection). The dark gray shaded shapes represent areas
which are covered by detectors with varying representations. The white area
represents the non-self space (anomalous class in terms of anomaly detec-
tion). This figure is taken from [40].

A permutation mask is a bijective mapping π that specifies a reordering
for all elements ai ∈ UΣ

l , i.e. a1 → π(a1), a2 → π(a2), . . . , a|Σ|l → π(a|Σ|l).
More formally, a permutation π ∈ Sn, where n ∈ N, can be written as a 2×n
matrix, where the first row are elements a1, a2, . . . , an and the second row
the new arrangement π(a1), π(a2), . . . , π(an), i.e.

(
a1 a2 . . . an

π(a1) π(a2) . . . π(an)

)

For the sake of simplicity we will use the equivalent cycle notation [47] to
specify a permutation. A permutation in cycle notation can be written as
(b1 b2 . . . bn) and means “b1 becomes b2, . . . , bn−1 becomes bn, bn becomes b1.
In addition, this notation allows the identity and non-cyclic mappings, for
instance (b1) (b2 b3) (b4) means : b1 → b1, b2 → b3, b3 → b2 and b4 → b4.

5.9. Permutation Masks 63

5.9.1 Permutation Masks for Inducing other Holes

As explained above, a permutation mask is a bijective mapping and therefore
can increase or reduce the number of holes — there also exists permutation
masks which results in self elements which neither increase nor reduce the
number of holes. The simplest example is the identity permutation mask.

For reducing the number of holes, π must be chosen at an appropriate
value, and a certain number of detectors must be generable.

1000

0001

100 000

000 001= {0001, 1001}

= {1000, 0000}

= {s1, h1}

= {s2, h2}

r − 1

Figure 5.13: Self elements s1 = 0001 and s2 = 1000 induce holes h1, h2, i.e.
elements which are not detectable with r-contiguous and r-chunk matching
rules for r = 3.

In figure 5.13 one can see that self elements s1 and s2 induce holes h1

and h2 and therefore are not detectable by the r-contiguous and r-chunk
matching rule. However, after applying the permutation mask π0 = (1 2 4 3),
i.e.

π0(s1) = 0010, π0(s2) = 0100

one can verify (see Fig. 5.14) that holes h1, h2 are eliminated.

π0(1000)

π0(0001)

010 100

001 010= {0010}

= {0100}

= {π0(s1)}

= {π0(s2)}

r − 1

Figure 5.14: The permutated self elements π0(s1) and π0(s2) induce no holes
by r-contiguous and r-chunk matching rule.

However, it is also clear that (1 2 4 3) (2 4 3 1), (4 3 1 2) and (3 1 2 4) repre-
sent the same permutation, namely the cycle permutation of π0 = (1 2 4 3).
Specifically, all cycle permutations of an arbitrary selected π leads, in terms
of the r-chunk and r-contiguous matching, to the same holes.

On the other hand, there do exist permutation masks which do not reduce
holes, i.e. π(si) = sj , for i 6= j and self elements s1, s2, . . . , s|S|. An example
is the permutation π1 = (14)(2)(3), as π1(s1) = s2 and π1(s2) = s1.

Furthermore, as mentioned above, a permutation mask can also increase
the number of holes. In our subsequent presented experiments this is illus-
trated for instance in figures10 A.6(c) and A.6(d) and more obviously illus-

10with and without permutation mask

64 Chapter 5. Hamming Negative Selection

trated in figure 5.15.

π0(s4) =

π0(s3) =

π0(0010)

π0(0100)

100 000

000 001= {0001, 1001}

= {1000, 0000}

= {s1, h1}

= {s2, h2}

r − 1

Figure 5.15: Let be s3 = 0100 = π0(s1) and s4 = 0010 = π0(s2). These two
self elements induce no holes (see Fig. 5.14). The permutated self elements
π0(s3) = 0001 = s1 and π0(s4) = 1000 = s2 induce two holes h1 and h2,
although s3 and s4 induce no holes. This constructed example shows, that a
permutation mask can also increase the number of holes.

5.9.2 Permutation Masks Experiments

In section 5.7 results were presented which demonstrated the coherence be-
tween the matching threshold r and generalization regions when the r-chunk
matching rule in Hamming negative selection is applied. Recall, as holes are
not detectable by any detector, holes must represent unseen self elements,
or in other words holes must represent generalization regions. In the follow-
ing experiment we will investigate how randomly determined permutation
masks will influence the occurrence of holes (generalization regions). More
specifically, we will empirically explore if holes occur in suitable general-
ization regions when a randomly determined permutation mask is applied.
Finally, we explore empirically whether randomly determined permutation
masks reduce the number of holes.

In prior experiments it is shown (see section 5.7), that the matching
threshold r is a crucial parameter and is inextricably linked to the input
data being analyzed. In order to study the impact of permutation masks
on generalization regions, and to obtain comparable results to previously
performed experiments, we will utilize the same mapping function and data
set. Furthermore, we will explore the impact of permutation masks on an
additional data set (see Fig. 5.16).

Experiments Settings

The first self data set contains 1000 Gaussian (µ = 0.5, σ = 0.1) generated
points p = (x, y) ∈ [0, 1]2. Each point p is mapped by means of (5.6)
to a bit-string. The second data set (termed banana data set) is depicted
in figure (5.16) and is a commonly used benchmark for anomaly detection
problems [81]. The banana data set is taken from [60] and consists of 5300
points in total. These points are partitioned in two different classes, C+ which

5.9. Permutation Masks 65

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

Y

Figure 5.16: Banana data set (points from class C+), min-max normalized to
[0, 1]2. In an perfect case (error-less detection), the r-chunk detectors should
cover regions outside the “banana” shape. The region within the “banana”
shape is the generalization region and should consists of undetectable ele-
ments, i.e. holes and self elements.

represents points inside the “banana-shape” and class C− which contains
points outside of the “banana-shape”. In this experiment we have taken
points from C+ only for simulating one self-region (similar to figure 5.12).
More specifically, we have normalized with min-max method all points from
C+ to the unitary square [0, 1]2. We then sampled 1000 random points from
C+ and mapped those sampled points to bit-strings of length 16.

As the r-chunk matching rule subsumes the r-contiguous rule, i.e. rec-
ognize at least as many elements as the r-contiguous matching rule (see
section 3.1.1), we have performed all experiments with the r-chunk matching
rule. Furthermore, as proposed in [41, 40] we have randomly determined
permutation masks π ∈ S16.

5.9.3 Experimental Results

In figures (A.6,A.7,A.8,A.9) experimental results are presented. The black
points represent the 1000 sampled self elements, the white points are holes,
and the grey points represent areas which are covered by r-chunk detectors.
It is not surprising that for both data sets, holes occur as they should in
generalization regions when 8 ≤ r ≤ 10. This phenomena is discussed and
explained in section 5.7. Recall, a detector matching length which is not at
least as long as the semantical representation of the underlying data — in
this case 8 bits for x and y coordinates — results in incorrect generalization

66 Chapter 5. Hamming Negative Selection

regions.
What is more interesting though, is the observation that a (randomly

determined) permutation mask shatters the semantical representation of the
underlying data (see Fig. A.6-A.9 (b,d,f,h,j,l,n,p,r,t)) and therefore, holes are
randomly distributed across the space instead of being concentrated inside
or close to self regions. This observation also means that detectors are not
covering areas around the self regions, instead they recognize elements which
are also randomly distributed across the space. Furthermore one can see
that the number of holes — when applying permutation masks (see Fig. A.6-
A.9 (b,d,f,h,j,l,n,p,r,t)) — is in some cases significantly higher than without
permutation masks (see Fig. A.6-A.9 (a,c,d,e,g,i,k,m,q,s)). This observation
could be explained with the previous observation, that permutation masks
distort the underlying data and therefore shatter self regions. As a conse-
quence the underlying data is transformed into a collection of random chunks.
For randomly determined self elements, it is shown in section 5.2, that the
number of holes increase exponentially for r := l → 0.

Of course this shattering effect is linked very strongly to the mapping
function employed. However it is clear that each permutation mask — ex-
cept the identity permutation — semantically (more or less) distort the data.
Furthermore, we believe that finding a permutation mask which does not
significantly distort the semantical representation of the data may be com-
putational intractable11.

In order to obtain representative results, we performed 50 simulation runs,
each with a randomly determined permutation mask for both data sets. Due
to the lack of space to present all 50 simulation runs, we have selected two
simulation results at random for each data set (see Fig. A.6,A.7,A.8,A.9).
The remaining simulation results are closely comparable to results in fig-
ures (A.6,A.7,A.8,A.9).

5.10 Hamming Negative Selection as a Net-

work Intrusion Detection Technique

In many works, the appealing connections between the immune system and
the IDSs are stressed. Intuitively, it seems obvious to abstract immune sys-
tem principles and conceptualize algorithms for intrusion detection problems.
This is especially so, as the capability of the immune system for dynamically
adapting to previously unseen disease, is an attractive property for develop-
ing intrusion detection systems.

11in the worst-case, one have to check all n! permutations of Sn

5.10. Hamming Negative Selection as a Network Intrusion
Detection Technique 67

In this section, previously proposed approaches with Hamming negative
selection as a network intrusion detection technique are presented and ex-
haustively discussed by means of our presented results.

Hofmeyr et al. [40] and later Balthrop et al. [5] developed a network intru-
sion detection system by applying the Hamming negative selection and the
r-contiguous matching rule. The r-contiguous detectors were randomly gener-
ated (see algorithm 1 and figure 3.3). Moreover, in Hofmeyr’s and Balthrop’s
approach, each network packet was encoded as a bit string (termed datapath)
of length 49, consists of a source and destination IP address and a TCP port.
More precisely, as an IP address has a total length of 32 bit, the total length
must results in 32 ∗ 2 + 8 = 76 bits. To reduce the length from 76 to 49
Hofmeyr [41] argued :

“Because at least one computer in the datapath must be on the LAN, the first
8 bits represent an internal computer, and are taken from the least significant
byte of its IP address [footnote : It is assumed here that all computers on
the LAN have the same class C network address. This representation is thus
limited in that there can be at most 256 computers on the LAN, which is true
for the network used to collect data for all experiments in this dissertation]”.

As a result, Hofmeyr has considered only class C network addresses, i.e. max-
imum 254 allowed hosts12 which are represented by 8 bits instead of 32 bits.
The further network information were represented as follows :

“The following 32 bits represent the other computer involved in the commu-
nication, which will require 32 bits for the IP address if that computer is
external. If the other computer is internal, then only 8 bits are needed, but
32 bits (the full IP address) are still used to maintain a fixed length repre-
sentation. If an external computer is involved, it is always represented in
the second 32 bits, so an extra bit is used to indicate whether or not the first
computer is the server; if the first is the server, the bit is set to one, otherwise
it is set to zero. The final 8 bits represent the type of service”.

To illustrate that more clearly see figure 5.17.

12256 minus network and broadcast address yields 254

68 Chapter 5. Hamming Negative Selection

Figure 5.17: Hofmeyr’s proposed network connection vector, which should
characterize network traffic (taken from [41])

For (real-world) network intrusion detection problems like those described
in section 4.2 this network encoding is insufficient. For detecting this kind of
network misuse, a simple packet based firewall with logging functionality is
an appropriate technique [21]. It is interesting to note, that a similar network
packet encoding is also reported in the latest work in that field [89] :

“The source IP addresses and ports together with destination IP addresses
and ports are parsed by the data pre-processing module”.

Historically seen, Kim and Bentley were the first who mentioned that
this encoding is insufficient [46]. They mentioned that the primitive fields13

were not enough to build a meaningful profile. As a result, they proposed to
represent network traffic as strings of length 33 defined over an alphabet of
cardinality 10. They empirically conclude, that a random detector generation
with parameter |Σ| = 10, l = 33 and r = {3, 4} is completely impractical.
Their observations can be explained with results shown in section 5.4.1. For
such a large alphabet cardinality and small values of r it is not possible to
generate any detectors.

Moreover, in the Hofmeyr’s et al. [40] approach the cardinality of self
set S (normal network behavior) was dramatically reduced to a very small
cardinality :

“The self trace St was collected over 50 days, during which a total of 2.3 mil-
lion TCP connections were logged, each of which is a datapath triple. These
2.3 million datapaths were filtered down to 1.5 million datapaths. After
this, a self set S, consisting of 3900 unique strings, was extracted from St”.

13IP address, port

5.10. Hamming Negative Selection as a Network Intrusion
Detection Technique 69

A similar statement is found in Balthrop’s et al. [5] paper :

“Mapping the packets into 49-bit representation yields a total of 131 unique
strings in the training set, and 551 strings in the test set.”

A simple real-world example shows that this data reduction is unrealistic.
Given for instance a class C network with 254 hosts and only 254 servers
worldwide distributed in the internet which offers services14 on 500 available
ports, then one obtains 2542 ∗ 500 = 32258000 datapath triples.

By applying the correct estimation of the number of initial detector
strings (before negatively selected), one obtains an infeasible complexity for
generating suitable detectors, as term 3.6 is exponential in |S|.

Example 5.5. Generating only one suitable detector for |S| = 32258000, l =
49, r = 12, i.e.

|D| = 1 = |D0| · P¬S

results in
|D0| ≈ 1.148 · 1066781

this means that 1.148 · 1066781 initial detectors must be checked, before one
suitable detector is found. Applying term 3.6, i.e. calculating the number of
initial detectors |D0| by allowing with probability Pfail that |D| detectors fail
to detect an intrusion, one obtains for |S| = 32258000, l = 49, r = 12, Pfail =
0.1

|D0| ≈ 5.558 · 1066783

Example 5.5 makes it clear that a random detector generation is not
applicable for real-world network intrusion detection problems.

Furthermore, the chosen detector length (r = 12) is from our point of
view, far too short. Following our analysis the detector length should induce
a very large numbers of holes. Additionally, it is not clear, if for such a small
value of r and different concatenated bit string lengths, the induced holes are
lying in appropriate generalization regions.

Moreover, we showed in section 4.2, how IDS Snort recognizes attackers
and worms by means of pattern matching. Usually, the IDS signatures have
a length of 10 bytes or more. The signature which matches for example
the IMAP buffer overflow, has a string length of 39 bytes. Intrusion detec-
tion systems which employ anomaly models, require connection vectors of a
determined length which characterize the network packets and connections.

14rpc,smtp,ssh,pop3,imap,http, ftp,kerberos,irc,etc.

70 Chapter 5. Hamming Negative Selection

Assuming each field in the connection vector requires 2 bytes to store the
data15, then the connection vector described in table 4.1, requires 30 bytes.

Using the analysis in sections 5.2, 5.4, 5.7, which shows the coherence
between the number of generable detectors, the number of resulting holes and
the generalization regions, it is shown, that r must be close to l to generate a
certain number of detectors, to control the number of holes (under/overfitting
behavior) and to obtain holes near concentrated self regions.

A large number of holes implies a low detection rate, i.e. attacks are not
recognized by the detectors. On the other hand, a limited number of holes
results in a high false alarm rate, i.e. unseen normal data is recognized by
the detectors and classified as an attack. Furthermore, the complexity of
the most known algorithms to generate detectors is presented and the high
runtime and space complexity is stressed.
Combining these arguments, it is clear, that the so far proposed AIS in-
trusion detection approach based, on the negative selection principle is not
appropriate and not applicable for these kind of network intrusion detection
models. Using a connection vector, which consist of 240 bits or signatures
which consist of 80 bits, it is not possible to generate in polynomial time a
certain number of detectors and to obtain a linear16 control on the number
of holes.

5.11 Summary

In this chapter the Hamming negative selection with the associated r-chunk
matching rule is explored. An algorithm for generating all possible r-chunk
detectors is proposed and analyzed. Furthermore a formula for calculating
the number of generable r-chunk detectors is presented. It is shown that the
number of generable detectors strongly depends on the r-chunk length and the
number of self elements. Furthermore, the coherence between the alphabet
size and the number of generable detectors is investigated. Additionally, holes
(undetectable elements) are motivated and an algorithm for constructing
holes is presented. Holes are necessary to generalize beyond the seen training
set and therefore must represent unseen self elements. This important fact
is explored empirically on different artificial data sets. It was noticed, that
a certain r-chunk length (detector specificity) must be reached, that holes
occur in regions where self elements are concentrated. The r-chunk length

15which is very optimistic estimation, because many fields are contiguous values and
require at least 4 bytes

16with respect to the numbers of self elements

5.11. Summary 71

cannot be arbitrary chosen, as it must capture the semantical representation
of the elements. Moreover it was noticed, that different element lengths
cannot be arbitrary concatenated, as a proper detector length must capture
the semantical representation of all concatenated elements.

Additionally, we have shown that (randomly determined) permutation
masks in Hamming negative selection, distort the semantic meaning of the
underlying data — the shape of the distribution — and as a consequence shat-
ter self regions. Furthermore, the dist orted data is transformed into a collec-
tion of random chunks. Hence, detectors are not covering areas around the
self regions, instead they are randomly distributed across the space. More-
over the resulting holes (the generalization) occur in regions where actually
no self regions should occur. We strongly believe that it is computational
infeasible to find permutation masks which correctly capture the semanti-
cal representation of the data — if one exists at all. We conclude that the
use of permutation masks casts doubt on the appropriateness of abstracting
diversity in Hamming negative selection.

In the last part of this chapter we have discussed the appropriateness of
the Hamming negative selection as a technique for network intrusion detec-
tion. For this purpose previously proposed approaches were presented. We
have shown, that these approaches are not useful for real-world security prob-
lems. From our point of view it is not possible to characterize a connection
vector consisting of IP addresses and ports. Furthermore, the limited in-
formation within the (primitive) connection vectors are strongly compressed
and the number of all collected connection vectors is strongly reduced. We
believe, that this compression was done, as the detector generation process
becomes infeasible for a large number of self elements (demonstrated on an
example). Moreover, we have presented the time and space complexity of
all r-contiguous and r-chunk detector generating algorithms proposed in the
literature. Each algorithm has a time or space complexity which is exponen-
tial in the r-chunk length r and only feasible for small values of r. For the
r-contiguous matching rule we have demonstrated the link between generat-
ing r-contiguous detectors and the k-CNF satisfiability problem. Specifically,
we have shown that the problem of generating r-contiguous detectors, when
given self set S and matching length r can be transformed to an instance of
the k-CNF satisfiability problem. The assignment set of the boolean formula
in k-CNF is directly linked to the generable r-contiguous detector set. This
result provides an interesting insight into better understanding the prob-
lem of generating r-contiguous detectors. Furthermore, results taken from
the field of boolean satisfiability can be utilized to study more formally the
problem of generating r-contiguous detectors. We have demonstrated two
utilize statements in the context of unsatisfiability, i.e. no generable detec-

72 Chapter 5. Hamming Negative Selection

tors. Moreover, we have discussed the question, are r-contiguous detectors
efficiently generable. We have conclude that at least Ω(2r) evaluations are re-
quired to generate all possible detectors. This conclusion was justified with
the k-CNF satisfiability problem when considering the first clause of each
s ∈ S only.

Summarizing all obtained results, we conclude that the Hamming nega-
tive selection approach is not appropriate as a technique for network intrusion
detection.

Chapter 6

Real-Valued Negative Selection

The principle of generating detectors in the complementary space and using
these detectors to classify elements, is adaptable to other shape-spaces. In
this chapter we investigate the negative selection defined over the real-valued
shape-space. More precisely, we investigate the real-valued negative selection
with variable-sized detectors proposed by Ji and Dasgupta [44, 45]. Before
we start to investigate the real-valued negative selection with variable-sized
detectors, we describe the abstracted immune elements and the functionality
of the negative selection principle defined over a real-valued shape-space.

6.1 Generic Real-Valued Negative Selection

The idea to generate detectors in the complementary space for continuous
data, was proposed informally by Ebner et al. [20] and formally by González
et al. [34, 35]. The generic real-valued negative selection algorithm, operates
on a unitary hypercube [0, 1]n. A detector d = (cd, rns) has a center c ∈ [0, 1]n

and a non-self recognition radius rns ∈ R. Furthermore, every self element
s = (cs, rs) has a center and a self radius rs. The self-radius was proposed to
allow other elements to be considered as self elements which lie close to the
self-center. If an element lies within a detector (hypersphere), which in effect
would be close to the self-center given a certain radius, then it is classified as
non-self, otherwise as self. An element1 e lies within a detector d = (cd, rns),

if the Euclidean distance dist(c, e) = (
∑n

i=1(ci − ei)
2)

1/2 ≤ rns.

1n dimensional point

73

74 Chapter 6. Real-Valued Negative Selection

6.2 Real-Valued Negative Selection

with Variable-Sized Detectors

Ji and Dasgupta [44, 45] proposed a real-valued negative selection algorithm
with variable-sized detectors — termed V-Detector (see algorithm 4). The
algorithm randomly determines a center x of a detector (see line 7) which
must not lie within already existing detectors (see line 9) or within the hy-
persphere of a self-element (see line 16). Once such a center x is found, the
radius of the detector is dynamically resized until the boundary of the region
comes in contact with the closest self-element (see line 16-17). The detector
is added in the detector set, if all conditions previously termed are satisfied
and the resized detector radius r is greater than then self-element radius rs

(see line 18). The algorithm terminates if a predefined number of detectors
are generated, or a pre-determined proportion of non-self space is covered.

For all our experiments contained in this chapter and in chapter 7, we
employed the algorithm proposed by Ji and Dasgupta [44, 45] (see algorithm
4).

The real-valued negative selection was originally proposed to overcome
scaling problems2 inherent in the Hamming shape-space negative selection
algorithm.

In the following sections, we investigate termination behavior of algo-
rithm (4) and undertake an analysis and comparison of the classification
performance on low- and high-dimensional data sets (see chapter 7). Our
investigations reveal that the real-valued negative selection is a technique
which is not competitive to statistical anomaly detection techniques on high-
dimensional data sets. This fact is theoretically investigated and explained
in chapter 8. However, on low-dimensional data sets it produces similar clas-
sification results like the real-valued positive selection which we propose in
section 6.3.

6.2.1 Algorithm Visualization

As explained above, the V-Detector algorithm randomly generates detectors
with a variable-sized radius. In order to assess how well the algorithm gen-
erates a set of non-self detectors and terminates, we made use of a simple

2runtime and space complexity

6.2. Real-Valued Negative Selection
with Variable-Sized Detectors 75

Algorithm 4: Generate V-Detector Set

input : S = Set of self elements, Tmax = max. number of
V-Detectors,
rs = self radius, c0 = estimated coverage, MSC = max. s elf

coverage
output: D = Set of generated V-Detectors
begin1

D ←− ∅2

repeat3

t←− 04

T ←− 05

r ←−∞6

x←− random point from [0, 1]n7

foreach d ∈ D do8

// Euclid. distance between detector center cd

and x
// is less than Non-Self radius rns of detector d
if dist(cd,x) ≤ rns then9

// point x is covered by a detector

t←− t + 110

if t ≥ 1/(1− c0) then11

return D12

goto 5:13

// find the closest distance to a self element

margin

foreach s ∈ S do14

l ←− dist(cs,x)15

if l − rs ≤ r then16

r ←− l − rs17

if r > rs then18

// Add a new detector d to set D
D ←− D ∪ {d = (x, r)}19

else20

T ←− T + 121

if T > 1/(1−MSC) then22

exit23

until |D| = Tmax24

end25

76 Chapter 6. Real-Valued Negative Selection

toy problem. We created a simple two-dimensional artificial data set with
9 self elements (see Fig. 6.1(a)). We ran3 the algorithm with different self-
radius lengths rs and estimated coverage c0 paramters. Furthermore we set
the remaining parameters as proposed in [45] :

Maximum Self Coverage MSC = 99.99 %

Maximum Number of Detectors Tmax = 1000

The results are visualized in figure 6.1. Figure 6.1(b) shows the generated
detectors for the artificial data set for self-radius rs = 0.05 and estimated cov-
erage c0 = 99 %. It can be seen that the algorithm generates variable-sized
detectors which cover the non-self space with a limited number of overlap-
ping detectors. Two independent algorithm runs for rs = 0.05 and c0 = 80 %
were also performed (see Fig. 6.1(c), 6.1(d)). It can be seen, that this ran-
dom detector generation and coverage estimation method varies a great deal
with equal parameter settings. This “steady space coverage” problem can
be explained by lack of precision when estimating the volume integration.
Using term (A.2), which gives the worst-case sample size when given ǫ, δ,
and applying the inequality

N + 1 >
1

4δǫ2
⇐⇒ ǫ >

(
1

4δ(N + 1)

)1/2

(6.1)

one can easily see why the steady space coverage problem for the estimated
hyperspheres coverage of c0 = 80 % occur. For the parameter c0 which was
originally proposed in [44, 45] one obtains according to [44, 45] a sample size
of N = 1/(1− c0) = 5. Evaluating term (6.1) with a given confidence level
of 90 %, one obtains an integration error ǫ of greater than 65 %.

To obtain a steady space coverage for each independent algorithm run,
the parameter c0 must be close to 100 % or by applying a proper coverage
estimation — for instance the Monte Carlo Integration technique (see ap-
pendix A.4). Consequently, this increases the runtime complexity required
to generate detectors and therefore bias the termination behavior4. This is
now analyzed in the following section.

3Each visualization presented in figures 6.1(b)-6.1(d) is obtained by one algorithm run
4In the original work [45], the runtime complexity of the V-Detector algorithm is es-

timated by O(|D| · |S|) without a probabilistic approach. By applying a probabilistic
sampling technique, there is always a trade-off between accuracy of the solution and the
runtime complexity

6.2. Real-Valued Negative Selection
with Variable-Sized Detectors 77

self−radius r

(a) An artificial data set containing 9
self-elements with self-radius rs pic-
tured as the grey circles with a black
center cs. It contains no V-detectors.

(b) 41 generated V-detectors for rs = 0.05,
c0 = 99 %.

(c) First independent algorithm run which
generated 26 V-detectors for rs = 0.05, c0 =
80 %.

(d) Second independent algorithm run which
generated 11 V-detectors for rs = 0.05, c0 =
80 %.

Figure 6.1: The real-valued negative selection algorithm with variable-sized
detectors applied on an artificial data set for different estimated coverages.

78 Chapter 6. Real-Valued Negative Selection

6.2.2 Algorithm Termination

First, it can be seen (algorithm 4), that the termination condition in line 22
is not useful, because T never has a value higher than 1. Once increased to
1 (see line 21), T is set to 0 (see line 5) in the same outer repeat loop and
therefore, the termination condition in line 22 is never satisfied.

Another algorithm termination is reached (see line 11), when the condi-
tion t ≥ 1/(1− c0) is satisfied. Let x be a random sample and x ∈ ∆ denote
that x is covered by at least one detector. The variable t is only increased
when x ∈ ∆ (see line 9). When a random sample x /∈ ∆ is chosen, and falls
within a self-element circle or an uncovered gap, then t is set 0 (see line 4).
Therefore, the termination criteria is guaranteed, when a sample sequence
x1,x2, . . . ,xj ∈ ∆ of length j is found, where j = t/δ. The term δ denotes the
average number of detectors covering a sample x. The justification behind
δ is that a sample x can be covered by more than one detector, because the
detectors can overlap and therefore the variable t can be increased multiple
times. The probability of finding a sequence of length j, can be calculated
with the geometric distribution and the approach xj+1 /∈ ∆.

The probability to find in j +1 random sampling trials j successes before
the first failure is :

P (xj+1 /∈ ∆) = p(1− p)j (6.2)

where p is the probability that a random sample x is covered by at least
one detector. Term 6.2 only depends on p and j. The higher the num-
ber of self elements or the larger the self-radius, the lesser the probability
of finding a sample sequence which guarantees the algorithm termination.
Furthermore, the probability is strongly biased by parameter c0. A higher
confidence of the estimated coverage c0 decreases the probability of finding a
termination sample sequence and therefore increases the runtime complexity.
This is a typical property of probabilistic Monte Carlo algorithms [53] (see
appendix A.4, A.5).

6.3 Real-Valued Positive Selection

The real-valued positive selection (see algorithm 5 and figure 6.2(b)) also
referred to as self-detector classification was proposed by Stibor et al. [72]
and uses like the real-valued negative selection detectors (hyperspheres) for
classifying elements. It is a very trivial algorithm and was only proposed for
comparative studies. Each self-element is a self-detector with a self-radius
rs. An unseen element which lies within the self-detector is classified as

6.4. Review of Real-Valued Negative/Positive Selection 79

self, otherwise as non-self. This means, that no detector generation phase is
necessary, but the classification decision for each unseen element is compu-
tationally expensive, as in the worst-case the distance to each self-detector
must be calculated. For very large data sets this result in an infeasible com-
putationally complexity.

Algorithm 5: Generate Self-Detector Set

input : S = Set of self elements, rs = self-radius
output: D = Set of generated Self-Detectors
begin1

D ←− ∅2

foreach s ∈ S do3

ds ← (s, rs)4

D ←− D ∪ ds5

end6

6.4 Review of Real-Valued Negative/Positive

Selection

Geometrically speaking (compare figure 6.2(a) and 6.2(b)), the real-valued
negative selection method first fills the space with detector-circles5 (shaded
area) and considers elements as non-self if they lie within a detector-circle.
In contrast, the real-valued positive selection method considers the complete
space as non-self, with exception of elements which lie within a self-detector
circle.

The main parameter which influences the classification performance and
enables the learning capability (generalization) is the self-radius rs, which
is used in both methods. The radius rs strongly depends on the probability
density function of the data set, which is unknown a-priori. An improper
chosen radius rs consequently results in a weak classification performance.
To estimate a proper radius with only the training data from one class, a
coherence between estimated probability density function and radius must
be found. In section 7.2, we present a method of finding an optimal self
radius, by given some elements of the anomalous class.

5hyperspheres for higher dimensions

80 Chapter 6. Real-Valued Negative Selection

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
����������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
����������
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
�������
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

(a) Real-valued negative selection princi-
ple with variable size detectors for a two-
dimensional space. The non-self space
which is covered by the detectors is pic-
tured as the shaded area. The self ele-
ments are pictured as white circles with a
black center

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

(b) Real-valued positive selection for a
two-dimensional space. The covered non-
self space is pictured as the shaded area.
The self elements are pictured as grey cir-
cles with a center and a self-radius rs

Figure 6.2: Geometric interpretation of real-valued negative/positive selec-
tion

Another problem is how to find an optimal distribution of the detectors,
i.e. the minimum number of detectors covering the maximum possible non-
self space. This is a hard combinatorial problem, which is solved in [35] with
the simulating annealing technique. As a consequence, a vast amount of
time is needed to generate and to position the detectors to cover the non-self
space.

Following Occam’s Razor principle which states : “Entities should not be
multiplied unnecessarily” or a more useful statement for scientists : “When
you have two competing theories which make exactly the same predictions,
the one that is simpler is the better”, we believe that the negative selec-
tion approach provides no benefits, when compared to the positive selection
approach.

From our point of view it makes more sense to formulate the classifica-
tion model based on self deviation, rather than in the complementary non-self
space. This is also mentioned in Roberts work [62] :

“it is better to formulate a model of the ’normal’ data and test for ’novel’
data against this model”

and in Tarassenko et al. work [80] :

6.5. Summary 81

“We have been exploring an alternative approach in which we attempt to learn
a description of normality using the large number of available mammograms
which do not show any evidence of mass-like structures. The idea is then to
test for novelty against this description in order to try and identify candidate
masses in previously unseen images.”

In chapter 8 we show the most fundamental limitations of real-valued negative
selection for high-dimensional classification problems. The reason for that are
not algorithmic complexity problems as with in the Hamming negative selec-
tion (section 5.8), but adverse properties of hyperspheres in high-dimensional
spaces.

6.5 Summary

In this chapter the real-valued negative selection with variable-sized detectors
was explored. In contrast to the Hamming negative selection each element is
represented as a n-dimensional point with a center and a radius. The detec-
tors are therefore hyperspheres. When an element lies within a hypersphere,
it is classified as an anomalous point, otherwise as a normal point. The
variable-sized real-valued negative selection algorithm randomly generates
hyperspheres which do not cover any normal points. The algorithm termi-
nates when a certain proportion of the space is covered by the hyperspheres
(detectors).

We have investigated the termination behavior of the algorithm and have
additionally explored the sampling technique which is applied to estimate the
hypersphere coverage. The analysis reveal, that the termination behavior of
the algorithm was incorrectly specified. Furthermore, our results have shown
that the runtime complexity of the algorithm depends on the probability of
finding a suitable hypersphere and the accuracy of the estimated space cov-
erage. Moreover, an algorithm visualization has revealed that the sampling
technique to estimate the hypersphere coverage is insufficient.

Inspired by the Occam’s Razor principle and the statements of researches
in the field of anomaly detection [62, 80, 20], we have proposed a straight-
forward positive selection approach. Instead of filling the (non-self) space
with hyperspheres, each self element is a self-detector. An element which
lies within the self-detector is classified as a normal point, otherwise as an
anomalous point. In the next chapter the classification performance of the
real-valued positive selection, real-valued negative selection and the statisti-
cal anomaly detection techniques are compared for low- and high-dimensional
data sets.

82 Chapter 6. Real-Valued Negative Selection

Chapter 7

Classification Results and
Comparative Study

In this chapter the classification performance of real-valued negative selec-
tion with variable-sized detectors (algorithm 4) is compared to real-valued
positive selection (algorithm 5) and to the statistical techniques described
in section 4.1. For quantifying the classification (detection) performance, we
first motivate a technique called ROC analysis, which is commonly used in
the field of machine learning [28].

7.1 ROC Analysis

ROC (Received Operating Characteristic) analysis is introduced in signal
detection theory to describe how well a receiver can distinguish a signal from
noise or more generally, depict a tradeoff between hit rates and false alarm
rates of classifiers. To motivate the ROC analysis, we give a simple example
of a binary classifier and the resulting evaluation problems.

Given a data set of 100 elements, where 99 are non-self and 1 is self. Let ct

be a classifier that always predicts non-self (trivial classifier). The error-rate
of ct is therefore 1 % and it seems to be a very good classifier. Now, the data
set again contains 100 elements, but 99 of them are self and 1 is non-self. In
this case, the classifier has an error rate of 99 % and is unacceptable. This
problem arises, because we do not know the class distribution and the context
or skew which determines the goodness of a classifier. To measure the real
performance of classifiers, ROC analysis is an appropriate method. Given a
classifier and an example, there are four different outcomes. If the example
is non-self and it is classified as non-self, it is counted as a true positive; if
it is classified as self, it is counted as a false negative. If the example is self

83

84 Chapter 7. Classification Results and Comparative Study

P

P N

N

TP FP

FN TN

Classifier Predict

Actual

(a) General Confusion Matrix

Self

Non−Self Self

Non−Self 99 1

0 0
C trivial Predict

Actual

(b) Self/Non-Self Confusion Matrix for the
trivial classifier ct

Figure 7.1: ROC analysis Confusion Matrix

and it is classified as self, it is counted as a true negative; if it is classified
as non-self, it is counted as a false positive. Given a classifier and a set of
test examples, a 2× 2 confusion matrix can be constructed representing the
dispositions of the set of examples (see Fig. 7.1). Using the matrix values,
the detection rate (true positive rate) and the false alarm rate (false positive
rate) of a classifier is calculated as :

detection rate (DR) =
nonself correctly classified

total nonself
=

TP

TP + FN

false alarm rate (FAR) =
self incorrectly classified

total self
=

FP

FP + TN

The trivial classifier ct has a detection rate of 100%, but a false alarm rate of
also 100%. To compare the classification performance of several classifiers,
the detection rate and false alarm rate is plotted on a two-dimensional graph
(ROC space), where the detection rate is plotted on the ordinate and the
false alarm rate on the abscissa. Informally, one point in the ROC space is
better than another if it is northwest (detection rate is higher, false alarm
rate is lower, or both) of the first. The point p̂ = (0, 1) represents a perfect
classifier (100% detection rate and 0% false alarm rate), where a random
classifier1 yields a point which always lies on the dashed line (see Fig. 7.1).
In figure 7.1 three classifiers are depicted. The trivial classifier ct has the
weakest classification performance, c1 the highest performance.

7.2 Determining Optimal Self-Radius

The ROC analysis provides a technique to evaluate the classification perfor-
mance of classifiers. To find a self-radius rs which yields the overall best

1toss a coin to predict self or non-self

7.2. Determining Optimal Self-Radius 85

0.75

0.5

0.25

0

1

0 0.25 0.5 0.75 1

C

C

C

1

2

tp

False Alarm Rate (FAR)

D
et

ec
tio

n
R

at
e

(D
R

)

Figure 7.1: A ROC graph showing three classifiers c1, c2, ct, where c1 has the
highest classification performance and ct the lowest. The diagonal dashed line
represents the strategy of randomly guessing a class. The point p̂ = (0, 1)
represents a perfect classifier.

balance between detection rate and false alarm rate, rs is initialized with a
small start value (i.e. 0.01) and increased after one training classification
run by rs = rs + ∆i until rs ≥ max (i.e max = 1.0). For every ∆i step, the
resulting false alarm rate fi and detection rate di yield a point pi in the ROC
space, which results in a ROC curve (see figures 7.2,7.3,7.4). Then a radius
rs is chosen which yields the minimum error, this results in an overall best
balance between detection rate and false alarm rate.

minimum error = min (1− (di − fi)), ∀i (7.1)

It has not escaped our notice, that this radius determination requires of
course a second class, and is similar to a cross-validation [36]. The cross-
validation is a widely used method to estimate how well the classification
model was learned from some training data and is going to perform on unseen
test data. More concrete it is a method for estimating the prediction of the
generalization error and there the cross-validation is used for determining
the optimal model parameter, i.e. the parameter values which gives the
lowest prediction error. In figures 7.2, 7.3, 7.4 the ROC curves obtained by
algorithm 5 are plotted for variable amount of training samples — the data
sets are described in section 7.3. One can see the coherence between radius
length and the amount of training examples. The smaller the amount of
training examples, the larger the radius. The radius length can be considered
as a measure of uncertainty, which shrinks if many training examples are
given (uncertainty is small) and grows if few training examples are given
(uncertainty is high).

86 Chapter 7. Classification Results and Comparative Study

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FAR

DR

rs = 0.09

Figure 7.2: ROC curve of Biomedical data set for 25% training data, gen-
erated by an increasing self-radius in ∆ = 0.01 steps. Self-radius rs = 0.09
results in an overall best balance, with a detection rate of 0.7787, a false
alarm rate of 0.1480 and a minimum error of 0.3693

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FAR

DR

rs = 0.06

Figure 7.3: ROC curve of Biomedical data set for 50% training data, gen-
erated by an increasing self-radius in ∆ = 0.01 steps. Self-radius rs = 0.06
results in an overall best balance, with a detection rate of 0.8766, a false
alarm rate of 0.1653 and a minimum error of 0.2887

7.3. Low-Dimensional Data Sets and Experimental Settings 87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FAR

DR

rs = {0.01, 0.02}

Figure 7.4: ROC curve of Biomedical data set for 100% training data,
generated by an increasing self-radius in ∆ = 0.01 steps. Self-radii rs =
{0.01, 0.02} result in an overall best balance, with a detection rate of 1.0, a
false alarm rate of 0.0 and a minimum error of 0.0

7.3 Low-Dimensional Data Sets and Experi-

mental Settings

In this section, we present classification results performed with real-valued
positive selection, one-class SVM and Parzen-Window Estimator. The re-
sults obtained are compared to results performed with real-valued negative
selection (algorithm 4) and were reported in [45].

In line with previous work [45], we perform our experiments on the Iris-
Fisher and Biomedical data sets, which can be downloaded from [85]. The Iris
Fisher data set contains 3 classes of 50 instances, where each class refers to a
type of iris plant. The Biomedical data set contains 209 observations (134 for
“normals” and 75 for “carriers”) of blood measurements to identify carriers
of a rare genetic disorder. Each blood sample consists of four measurements
and a label (normal or carrier). Both data sets are normalized in the unitary
hypercube [0, 1]n using the min-max normalization. The Biomedical data set
contains 15 data vectors which contain undefined points — we omit these
data vectors.

In the first experiment, the classifiers are trained with 100% of one class
(considered as self), where the remaining classes are considered as non-self.
In the test phase, all elements in the data set must be classified, either as
self or non-self. As the goal of learning is to be able to classify unseen data,
the classifiers are trained in the second experiment with 50% and 25%2 of
randomly drawn elements from one class. In the test phase, all elements in

2only Biomedical data set

88 Chapter 7. Classification Results and Comparative Study

the data set are presented to the classifier and must be classified. Each run
is repeated 100 times and the results are averaged. The experiments were
performed for each class of the Iris-Fisher and Biomedical data set. In the
Biomedical data set, only non-carriers were considered as self elements.
In order for our results to be comparable to Ji’s and Dasgupta’s [45] results,
we performed the same experiments and used the same radius length rs =
0.1 for the Iris-Fisher data set and radii length rs = {0.05, 0.1} for the
Biomedical data set. Additionally, we performed classification runs with
radius rs, which gives the minimum error for 50% Iris Fisher training data
(rs = 0.15) and 25% Biomedical training data (rs = 0.09), obtained by
Eq. (7.1). By increasing the radius, it is possible to achieve a lower false
alarm rate, but this will consequently decrease the detection rate. This is
demonstrated using rs = 0.13 on the Biomedical data set.

The one-class SVM experiments were performed with following kernels :

Linear k0(u,v) = (u · v)

Polynomial k1(u,v) = ((u · v) + Θ)d

Gaussian radial basis function k2(u,v) = exp

(
−‖u− v‖2

c

)

Sigmoidal k3(u,v) = tanh(κ(u · v) + Θ)

and defaults parameters c, κ, Θ ∈ R and varied parameters d ∈ N and ν =
{0.1, 0.05, 0.01}.

For the experiments we used the one-class SVM implementation LIBSVM
2.6 [42, 11]. LIBSVM is a program, which provides several SVM algorithms
for classification and regression, including the described one-class SVM.

The Parzen-Window Estimator experiments were performed with vari-
ance parameter σ = 0.67 for Iris-Fisher and σ = 0.69 for Biomedical data
set. These variance parameters are approximated by using the term σ ≈
(4/(2d + 1))1/(d+4) · n−1/(d+4) — where n is the number of data samples and
d the dimension of a data sample — proposed in [68].

7.4 Results

For the Iris-Fisher data set (see table 7.1) the straightforward real-valued
positive selection (Self-Detector) method outperforms the real-valued nega-
tive selection (V-Detector) in all classification tests for all chosen radii for
100% training data. For 50% training data, the self-detector classification
with radius rs = 0.1 outperforms the real-valued negative selection in the

7.4. Results 89

detection rate, but it has a higher false positive rate. With radius rs = 0.15,
it performs better for both rates, except the false alarm rate in the setosa
class which differ by 0.56%.

The moderate classification accuracy of the one-class SVM
(see tables 7.2,7.3,7.4,7.5,7.6,7.7) can be explained by the fact that the SVM
was trained with too few examples to capture the density. Additionally, it
has been observed, that the four different kernels k0, k1, k2, k3 produce very
different classification results. The RBF kernel (k2) results in the overall
highest classification accuracy. Whereas the linear (k0) and sigmoid (k3)
kernel produce high accuracy for the setosa and virginica class, but very
poor results for the versicolor class. Furthermore, one can observe that the
polynomial kernel (k1) produces poor results for even polynomial degrees
(d = {2, 4}), whereas degree d = 3 results in higher accuracy compared with
the even polynomial degrees.

The Parzen-Window Estimator technique produced the overall poorest
classification results compared with the real-valued positive selection, real-
valued negative selection and the one-class SVM with RBF kernel. In order
to produce higher classification results the parameter σ and pu were empir-
ically tuned, but without success. The results shown in table 7.8 are the
best obtained with the Parzen-Window Estimator technique. The Parzen-
Window technique requires a certain number of samples to capture the un-
derlying density function. The Iris-Fisher data set contains a limited number
of samples and therefore strongly bias the classification performance of the
Parzen-Window technique. We believe that the number of samples is too
small to capture the underlying density and therefore this technique results
in poor results.

For the Biomedical data set (see table 7.9) the real-valued positive selec-
tion when compared with the real-valued negative selection, produces higher
detection rates, but also higher false alarm rates. By applying the ROC anal-
ysis one can verify that the real-valued positive selection produces an overall
higher classification accuracy. Furthermore, it is observed that the one-class
SVM produces for the Biomedical data set similar classification results for
each tested kernel k0, k1, k2, k3 — for the Iris-Fisher data set results vary a
great deal with kernels k0, k1, k2, k3. Moreover, the one-class SVM produced
overall high classification results for the Biomedical data set. The Parzen-
Window Estimator technique produced the overall poorest results compared
with the other techniques. As for the Iris-Fisher data set, the parameters
were additionally tuned “by hand” for discovering the highest classification
accuracy. These best found values and the associated classification results
are shown in table 7.14.

90 Chapter 7. Classification Results and Comparative Study

Table 7.1: Classification Results with real-valued negative/positive selection
for Fisher Iris data set

Training Algorithm Detection False Alarm
Data Rate Rate

Mean SD Mean SD
V-Detectorr=0.1 99.98 0.14 0.00 0.00

Self-Detectorr=0.1 100 0.00 0.00 0.00Setosa 100 %
Self-Detectorr=0.15 100 0.00 0.00 0.00
V-Detectorr=0.1 99.97 0.17 1.32 0.95

Self-Detectorr=0.1 100 0.00 9.98 3.18Setosa 50 %
Self-Detectorr=0.15 100 0.00 1.88 1.73
V-Detectorr=0.1 85.95 2.44 0.00 0.00

Self-Detectorr=0.1 98.00 0.00 0.00 0.00Versicolor 100 %
Self-Detectorr=0.15 87.00 0.00 0.00 0.00
V-Detectorr=0.1 88.3 2.77 8.42 2.12

Self-Detectorr=0.1 99.03 0.99 15.72 3.55Versicolor 50 %
Self-Detectorr=0.15 92.02 3.06 3.78 3.04
V-Detectorr=0.1 81.87 2.78 0.00 0.00

Self-Detectorr=0.1 99.00 0.00 0.00 0.00Viginica 100 %
Self-Detectorr=0.15 91.00 0.00 0.00 0.00
V-Detectorr=0.1 93.58 2.33 13.18 3.24

Self-Detectorr=0.1 99.09 0.30 26.36 4.23Viginica 50 %
Self-Detectorr=0.15 93.72 2.28 9.98 3.76

7.4. Results 91

Table 7.2: Classification Results with one-class SVM, kernel k0 (linear) for
Iris Fisher data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
k0, ν = 0.1 100 0.00 10.66 0.94
k0, ν = 0.05 100 0.00 2.00 0.00Setosa 100 %
k0, ν = 0.01 100 0.00 3.86 0.80
k0, ν = 0.1 100 0.00 13.02 5.96
k0, ν = 0.05 100 0.00 8.68 3.84Setosa 50 %
k0, ν = 0.01 100 0.00 5.12 3.68
k0, ν = 0.1 50.00 0.00 12.14 1.45
k0, ν = 0.05 50.00 0.00 5.08 1.07Versicolor 100 %
k0, ν = 0.01 50.00 0.00 3.88 1.65
k0, ν = 0.1 50.25 0.67 13.48 6.13
k0, ν = 0.05 50.17 0.58 9.90 4.74Versicolor 50 %
k0, ν = 0.01 50.21 0.68 10.00 4.54
k0, ν = 0.1 100 0.00 8.00 0.00
k0, ν = 0.05 97.00 0.00 6.00 0.00Virginica 100 %
k0, ν = 0.01 96.00 0.00 0.08 0.39
k0, ν = 0.1 98.88 1.20 12.50 4.42
k0, ν = 0.05 97.76 1.83 8.60 4.52Virginica 50 %
k0, ν = 0.01 97.95 1.67 6.50 4.72

92 Chapter 7. Classification Results and Comparative Study

Table 7.3: Classification Results with one-class SVM, kernel k1 (polynomial),
degree d = 2 for Iris Fisher data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
k1, d = 2, ν = 0.1 95.00 0.00 8.76 1.05
k1, d = 2, ν = 0.05 93.00 0.00 4.04 0.28Setosa 100 %
k1, d = 2, ν = 0.01 93.00 0.00 0.58 0.91
k1, d = 2, ν = 0.1 94.28 1.02 12.36 6.22
k1, d = 2, ν = 0.05 93.45 0.79 8.34 3.66Setosa 50 %
k1, d = 2, ν = 0.01 93.23 0.66 5.26 4.16
k1, d = 2, ν = 0.1 0.00 0.00 12.84 8.99
k1, d = 2, ν = 0.05 0.06 0.60 23.42 8.66Versicolor 100 %
k1, d = 2, ν = 0.01 11.54 19.15 54.34 15.47
k1, d = 2, ν = 0.1 0.02 0.2 24.74 9.89
k1, d = 2, ν = 0.05 1.48 3.87 35.44 13.43Versicolor 50 %
k1, d = 2, ν = 0.01 22.47 28.41 63.62 14.75
k1, d = 2, ν = 0.1 49.81 0.39 11.02 1.59
k1, d = 2, ν = 0.05 47.00 0.00 6.00 0.00Virginica 100 %
k1, d = 2, ν = 0.01 45.92 1.16 3.02 2.19
k1, d = 2, ν = 0.1 49.08 1.16 13.68 5.94
k1, d = 2, ν = 0.05 47.94 1.94 8.76 5.04Virginica 50 %
k1, d = 2, ν = 0.01 48.10 1.70 10.82 5.40

7.4. Results 93

Table 7.4: Classification Results with one-class SVM, kernel k1 (polynomial),
degree d = 3 for Iris Fisher data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
k1, d = 3, ν = 0.1 100 0.00 8.28 0.69
k1, d = 3, ν = 0.05 100 0.00 7.88 0.47Setosa 100 %
k1, d = 3, ν = 0.01 100 0.00 3.60 0.80
k1, d = 3, ν = 0.1 100 0.00 12.18 4.80
k1, d = 3, ν = 0.05 100 0.00 9.90 4.75Setosa 50 %
k1, d = 3, ν = 0.01 100 0.00 6.58 3.11
k1, d = 3, ν = 0.1 53.96 4.79 49.26 24.11
k1, d = 3, ν = 0.05 61.10 9.64 64.52 23.41Versicolor 100 %
k1, d = 3, ν = 0.01 69.57 12.46 78.12 18.39
k1, d = 3, ν = 0.1 57.86 10.70 55.64 24.18
k1, d = 3, ν = 0.05 63.36 13.55 67.68 21.83Versicolor 50 %
k1, d = 3, ν = 0.01 69.65 14.66 76.02 16.81
k1, d = 3, ν = 0.1 99.49 0.50 10.36 2.45
k1, d = 3, ν = 0.05 97.26 1.16 6.34 3.08Virginica 100 %
k1, d = 3, ν = 0.01 97.67 1.94 16.58 8.62
k1, d = 3, ν = 0.1 99.29 1.24 16.48 7.00
k1, d = 3, ν = 0.05 98.30 2.25 14.38 8.45Virginica 50 %
k1, d = 3, ν = 0.01 99.23 1.28 30.28 22.42

94 Chapter 7. Classification Results and Comparative Study

Table 7.5: Classification Results with one-class SVM, kernel k1 (polynomial),
degree d = 4 for Iris Fisher data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
k1, d = 4, ν = 0.1 94.90 0.30 11.60 0.80
k1, d = 4, ν = 0.05 93.00 0.00 6.74 1.74Setosa 100 %
k1, d = 4, ν = 0.01 92.99 0.10 2.78 0.98
k1, d = 4, ν = 0.1 93.98 0.85 11.92 4.41
k1, d = 4, ν = 0.05 93.52 0.94 7.86 4.44Setosa 50 %
k1, d = 4, ν = 0.01 93.32 0.93 6.56 4.48
k1, d = 4, ν = 0.1 13.39 20.55 48.32 28.25
k1, d = 4, ν = 0.05 24.32 28.65 60.50 28.20Versicolor 100 %
k1, d = 4, ν = 0.01 34.22 33.96 68.10 23.99
k1, d = 4, ν = 0.1 15.64 25.18 51.96 28.26
k1, d = 4, ν = 0.05 31.60 34.15 62.84 27.32Versicolor 50 %
k1, d = 4, ν = 0.01 52.61 35.51 75.54 17.44
k1, d = 4, ν = 0.1 49.00 1.60 18.94 12.28
k1, d = 4, ν = 0.05 48.11 2.15 21.02 19.58Virginica 100 %
k1, d = 4, ν = 0.01 52.75 8.87 49.90 27.14
k1, d = 4, ν = 0.1 48.87 2.82 22.92 18.44
k1, d = 4, ν = 0.05 52.81 11.12 42.02 28.28Virginica 50 %
k1, d = 4, ν = 0.01 59.16 15.82 58.22 31.23

7.4. Results 95

Table 7.6: Classification Results with one-class SVM, kernel k2 (RBF) for
Iris Fisher data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
k2, ν = 0.1 100 0.00 8.88 0.99
k2, ν = 0.05 100 0.00 4.02 0.20Setosa 100 %
k2, ν = 0.01 100 0.00 4.00 0.00
k2, ν = 0.1 100 0.00 13.82 5.54
k2, ν = 0.05 100 0.00 5.72 4.36Setosa 50 %
k2, ν = 0.01 100 0.00 7.24 5.20
k2, ν = 0.1 92.00 0.00 12.06 1.56
k2, ν = 0.05 90.00 0.00 8.36 1.40Versicolor 100 %
k2, ν = 0.01 89.01 0.10 3.44 1.82
k2, ν = 0.1 92.46 2.21 14.98 5.21
k2, ν = 0.05 90.84 2.71 8.56 5.36Versicolor 50 %
k2, ν = 0.01 90.59 2.62 8.34 5.34
k2, ν = 0.1 83.00 0.00 8.00 0.00
k2, ν = 0.05 75.00 0.00 5.36 0.90Virginica 100 %
k2, ν = 0.01 68.00 0.00 2.94 1.00
k2, ν = 0.1 86.26 7.41 13.76 6.22
k2, ν = 0.05 78.58 9.40 9.64 4.22Virginica 50 %
k2, ν = 0.01 78.21 9.33 9.10 5.10

96 Chapter 7. Classification Results and Comparative Study

Table 7.7: Classification Results with one-class SVM, kernel k3 (sigmoid) for
Iris Fisher data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
k3, ν = 0.1 100 0.00 11.46 1.47
k3, ν = 0.05 100 0.00 3.32 1.82Setosa 100 %
k3, ν = 0.01 100 0.00 0.4 0.80
k3, ν = 0.1 100 0.00 11.72 5.05
k3, ν = 0.05 100 0.00 7.04 3.74Setosa 50 %
k3, ν = 0.01 100 0.00 5.56 4.15
k3, ν = 0.1 50.00 0.00 11.86 1.53
k3, ν = 0.05 50.00 0.00 4.58 1.75Versicolor 100 %
k3, ν = 0.01 50.00 0.00 6.28 2.16
k3, ν = 0.1 50.26 0.66 13.94 5.40
k3, ν = 0.05 50.31 0.82 10.84 4.31Versicolor 50 %
k3, ν = 0.01 50.26 0.78 13.84 5.85
k3, ν = 0.1 100 0.00 11.80 0.60
k3, ν = 0.05 97.00 0.00 6.00 0.00Virginica 100 %
k3, ν = 0.01 96.00 0.00 0.88 0.99
k3, ν = 0.1 99.07 1.26 13.66 5.62
k3, ν = 0.05 98.41 1.83 9.66 4.98Virginica 50 %
k3, ν = 0.01 97.52 1.68 7.32 3.73

Table 7.8: Classification Results with Parzen-Window Estimator for Iris
Fisher data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
Setosa 100 % σ = 0.67, pu = 0.1 100.00 0.00 4.00 0.00
Setosa 50 % σ = 0.67, pu = 0.1 100.00 0.00 3.84 0.54

Versicolor 100 % σ = 0.67, pu = 0.1 79.99 0.00 2.00 0.00
Versicolor 50 % σ = 0.67, pu = 0.1 79.35 1.57 3.18 1.89
Virginica 100 % σ = 0.67, pu = 0.1 79.99 0.00 9.99 0.00
Virginica 50 % σ = 0.67, pu = 0.1 80.18 2.94 11.60 1.85

7.4. Results 97

Table 7.9: Classification Results with real-valued negative/positive selection
for Biomedical data set

Training Algorithm Detection False Alarm
Data Rate Rate

Mean SD Mean SD
V-Detectorr=0.05 40.51 3.92 0.00 0.00
V-Detectorr=0.1 30.61 3.04 0.00 0.00

Self-Detectorr=0.05 88.05 0.00 0.00 0.00
Self-Detectorr=0.09 67.16 0.00 0.00 0.00
Self-Detectorr=0.1 59.70 0.00 0.00 0.00

Normals 100 %

Self-Detectorr=0.13 44.77 0.00 0.00 0.00
V-Detectorr=0.05 42.89 3.83 1.07 0.49
V-Detectorr=0.1 32.92 2.35 0.61 0.31

Self-Detectorr=0.05 91.17 1.60 23.78 2.57
Self-Detectorr=0.09 72.39 2.30 4.60 1.76
Self-Detectorr=0.1 66.29 2.49 3.39 1.43

Normals 50 %

Self-Detectorr=0.13 50.70 3.36 1.86 0.88
V-Detectorr=0.05 57.97 5.86 2.63 0.77
V-Detectorr=0.1 43.68 4.25 1.24 0.50

Self-Detectorr=0.05 93.87 1.65 48.44 3.36
Self-Detectorr=0.09 78.10 3.67 14.93 3.48
Self-Detectorr=0.1 72.85 3.50 11.10 2.74

Normals 25 %

Self-Detectorr=0.13 59.37 4.76 5.05 2.12

98 Chapter 7. Classification Results and Comparative Study

Table 7.10: Classification Results with one-class SVM, kernel k0 (linear) for
Biomedical data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
k0, ν = 0.1 74.62 0.00 10.23 0.00
k0, ν = 0.05 68.65 0.00 6.06 0.36Normals 100 %
k0, ν = 0.01 41.79 0.00 1.13 0.39
k0, ν = 0.1 75.08 4.68 10.54 3.01
k0, ν = 0.05 65.83 7.76 6.25 2.29Normals 50 %
k0, ν = 0.01 52.04 11.78 2.60 1.13
k0, ν = 0.1 74.22 8.04 12.25 5.03
k0, ν = 0.05 69.29 9.41 8.07 4.51Normals 25 %
k0, ν = 0.01 63.31 12.32 5.68 3.88

7.4. Results 99

Table 7.11: Classification Results with one-class SVM, kernel k1 (polynomial)
and different degrees d for Biomedical data set

Training Algorithm Detection False Alarm
Data Rate Rate

Mean SD Mean SD
k1, d = 2, ν = 0.1 73.13 0.00 9.73 0.37
k1, d = 2, ν = 0.05 68.65 0.00 5.18 0.39
k1, d = 2, ν = 0.01 43.28 0.36 2.29 0.22
k1, d = 3, ν = 0.1 71.64 0.00 9.00 0.71
k1, d = 3, ν = 0.05 61.37 0.48 5.12 0.39
k1, d = 3, ν = 0.01 51.86 0.64 2.43 0.22
k1, d = 4, ν = 0.1 71.64 0.00 9.55 0.26
k1, d = 4, ν = 0.05 59.83 0.60 5.59 0.45

Normals 100 %

k1, d = 4, ν = 0.01 52.44 2.06 2.39 0.33
k1, d = 2, ν = 0.1 73.70 3.92 10.51 2.94
k1, d = 2, ν = 0.05 64.28 6.88 6.28 2.12
k1, d = 2, ν = 0.01 54.79 11.59 2.85 1.87
k1, d = 3, ν = 0.1 73.61 3.25 11.17 2.97
k1, d = 3, ν = 0.05 65.43 6.74 6.43 2.35
k1, d = 3, ν = 0.01 59.10 11.05 4.56 2.76
k1, d = 4, ν = 0.1 72.37 4.30 11.25 2.96
k1, d = 4, ν = 0.05 65.02 6.25 6.37 2.28

Normals 50 %

k1, d = 4, ν = 0.01 53.85 11.57 2.47 2.05
k1, d = 2, ν = 0.1 72.55 6.88 11.77 4.63
k1, d = 2, ν = 0.05 69.11 7.98 8.35 4.50
k1, d = 2, ν = 0.01 63.13 11.88 5.88 3.86
k1, d = 3, ν = 0.1 74.32 6.77 13.06 5.33
k1, d = 3, ν = 0.05 69.98 7.18 9.37 4.75
k1, d = 3, ν = 0.01 62.79 12.91 5.50 4.27
k1, d = 4, ν = 0.1 72.77 7.09 13.34 6.07
k1, d = 4, ν = 0.05 69.80 6.81 9.41 4.27

Normals 25 %

k1, d = 4, ν = 0.01 62.82 12.66 6.29 5.36

100 Chapter 7. Classification Results and Comparative Study

Table 7.12: Classification Results with one-class SVM, kernel k2 (RBF) for
Biomedical data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
k2, ν = 0.1 46.26 0.00 10.22 0.00
k2, ν = 0.05 40.29 0.00 5.41 0.50Normals 100 %
k2, ν = 0.01 22.38 0.00 1.45 0.60
k2, ν = 0.1 53.38 9.88 11.20 3.08
k2, ν = 0.05 38.58 10.11 6.53 2.62Normals 50 %
k2, ν = 0.01 33.43 10.76 3.74 1.98
k2, ν = 0.1 54.94 14.80 12.26 4.31
k2, ν = 0.05 44.97 15.65 7.86 4.08Normals 25 %
k2, ν = 0.01 46.58 14.14 8.31 3.76

Table 7.13: Classification Results with one-class SVM, kernel k3 (sigmoid)
for Biomedical data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
k3, ν = 0.1 76.11 0.00 10.23 0.00
k3, ν = 0.05 68.65 0.00 4.73 0.07Normals 100 %
k3, ν = 0.01 43.37 1.37 1.09 0.38
k3, ν = 0.1 75.35 4.36 10.45 3.09
k3, ν = 0.05 64.01 8.83 5.74 2.12Normals 50 %
k3, ν = 0.01 57.74 11.57 4.14 2.42
k3, ν = 0.1 75.16 7.17 13.20 5.05
k3, ν = 0.05 68.53 10.61 7.72 4.60Normals 25 %
k3, ν = 0.01 60.68 13.36 5.65 4.99

7.5. High-Dimensional Data Set and Experimental Settings 101

Table 7.14: Classification Results with Parzen-Window Estimator for
Biomedical data set

Training Algorithm Detection False Alarm
Data Parameters Rate Rate

Mean SD Mean SD
Normals 100 % σ = 0.69, pu = 0.1 59.70 0.00 12.59 0.00
Normals 50 % σ = 0.69, pu = 0.1 61.80 4.98 12.72 0.85
Normals 25 % σ = 0.69, pu = 0.1 61.73 17.18 12.76 1.77

7.5 High-Dimensional Data Set and Experi-

mental Settings

In this section we explore the anomaly detection effectiveness of the real-
valued negative selection on a high-dimensional data set. Furthermore, the
real-valued positive selection and the statistical anomaly detection techniques
are benchmarked, to obtain a comparative evaluation. For our experiments,
we made use of the dataset taken from KDD Cup 1999 [38]. This data set
contains a wide variety of network intrusions and normal network traffic. The
data set consists of connection-based network traffic data, where each record
corresponds to one network connection. A network connection is a sequence
of Internet packets sent during a period of time between two IP addresses. A
complete record is described as a network connection vector which contains
38 continuous and 3 symbolic fields and an end-label (attack type or normal
behavior).

Example 7.1. 0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,511,511,0.00,0.00,0.00,0.00,1.00,0.00,0.00,

255,243,0.95,0.01,0.95,0.00,0.00,0.00,0.00,0.00,smurf

Example 7.2. 0,tcp,http,SF,239,968,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

0,0,3,3,0.00,0.00,0.00,0.00,1.00,0.00,0.00,3,239,

1.00,0.00,0.33,0.03,0.00,0.00,0.00,0.00,normal

Example 7.1 shows a connection vector which characterizes a Denial of
Service (short DoS) attack. A DoS attack is an attack on a computer system,
or network, that causes a loss of service to users by consuming the bandwidth
of the victim network or overloading the computational resources of the vic-
tim system. As a concrete example 7.1 characterizes a smurf DoS attack

102 Chapter 7. Classification Results and Comparative Study

which uses spoofed broadcast icmp messages to flood a target system. In
contrast, example 7.2 shows a connection vector which characterizes a “nor-
mal” access to a HTTP server. The complete KDD dataset contains 3925650
abnormal (80, 14%) and 972780 normal (19, 86%) connection vectors and has
a total size of ca. 700 mb. The abnormal samples are partitioned in four
categories :

• DOS (≈ 98, 92 %) : denial-of-service, e.g. syn flood.

• R2L (≈ 0, 0286 %) : unauthorized access from a remote machine, e.g.
guessing password.

• U2R (≈ 0, 0013 %) : unauthorized access to local superuser (root) priv-
ileges, e.g., various “buffer overflow” attacks.

• probing (≈ 1, 05 %) : surveillance and other probing, e.g., port scan-
ning.

Due to the high runtime complexity of the Parzen-Window method and the
real-valued positive selection, our experiments were performed on a reduced
dataset. More precisely, we randomly created 20 subsets S1, . . . , S20 from the
complete KDD dataset. Each subset Si contains randomly determined 1 %
of normal and 1 % of anomalous data from the whole KDD dataset. There
are 39256 anomalous and 9727 normal connection vectors in each subset.
Furthermore, each discriminative symbolic string is mapped onto a natural
number, i.e. icmp → 0, tcp → 1, udp → 2, and so on. The dataset is then
normalized in the unitary hypercube [0, 1]41 using the min-max normaliza-
tion.

Each classification method is trained from subset Si with normal samples
only. The test run is performed on the whole subset Si (normal and anoma-
lous samples). After performing all 20 classification runs for each subset
S1, . . . , S20, the mean detection rate, mean false alarm rate and the standard
deviations were recorded and are presented in table 7.15.

As the real-valued negative selection is the only method which has a
random behavior3 each run of the algorithm was repeated 20 times for each
subset Si.

The parameters for the real-valued negative selection were chosen as out-
lined in [45] (MSC = 99.99 %, Tmax = 1000, c0 = 99 %). Initial experiments
with real-valued negative selection were performed with self-radius rs = 0.1
and rs = 0.05. For this radius, the algorithm produces very poor classi-
fication results. Therefore, several “empirical radius searching” runs were

3generates detectors randomly

7.6. Results 103

performed to find an effective self-radius. The radius lengths shown in ta-
ble 7.15 resulted in the best classification performance. These radius lengths
are also used for the positive selection algorithm. For the one-class SVM
we used the RBF kernel (k2), as it shows a robust and high overall classi-
fication accuracy in the Iris-Fisher and Biomedical data sets experiments.
For the Parzen-Window Estimator we used the proposed variance parameter
σ = 0.01 [90].

7.6 Results

Table 7.15: Classification Results for KDD dataset

Algorithm Detection False Alarm # Detectors or
Rate Rate # Support Vectors

Mean SD Mean SD Mean SD
V-Detectorrs=0.000005 2.66 8.35 0.00 0.00 1.37 0.52
V-Detectorrs=0.00001 2.40 7.12 0.00 0.00 1.36 0.51
V-Detectorrs=0.00005 1.75 6.05 0.00 0.00 1.39 0.56
V-Detectorrs=0.0001 1.58 5.73 0.00 0.00 1.33 0.50
V-Detectorrs=0.05 1.21 4.59 0.00 0.00 1.48 0.59
V-Detectorrs=0.1 0.65 3.46 0.00 0.00 1.59 0.67

Self-Detectorrs=0.000005 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.00001 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.00005 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.0001 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.05 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.1 99.99 0.02 0.00 0.00 9727 0
ocSVMk2,ν=0.005 99.78 0.03 0.05 0.02 55.70 1.56
ocSVMk2,ν=0.01 99.82 0.02 0.99 0.02 103.40 1.50
ocSVMk2,ν=0.05 99.87 0.02 4.95 0.03 491.15 1.27

Parzen-Windowpu=0.005,σ=0.01 99.93 0.02 0.00 0.00 — —
Parzen-Windowpu=0.01,σ=0.01 99.93 0.02 0.00 0.00 — —
Parzen-Windowpu=0.05,σ=0.01 99.93 0.02 0.00 0.00 — —

In table 7.15 one can see that real-valued positive selection (Self-Detector)
method yields the highest detection rate and the lowest false alarm rate. A
benefit of this method is that no training phase is required, and a nearly zero
standard deviation of the detection rate for each threshold rs is achieved.
However, this method is computationally very expensive, due to the fact

104 Chapter 7. Classification Results and Comparative Study

that the Euclidean distance is calculated from a sample to each self-element.
The Parzen-Window method yields likewise, a high detection rate and a low
false alarm rate. This method also requires no training phase and has a
very low standard deviation of the detection rate. However, this method is
computationally expensive4, because each training sample has to calculate
the class conditionally probability for a test sample. The one-class SVM
achieves similar high detection rates and low false alarm rates. Through
the application of the default radial basis kernel, the test data is nearly op-
timally separable in high-dimensional feature space. This is shown by the
fraction of outliers compared to the false alarm rate. For ν = 5% outliers,
the false alarm rate is nearly 5%. For ν = 0.5% outliers, the false alarm rate
is 0.5%. The main advantage of the one-class SVM, in comparison with the
Parzen-Window method, is the low computational complexity to classify new
elements. The one-class SVM considers only a subset of the training samples
— the support vectors — to classify new elements. Results reveal that the
real-valued negative selection with variable-sized detectors is not competitive
to the statistical techniques and to the real-valued positive selection for this
high-dimensional classification problem. It has a very low detection rate and
a very high standard deviation — the standard deviation is far higher than
the mean, and therefore vary a great deal in the classification performance.
Though the V-Detector parameter c0 is 99 %, the estimated coverage method
(see line 11) seems problematic in high-dimensional spaces. In the experi-
ments performed, the algorithm terminates due to the estimated coverage
with approximately 1.4 generated detectors. This phenomenon can be ex-
plained with the unprecise hyperspheres volume estimation in combination
with “undesirable” properties of hyperspheres as recognition units. In the
follwing chapter these “undesirable” properties are presented.

7.7 Summary

For the low-dimensional data sets the real-valued positive and real-valued
negative selection produced better classification results (high detection rate,
low false alarm rate) than the statistical techniques. The Parzen-Window Es-
timator technique produced the overall poorest results for the low-dimensional
data set. The one-class SVM produced slightly better classification results
than the Parzen-Window Estimator, however the results vary a great deal
with different kernels. The RBF kernel produced the overall best results
compared with the other kernels. For the high-dimensional data set the
statistical techniques and the real-valued positive selection produced high

4exponential operation and several arithmetic operations

7.7. Summary 105

detection rates and low false alarm rates. However, the real-valued positive
selection and the Parzen-Window Estimator have limited applicability due
to the high runtime complexity to classify an element. The one-class SVM
overcomes this complexity problems by means of estimating the quantiles of
the probability distribution, i.e. its support. The one-class SVM performs
very well on the high-dimensional data set. The real-valued negative selection
produced very poor results (extreme low detection rates).

106 Chapter 7. Classification Results and Comparative Study

Chapter 8

Limitation of Real-Valued
Negative Selection in Higher
Dimensions

In this chapter, we explore the poor classification results produced by the
real-valued negative selection on the high-dimensional data set. Therefore
properties of hyperspheres in high dimensions are studied. Unfortunately
hyperspheres lose their familiar properties in high dimensional spaces and
evolve from the pattern classification point of view adverse and undesirable
properties.

8.1 Volume of Hyperspheres

The volume of a n-dimensional hypersphere with radius r can be calculated
as follows :

V (n, r) = rn · πn/2

Γ
(

n
2

+ 1
)

where

Γ(n + 1) = n! for n ∈ N and

Γ(n + 1
2
) =

1 · 3 · 5 · 7 · . . . · (2n− 1)

2n

√
π for half-integer arguments.

We briefly show the construction idea1 behind the the volume calculation
of hyperspheres. For an in-depth description see [49], where the complete
construction and a proof is shown.

1taken from [49]

107

108
Chapter 8. Limitation of Real-Valued Negative Selection in

Higher Dimensions

�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������

x1

x2

x2

dx2

1

√
1−x2

2

Figure 8.1: Unit circle dissected in infinite stripes (taken from [49])

The volume V (n) of a n-dimensional unit sphere can be constructed induc-
tively

V (2) = π

V (3) =
4

3
π

...

V (n) =






πn/2

(n/2)!
, n even

2nπ(n−1)/2 ((n− 1)/2)!
n!

, n odd

Given a 2-dimensional unit circle

C2 = {(x1, x2) ∈ R
2 | x2

1 + x2
2 ≤ 1}

The volume V (C2) can be calculated as a summation of infinite area stripes
(see Fig. 8.1)

V (C2) = 2 ·
∫ 1

−1

√
1− x2

2 dx2

= 2 ·
∫ π

0

√
1− cos2(t) sin(t) dt

8.2. Curse of Dimensionality 109

= 2 ·
∫ π

0

sin2(t) dt

=

∫ π

0

dt = π

V (C2)→ V (C3)

V (C3) =

∫ 1

−1

π

(√
1− x2

3

)2

dx3

= π

∫ 1

−1

(1− x2
3) dx3

=
4

3
π

...

V (Cn−1)→ V (Cn)

V (Cn) = V (Cn−1) ·
∫ 1

−1

(1− x2
n)(n−1)/2 dxn

=
πn/2

Γ(n
2

+ 1)

Proposition 8.1. The volume of a n-dimensional hypersphere with radius r
is

V (n, r) = rn · πn/2

Γ
(

n
2

+ 1
) (8.1)

Proof. see [49]

8.2 Curse of Dimensionality

The phenomenon “curse of dimensionality” was first mentioned by Bell-
man [6] during his study of optimizing a function of a few dozen variables
in an exhaustive search space. For example, given a function defined on an
unitary hypercube of dimension n, in each dimension 10 discrete points are
considered for evaluating the function. In dimension n = 2, this results in 100
evaluations, whereas in dimension n = 10, 1010 function evaluations are re-
quired. In general, an exponential number of (1/ǫ)n function evaluations are

110
Chapter 8. Limitation of Real-Valued Negative Selection in

Higher Dimensions

required to obtain an optimization error of ǫ and therefore is computationally
infeasible, even for moderate n.

This simple example shows how problems like function optimization which
are computational feasible in lower dimensions, transform to computationally
infeasible problems in higher dimensions. A similar phenomenon (but not
from the perspective of computational complexity) undergoes hyperspheres
in high-dimensional spaces, where they lose their familiar properties. In
high-dimensional shape-spaces R

n, i.e. n > 3, hyperspheres have undesirable
properties. These properties (the following corollaries) can be derived from
proposition 8.1.

Corollary 8.1. The volume of hyperspheres converges to 0 for n→∞.

lim
n→∞

V (n, r) = 0

Proof.

lim
n→∞




rn · πn/2

Γ
(n

2
+ 1
)

︸ ︷︷ ︸
≈
√

2πe−n nn+ 1
2




= 1√

2π
limn→∞



 (

c︷ ︸︸ ︷
r e
√

π)n

nn+1
2



 = 1√
2π

limn→∞

(
cn

nn+1
2

)
= 0

Corollary 8.2. The fraction of the volume which lies at values between r− ǫ
and r, where 0 < ǫ < r is

Vfraction(n, r, ǫ) = 1−
(
1− ǫ

r

)n

Proof.

1− V (n, r − ǫ)

V (n, r)
= 1−





(r−ǫ)n·πn/2

Γ(n
2
+1)

rn·πn/2

Γ(n
2
+1)



 = 1−
(
1− ǫ

r

)n

Corollary 8.1 implies that the higher the dimension the smaller the volume
of a hypersphere for fixed radii. This property is investigated in more detail,
in the following section 8.3.

8.3. Volume Extrema 111

Corollary 8.2 reveals that in high-dimensional spaces, points which are
uniformly randomly distributed inside the hypersphere, are almost concen-
trated in a thin shell close to the surface or, in other words, at very high
dimensions the entire volume of a sphere is concentrated immediately below
the surface.

Example 8.1. Given a hypersphere with radius r = 1, ǫ = 0.1 and n = 50
and k points which are uniformly randomly distributed inside the hypersphere.

Approximately 1−
(
1− 0.1

1

)50 ≈ 99, 5 % of the k points lie within the thin ǫ-
shell close to the surface.

8.3 Volume Extrema

By keeping the radius fixed and differentiating the volume V (n, r) with re-
spect to n, one obtains the dimension2 where the volume is maximal :

∂

∂n

(
rn · πn/2

Γ
(

n
2

+ 1
)
)

=
rn ln (r)πn/2

Γ
(

n
2

+ 1
) +

rnπn/2 ln (π)

2 Γ
(

n
2

+ 1
) − rnπn/2 Ψ

(
n
2

+ 1
)

2 Γ
(

n
2

+ 1
) (8.2)

where Ψ(n) =
∂

∂n
ln Γ(n)

Vice versa, keeping the dimension fixed and differentiate term (8.1) with
respect to r, it is not solvable in roots, i.e. no extrema exists :

∂

∂r

(
rn · πn/2

Γ
(

n
2

+ 1
)
)

=
rn n πn/2

r Γ
(

n
2

+ 1
) (8.3)

For instance, a hypersphere with radius r = 1 reaches its maximum volume
in dimension 5 and loses volume in lower and higher dimensions. In figure 8.2
this fact is visualized for different radius lengths r = {0.9, 1.0, 1.1, 1.2}. One
can see, that for each plotted radius the associated hypersphere reaches a
maximal volume in a certain dimension and loses volume asymptotically in
higher and lower dimensions.

2The dimension is obviously a nonnegative integer, however we consider term 8.2 ana-
lytically as a real-valued function

112
Chapter 8. Limitation of Real-Valued Negative Selection in

Higher Dimensions

8

15

16

4

x

0
20 2550 10

12

dimension

vo
lu

m
e

r = 0.9

r = 1.1

r = 1.2

r = 1.0

Figure 8.2: Hypersphere volume plot for radius lengths r = {0.9, 1.0, 1.1, 1.2}
and dimension n = 0, . . . , 25. Obviously, n is a nonnegative integer, but the
graph is drawn treating n as continuously varying.

In table 8.1 the dimension where a hypersphere reaches its maximum
volume for different radius lengths is presented. For radius lengths r = 0.05
and r = 0.1, surprisingly the maximum volume lies in negative real-valued
numbers. Hence, a volume maximization for such small radius lengths is not
feasible, as the dimension is a nonnegative integer.

Table 8.1: Dimension where a hypersphere reaches the maximum volume
for radius lengths r = {0.05, 0.1, 0.2, . . . , 1.0}. Obviously, n is a nonnega-
tive integer, however the results are obtained by a real-valued function and
transformed to integer values with the floor function.

Radius r 0.05 0.1 0.2 0.3 0.4
Dimension ⌊n⌋ -9.17 ·107 -88.94 1.59 1.12 1.0

Radius r 0.5 0.6 0.7 0.8 0.9 1.0
Dimension ⌊n⌋ 1.03 1.20 1.53 2.14 3.23 5.27

8.4 Results and Observations

The results and observations presented in sections 8.1, 8.2 and 8.3 indi-
cate that high-dimensional real-valued shape-spaces strongly bias the volume
(recognition space) of hyperspheres. A hypersphere, for example with radius
r = 1 has a high volume in relation to its radius length, up to dimension

8.5. Empty Space Phenomenon 113

15 (see Fig. 8.2). In higher dimensions (n > 15), for r = 1 the volume
is nearly 0. This means that the recognition space — or in the context of
real-valued negative selection the covered space — is nearly 0. In contrast, a
radius that is too large (r > 2) in high dimensional spaces (n > 10) implies
an exponential volume. This exponential volume behavior, in combination
with an unprecise volume estimation of overlapping hyperspheres, is the rea-
son for the poor classification results shown in section 7.6. This is discussed
in the next section.

8.5 Empty Space Phenomenon

Investigating the 41-dimensional KDD Cup data set, one can statistically
verify, that the whole normalized non-anomalous class is concentrated at one
place inside the unitary hypercube U = [0, 1]41. In [84], this characteristic is
called “empty space phenomenon” and arises in any data set that does not
grow exponentially with the dimension of the space. This phenomenon also
occurs in our experiments performed with the real-valued negative selection.
In table 7.15 it can be seen, that the real-valued negative selection algorithm
terminated when (on average) 1.4 detectors were generated. By generating
only one detector (hypersphere) with, for example, a radius r = 3 and a
detector center not necessarily lying inside U , the volume of that hypersphere
amounts to 5.11 ·1010. The unitary hypercube U = [0, 1]41 has a total volume
of 1, however most of the volume of a hypercube is concentrated in the large
corners, which themselves become very long “spikes” [8]. This can be verified
by comparing the ratio (see term 8.4) of the distance

√
n from the center of

the hypercube to one of the edges to the perpendicular distance a/2 to one
of the edges (see Fig. 8.3).

(
∑n

i=1(a/2)2)
1

2

a/2
=
√

n where n is the dimension (8.4)

For n → ∞, the term (8.4) goes to ∞ and therefore the volume is concen-
trated in very long “spikes” of U .

As a consequence, the hypersphere covers only those (high-volume) spikes
which are lying within the Vfraction proportion of the hypersphere. Hence, the
real-valued negative selection algorithm terminates with only a very small
number of large radii detectors (hyperspheres) which are covering a lim-
ited number of spikes. As a result a large proportion of the volume of the
hypercube is not lying within the hyperspheres — it lies in the remaining
(high-volume) spikes, though the hypersphere volume is far higher than the
hypercube volume.

114
Chapter 8. Limitation of Real-Valued Negative Selection in

Higher Dimensions

a

√
n

a
2

Figure 8.3: Distance ratio
√

n
a/2

between a line from center to a corner and a
perpendicular line from center to an edge

The real-valued negative selection is a technique which is not well suit-
able for high-dimensional data sets, because it makes more sense to for-
mulate a classification model with regard to the given training elements,
instead of complementary space. The complementary (anomalous) space is
exponentially large when compared to the “normal” space in high dimen-
sions. The real-valued negative selection technique, attempts to cover this
high-dimensional space with hyperspheres, but as we have shown, these have
adverse properties in such high-dimensional spaces.

8.6 Summary

In this chapter, we have shown that hyperspheres have undesirable properties
in high dimensions — the volume tends to zero by keeping the radius fixed,
and nearly all uniformly randomly distributed points are close to the hyper-
sphere surface. We have presented these hypersphere properties and have
given an explanation for poor classification results reported in section 7.6.
Moreover, we have now explained the limitations of the real-valued nega-
tive selection for high-dimensional classification problems. The hypersphere
properties we have discussed are valid observations for all high-dimensional
classification problems where hyperspheres are applied as recognition regions
and as a result, these adverse hypersphere properties bias all (artificial im-
mune system) algorithms, which use hyperspheres as recognition units.

Chapter 9

Conclusions

The immune system is a complex system which protects the body against
intruders like viruses, fungi, parasites and bacteria. By reading this sentence
is seems to be obvious to develop an intrusion detection system which is
inspired by the outstanding adaptive detection principles of an immune sys-
tem. However, as mentioned by Vapnik [83], this is not necessarily the best
way for creating an artificial learning machine (or in our context an intrusion
detection system).

In this thesis, we have investigated the negative selection, as an immune
inspired paradigm when applied for anomaly detection and (network) intru-
sion detection problems. Roughly speaking, in the natural immune system
the negative selection is a process which eliminates self-reactive lymphocytes
and ensures that only those lymphocytes enter the blood stream which do not
recognize self proteins. These lymphocytes recognize almost all non-self pro-
teins which do not belong to the body. This principle was first abstracted and
algorithmically formulated by Forrest et al. [31] for detecting data manipula-
tions caused by computer viruses. The basic idea was to generate a number of
detectors (lymphocytes) in the complementary space1 and then to apply these
detectors to classify new (unseen) data as self (no data manipulation) or non-
self (data manipulation). In following works, different algorithms for gener-
ating detectors were proposed [17, 88, 2, 71] and the scope of the negative
selection was extended to general anomaly detection [14, 34, 35, 44, 45, 33]
and (network) intrusion detection problems [1, 40, 34, 5, 69, 89]. However,
in several works [46, 20, 32] different problems in negative selection were
mentioned, but not closer investigated from the perspective of a pattern
classification problem. This investigation was done in this thesis.

We have described the immunological principles of negative selection and

1space which contains no seen self elements

115

116 Chapter 9. Conclusions

positive selection. Furthermore, it is described how the immune system is
able to recognize a nearly unlimited number of antigens with a limited num-
ber of antibodies. For developing immune-inspired algorithms, a proper rep-
resentation of the immune elements and an abstraction of the immune prin-
ciples must be formulated. Work in theoretical immunology has proposed
different immune elements representations and affinity metrics and provided
much of the foundations for the development of artificial immune systems.
In artificial immune systems, a framework is commonly used, as it guides in
a 3-step formalization to a solution for a given problem.

We have described this 3-step formalization and have presented two shape-
spaces (Hamming and real-valued) and different affinity metrics for the neg-
ative selection. In our first exploration the Hamming negative selection with
the associated r-chunk matching rule was investigated with respect to the
number of generable detectors and the number of resulting holes (unde-
tectable elements). These undetectable elements are required to generalize
beyond the training set. In our second exploration, the generalization regions
in Hamming negative selection were empirically investigated and the com-
plexity of several detector generating algorithms were reported. Results and
observations from this explorations were summarized and discussed in the
context of the appropriateness as a network intrusion detection technique.
To summarize, statements and hypothesis reported in [46, 32] are supported
and verified. The Hamming negative selection seems to be a very appeal-
ing approach for detecting manipulations in data, however the complexity to
generate and to store a sufficient number of detectors is infeasibly high when
applied to real-world (network) intrusion detection problems. This complex-
ity problem can be reduced by making the detectors more generic, however
this induces an infeasible number of holes. Generic detectors induce holes
in regions, where no self elements are concentrated, and this consequently
results in a misclassification of unseen elements.

Another explored variant of the negative selection, is the real-valued neg-
ative selection. The real-valued negative selection is applied for (real-valued)
anomaly detection problems. Detectors (lymphocytes) are represented as
hyperspheres with a center and a radius. In the detector generation phase,
the complementary space is filled with hyperspheres. A new (unseen) ele-
ment is classified as an anomaly, when it lies within the hyperspheres, oth-
erwise it is a non-anomalous element. For comparative studies, a new non-
complementary approach called real-valued positive selection was proposed.
In the real-valued positive selection each seen self element is a detection
hypersphere (called Self-Detector). A new (unseen) element is classified as
a non-anomalous element, when it lies within the (self-)hyperspheres, oth-
erwise it is an anomaly. For comparative studies well established statistical

117

anomaly detection techniques — Parzen-Window and one class SVM — were
presented. The classification performance was evaluated by means of ROC
analysis for a low-dimensional anomaly detection problem and for a high-
dimensional anomaly detection problem. The comparative studies revealed,
that the real-valued positive selection produced high detection rates and low
false alarm rates for the low- and high-dimensional data sets. However, it was
limited applicable for a large number of self elements, as in the worst case the
distance to each (self-)hypersphere must be calculated. The Parzen-Window
technique produced the poorest (low detection rates and high false alarm
rates) classification results for the low-dimensional data sets, but performed
well on the high-dimensional data set. However, the Parzen-Window tech-
nique is likewise, computationally expensive, because each self element has to
calculate the class conditionally probability for an unseen test element. The
one-class SVM produced slightly worse results for the low-dimensional data
sets when compared with the real-valued positive selection. However, these
results vary a great deal for all tested kernels. The RBF kernel produced the
overall best results compared with the other tested kernels. For the high-
dimensional data set, the one-class SVM performs very well. The runtime
complexity for classifying an unseen test element is low compared with the
Parzen-Window and real-valued positive selection, as it considers only a sub-
set of the self elements (the support vectors). The detection and false alarm
rate is similar to the Parzen-Window and the real-valued positive selection.
The real-valued negative selection produced slighty worse classification re-
sults than the real-valued positive selection for the low-dimensional data sets.
However, on the high-dimensional data set the real-valued negative selection
performed extremely poor compared with the other benchmarked anomaly
detection techniques. This poor classification results on the high-dimensional
data set were explained and discussed in the last part of this thesis. To sum-
marize, hyperspheres have undesirable properties in high dimensions — the
volume tends to zero by keeping the radius fixed, and the entire volume of a
hypersphere is concentrated immediately below the surface. This properties
induce general fundamental limitations of the real-valued negative selection
for high-dimensional anomaly detection problems. We finish this thesis with
the following insights : the negative selection is a very intuitive and attractive
immune inspired principle, but it is not appropriate and not applicable for
real-world anomaly detection and (network) intrusion detection problems.

118 Chapter 9. Conclusions

9.1 Future Work

From the point of view of the author, the negative selection was thoroughly
explored and has no potential for becoming a robust and useful intrusion
detection and anomaly detection technique. We therefore believe that future
work in this direction is not meaningful. Of course, for some toy problems
the negative selection reveals an average classification performance, however
the negative selection is surely not a computational efficient and robust tech-
nique. A computational efficient technique must be able to handle real-world
problems. A robust technique is one, which is applicable on a manifold prob-
lem domain and produces good, (statistical) stable, competitive and sound
results.

We believe that intrusion detection and anomaly detection problems could
be better solved with statistical approaches for instance with the one-class
SVM [65] or the minium enclosing hypersphere [81] approach, rather than
with negative selection. These statistical techniques are computational effi-
cient [67], robust [67] and additionally are anchored in a statistical learning
framework [13, 9]. This implies that statistical techniques not only allow
good and competitive classification results, but also sound theoretical re-
sults. Citing again Vladimir Vapnik : “Nothing is more practical than a
good theory.”, we believe that computational efficient and robust techniques
for intrusion detection and anomaly detection problems are rich available in
the field of statistical learning and therefore future work should point in this
direction.

9.2 Epilogue

The author would like to emphasize here as a final statement, that this neg-
ative results obtained, of course are only related to the investigated negative
selection. In the field of artificial immune systems exists a lot of immune-
inspired algorithms and techniques which have a great potential in their
application areas. Artificial immune systems are a young and exciting re-
search field and the author is convinced that immune-inspired algorithms
and techniques will become well established problem solving methods in the
near future, as for instance genetic algorithms and genetic programming ap-
proaches.

Appendix A

Appendix

A.1 Figures of Generalization Regions Exper-

iment

119

120 Chapter A. Appendix

(a) r = 2 (b) r = 3 (c) r = 4

(d) r = 5 (e) r = 6 (f) r = 7

(g) r = 8 (h) r = 9 (i) r = 10

(j) r = 11 (k) r = 12 (l) r = 13

Figure A.1: 1000 random (self) points distributed inside a sphere with center
(0.5, 0.5) and radius 0.1. The grey shaded area is covered by the generated r-
chunk detectors, the white area are holes. The black points are self elements.

A.1. Figures of Generalization Regions Experiment 121

(a) r = 2 (b) r = 3 (c) r = 4

(d) r = 5 (e) r = 6 (f) r = 7

(g) r = 8 (h) r = 9 (i) r = 10

(j) r = 11 (k) r = 12 (l) r = 13

Figure A.2: 1000 random (self) points distributed inside an ellipse with center
(0.5, 0.5), height 0.4 and width 0.2. The grey shaded area is covered by the
generated r-chunk detectors, the white area are holes. The black points are
self elements.

122 Chapter A. Appendix

(a) r = 2 (b) r = 3 (c) r = 4

(d) r = 5 (e) r = 6 (f) r = 7

(g) r = 8 (h) r = 9 (i) r = 10

(j) r = 11 (k) r = 12 (l) r = 13

Figure A.3: 1000 random (self) points distributed inside two rectangles with
x, y coordinates (0.4, 0.25), height 0.2, width 0.5 and coordinates (0.25, 0.4),
height 0.5, width 0.2. The grey shaded area is covered by the generated r-
chunk detectors, the white area are holes. The black points are self elements.

A.1. Figures of Generalization Regions Experiment 123

(a) r = 2 (b) r = 3 (c) r = 4

(d) r = 5 (e) r = 6 (f) r = 7

(g) r = 8 (h) r = 9 (i) r = 10

(j) r = 11 (k) r = 12 (l) r = 13

Figure A.4: 1000 random (self) points generated by a Gaussian distribution
with mean µ = 0.5 and variance σ = 0.1. The grey shaded area is covered by
the generated r-chunk detectors, the white area are holes. The black points
are self elements.

124 Chapter A. Appendix

A.2 Figures of Entropy Experiment

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14 16

H
(X

)/
r

r-chunk length

(a) Entropy ratio of circle self set

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14 16

H
(X

)/
r

r-chunk length

(b) Entropy ratio of ellipse self set

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14 16

H
(X

)/
r

r-chunk length

(c) Entropy ratio of rectangle self set

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14 16

H
(X

)/
r

r-chunk length

(d) Entropy ratio of Gaussian self set

Figure A.5: Coherence between entropy ratio H(X)/r of self set S and r-
chunk lengths r = {2, 3, . . . , 15}

A.3 Figures of Permutation Masks Experi-

ment

A.3. Figures of Permutation Masks Experiment 125

(a) r = 2 (b) r = 2, π (c) r = 3 (d) r = 3, π

(e) r = 4 (f) r = 4, π (g) r = 5 (h) r = 5, π

(i) r = 6 (j) r = 6, π (k) r = 7 (l) r = 7, π

(m) r = 8 (n) r = 8, π (o) r = 9 (p) r = 9, π

(q) r = 10 (r) r = 10, π (s) r = 11 (t) r = 11, π

Figure A.6: A visualized simulation run, with 1000 random (self) points
generated by a Gaussian distribution with mean µ = 0.5 and variance σ =
0.1. The grey shaded area is covered by the generated r-chunk detectors,
the white areas are holes. The black points are self elements. The captions
which include a “π” are simulations results with the randomly determined
permutation mask π ∈ S16.

126 Chapter A. Appendix

(a) r = 2 (b) r = 2, π (c) r = 3 (d) r = 3, π

(e) r = 4 (f) r = 4, π (g) r = 5 (h) r = 5, π

(i) r = 6 (j) r = 6, π (k) r = 7 (l) r = 7, π

(m) r = 8 (n) r = 8, π (o) r = 9 (p) r = 9, π

(q) r = 10 (r) r = 10, π (s) r = 11 (t) r = 11, π

Figure A.7: An additional visualized simulation run, with 1000 random (self)
points generated by a Gaussian distribution with mean µ = 0.5 and variance
σ = 0.1. The grey shaded area is covered by the generated r-chunk detectors,
the white areas are holes. The black points are self elements. The captions
which include a “π” are simulations results with the randomly determined
permutation mask π ∈ S16.

A.3. Figures of Permutation Masks Experiment 127

(a) r = 2 (b) r = 2, π (c) r = 3 (d) r = 3, π

(e) r = 4 (f) r = 4, π (g) r = 5 (h) r = 5, π

(i) r = 6 (j) r = 6, π (k) r = 7 (l) r = 7, π

(m) r = 8 (n) r = 8, π (o) r = 9 (p) r = 9, π

(q) r = 10 (r) r = 10, π (s) r = 11 (t) r = 11, π

Figure A.8: A visualized simulation run, 1000 randomly sampled (self) points
from banana data set. The grey shaded area is covered by the generated r-
chunk detectors, the white areas are holes. The black points are self elements.
The captions which include a “π” are simulations results with the randomly
determined permutation mask π ∈ S16.

128 Chapter A. Appendix

(a) r = 2 (b) r = 2, π (c) r = 3 (d) r = 3, π

(e) r = 4 (f) r = 4, π (g) r = 5 (h) r = 5, π

(i) r = 6 (j) r = 6, π (k) r = 7 (l) r = 7, π

(m) r = 8 (n) r = 8, π (o) r = 9 (p) r = 9, π

(q) r = 10 (r) r = 10, π (s) r = 11 (t) r = 11, π

Figure A.9: An additional visualized simulation run, with 1000 randomly
sampled (self) points from banana data set. The grey shaded area is covered
by the generated r-chunk detectors, the white areas are holes. The black
points are self elements. The captions which include a “π” are simulations
results with the randomly determined permutation mask π ∈ S16.

A.4. Monte Carlo Integration 129

A.4 Monte Carlo Integration

Monte Carlo Integration is a method to integrate a function over a compli-
cated domain, where analytical expressions are very difficult to be applied
– e.g. the calculation of the volume of overlapping hyperspheres in higher
dimensions. Given integrals of the form I =

∫
X h(x)f(x)dx, where h(x) and

f(x) are functions for which h(x)f(x) is integrable over the space X , and
f(x) is a non-negative valued, integrable function satisfying

∫
X f(x)dx = 1.

The Monte Carlo integration picks N random points x1,x2, . . . ,xN , over X
and approximates the integral as

I ≈ 1

N

N∑

n=1

h(xn) (A.1)

The absolute error of this method is independent of the dimension of the
space X and decreases as 1/

√
N [30]. By applying this integration method,

two fundamental questions arises :

• How many observations should one collect to ensure a specified statis-
tical accuracy ?

• Given N observations from a Monte Carlo Experiment, how accurate
is the estimated solution ?

Both question are answered and discussed in [30]. Using the Chebyshev’s
inequality and specifying a confidence level 1 − δ, one can determine the
smallest sample size N that guarantees an integration error no larger than ǫ.
In [30] this specification is called the (ǫ, δ) absolute error criterion and leads
to the worst-case sample size

N := ⌈1/4δǫ2⌉ (A.2)

Term A.2 shows that there is always a tradeoff between the accuracy of
the solution and the sample size. In the following section this tradeoff is
demonstrated on a Monte Carlo algorithm.

A.5 Monte Carlo Hyperspheres Volume In-

tegration

Using equations (A.1) and (A.2) a straightforward algorithm can be devel-
oped which estimates the total space (volume) covered by the hyperspheres

130 Chapter A. Appendix

inside the unitary hypercube [0, 1]n. It can be seen, that the accuracy of
the integrated space depends on the absolute error of the estimated volume
and the confidence level. A higher confidence level δ or a smaller absolute
error ǫ bias the required sample size and therefore the algorithm runtime
complexity.

Algorithm 6: Monte Carlo Hyperspheres Volume Integration

input : H = set of hyperspheres, ǫ = absolute error of the estimated
volume, δ = confidence level

output: total volume of H
begin1

inside←− 02

// calculate required worst-case

// sample size N
N ←− ⌈1/4δǫ2⌉3

for i← 1 to N do4

x←− random point from [0, 1]n5

foreach h ∈ H do6

if dist(ch,x) ≤ rh then7

inside←− inside + 18

goto 5:9

return (inside/N)10

end11

Bibliography

[1] Uwe Aickelin, Julie Greensmith, and Jamie Twycross. Immune sys-
tem approaches to intrusion detection – a review. In Proceedings of the
3nd International Conference on Artificial Immune Systems (ICARIS),
volume 3239 of Lecture Notes in Computer Science, pages 316–329.
Springer-Verlag, 2004.

[2] Modupe Ayara, Jonathan Timmis, Rogerio de Lemos, Leandro N.
de Castro, and Ross Duncan. Negative selection: How to generate
detectors. In Proceedings of the 1nd International Conference on Ar-
tificial Immune Systems (ICARIS), pages 89–98. University of Kent at
Canterbury Printing Unit, 2002.

[3] Rebecca Bace and Peter Mell. Intrusion Detection Systems.
National Institute of Standards and Technology (NIST), 2001.
http://csrc.nist.gov/publications/nistpubs/800-31/sp800-31.pdf.

[4] Justin Balthrop, Fernando Esponda, Stephanie Forrest, and Matthew
Glickman. Coverage and generalization in an artificial immune system.
In GECCO 2002: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pages 3–10, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

[5] Justin Balthrop, Stephanie Forrest, and Matthew Glickman. Revisiting
lisys: Parameters and normal behavior. In Congress On Evolutionary
Computation – CEC 2002, pages 1045–1050. IEEE Press, 2002.

[6] Richard Bellman. Adaptive Control Processes: A Guided Tour. Prince-
ton University Press, 1961.

[7] Christopher M. Bishop. Novelty detection and neural network valida-
tion. In IEE Proceedings: Vision, Image and Signal Processing, volume
141, pages 217–222, 1994.

131

132 BIBLIOGRAPHY

[8] Christopher M. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press, 1995.

[9] Olivier Bousquet and Stéphane Boucheron Gábor Lugosi. Introduction
to Statistical Learning Theory, volume 3176 of Lecture Notes in Artificial
Intelligence, pages 169–207. Springer-Verlag, 2004.

[10] Tobias Brueggemann and Walter Kern. An improved deterministic lo-
cal search algorithm for 3-SAT. Theoretical Computer Science, 329(1–
3):303–313, 2004.

[11] Chih-Chung Chang and Chih-Jen Lin. LIB-
SVM: a Library for Support Vector Machines
(http://www.csie.ntu.edu.tw/∼cjlin/papers/libsvm.pdf), December
2004.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, second edition, 2002.

[13] Nello Cristianini and John Shawe-Taylor. An Introduction to Support
Vector Machines and other kernel-based learning methods. Cambridge
University Press, 2000.

[14] Dipankar Dasgupta and Stephanie Forrest. Novelty detection in time
series data using ideas from immunology. In Proceedings of the 5th
International Conference on Intelligent Systems, 1996.

[15] Leandro N. de Castro and Jonathan Timmis. Artificial Immune Systems:
A New Computational Intelligence Approach. Springer Verlag, 2002.

[16] Patrick D’haeseleer. An immunological approach to change detection:
theoretical results. In Proceedings of the 9th IEEE Computer Security
Foundations Workshop, pages 18–26. IEEE Computer Society, IEEE
Computer Society Press, 1996.

[17] Patrick D’haeseleer, Stephanie Forrest, and Paul Helman. An immuno-
logical approach to change detection: algorithms, analysis, and impli-
cations. In Proceedings of the 1996 IEEE Symposium on Research in
Security and Privacy, pages 110–119. IEEE Computer Society, IEEE
Computer Society Press, May 1996.

[18] David Dittrich. The stacheldraht distributed denial of service attack
tool, 1999. http://staff.washington.edu/dittrich.

BIBLIOGRAPHY 133

[19] Richard 0. Duda, Peter E. Hart, and David G. Stork. Pattern Classifi-
cation. Wiley-Interscience, second edition, 2001.

[20] Marc Ebner, Hans-Georg Breunig, and Jürgen Albert. On the use of
negative selection in an artificial immune system. In GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference,
pages 957–964. Morgan Kaufmann Publishers, 2002.

[21] Claudia Eckert. IT-Sicherheit, Konzepte-Verfahren-Protokolle. Olden-
burg Verlag, 3. edition, 2004.

[22] Victor H. Engelhard. How cells process antigens. Scientific American,
pages 54–61, August 1994.

[23] Fernando Esponda. Negative Representations of Information. PhD the-
sis, University of New Mexico, 2005.

[24] Fernando Esponda, Elena S. Ackley, Stephanie Forrest, and Paul Hel-
man. On-line negative databases. In Proceedings of the 3nd Interna-
tional Conference on Artificial Immune Systems (ICARIS), volume 3239
of Lecture Notes in Computer Science, pages 175–188. Springer-Verlag,
2004.

[25] Fernando Esponda, Elena S. Ackley, Stephanie Forrest, and Paul Hel-
man. On-line negative databases (with experimental results). Interna-
tional Journal of Unconventional Computing, 1(3):201–220, 2005.

[26] Fernando Esponda, Stephanie Forrest, and Paul Helman. The crossover
closure and partial match detection. In Proceedings of the 2nd Interna-
tional Conference on Artificial Immune Systems (ICARIS), volume 2787
of Lecture Notes in Computer Science, pages 249–260. Springer-Verlag,
2003.

[27] Fernando Esponda, Stephanie Forrest, and Paul Helman. A formal
framework for positive and negative detection schemes. IEEE Transac-
tions on Systems, Man and Cybernetics Part B: Cybernetics, 34(1):357–
373, 2004.

[28] Tom Fawcett. ROC graphs: Notes and practical considerations for data
mining researchers. Technical Report HPL-2003-4, Hewlett Packard
Laboratories, January 17 2003.

[29] William Feller. An Introduction to Probability Theory and its Applica-
tions, volume 1. John Wiley & Sons, 3. edition, 1968.

134 BIBLIOGRAPHY

[30] George S. Fishman. Monte Carlo Concepts, Algorithms, and Applica-
tions. Springer, 1995.

[31] Stephanie Forrest, Alan S. Perelson, L. Allen, and R. Cherukuri. Self-
nonself discrimination in a computer. In Proceedings of the 1994 IEEE
Symposium on Research in Security and Privacy. IEEE Computer Soci-
ety Press, 1994.

[32] Alex Alves Freitas and Jonathan Timmis. Revisiting the foundations of
artificial immune systems: A problem-oriented perspective. In Proceed-
ings of the 2nd International Conference on Artificial Immune Systems
(ICARIS), volume 2787 of Lecture Notes in Computer Science, pages
229–241. Springer-Verlag, 2003.

[33] Fabio González, Dipankar Dasgupta, and Jonatan Gómez. The effect
of binary matching rules in negative selection. In Genetic and Evolu-
tionary Computation – GECCO-2003, volume 2723 of Lecture Notes in
Computer Science, pages 195–206, Chicago, 12-16 July 2003. Springer-
Verlag.

[34] Fabio González, Dipankar Dasgupta, and Robert Kozma. Combining
negative selection and classification techniques for anomaly detection.
In Congress on Evolutionary Computation, pages 705–710. IEEE, May
2002.

[35] Fabio González, Dipankar Dasgupta, and Luis Fernando Nio. A ran-
domized real-valued negative selection algorithm. In Proceedings of the
2nd International Conference on Artificial Immune Systems (ICARIS),
volume 2787 of Lecture Notes in Computer Science, pages 261–272, Ed-
inburgh, UK, 2003. Springer-Verlag.

[36] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning, Data Mining, Inference and Prediction. Springer,
2001.

[37] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The architecture of
a network level intrusion system. Technical report, Computer Science
Department, University of New Mexico, August 1990.

[38] Hettich, S. and Bay, S. D. KDD Cup 1999 Data, 1999.
http://kdd.ics.uci.edu.

BIBLIOGRAPHY 135

[39] Thomas Hofmeister, Uwe Schöning, Rainer Schuler, and Osamu Watan-
abe. A probabilistic 3-SAT algorithm further improved. In 19th An-
nual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 2285 of Lecture Notes in Computer Science, pages 192–202.
Springer-Verlag, 2002.

[40] Steven Hofmeyr and Stephanie Forrest. Architecture for an artificial
immune system. Evolutionary Computation, 8(4):443–473, 2000.

[41] Steven Andrew Hofmeyr. An Immunological Model of Distributed Detec-
tion and its Application to Computer Security. PhD thesis, University
of New Mexico, 1999.

[42] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen
Lin. A Pratical Guide to Support Vector Classification
(http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf), July
2003.

[43] Charles A. Janeway, Paul Travers, Mark Walport, and Mark Shlomchik.
Immunologie. Spektrum Akademischer Verlag, 5. edition, 2002.

[44] Zhou Ji and Dipankar Dasgupta. Augmented negative selection algo-
rithm with variable-coverage detectors. In Congress on Evolutionary
Computation, pages 1081–1088. IEEE, 2004.

[45] Zhou Ji and Dipankar Dasgupta. Real-valued negative selection al-
gorithm with variable-sized detectors. In Genetic and Evolutionary
Computation – GECCO-2004, Part I, volume 3102 of Lecture Notes in
Computer Science, pages 287–298, Seattle, WA, USA, 26-30 June 2004.
Springer-Verlag.

[46] Jungwon Kim and Peter J. Bentley. An evaluating of negative selec-
tion in an artificial immune system for network intrusion detection. In
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2001, pages 1330–1337, 2001.

[47] Donald E. Knuth. The Art of Computer Programming, volume 1.
Addison-Wesley, third edition, 2002.

[48] Jack Koziol. Intrusion Detection with Snort. Sams, 2003.

[49] Max Leppmeier. Kugelpackungen von Kepler bis heute. Vieweg Verlag,
1997.

136 BIBLIOGRAPHY

[50] David J. C. MacKay. Information Theory, Inference, and Learning Al-
gorithms. Cambridge University Press, 2003.

[51] Stephen Marsland. Novelty detection in learning systems. Neural Com-
puting Surveys, 3, 2003.

[52] Dirk Metzler. Algorithmisches lernen in der bioinfor-
matik, 2004. Lecture Notes (http://www.informatik.uni-
frankfurt.de/∼metzler/VorlesungSS04/).

[53] Michael Mitzenmacher and Eli Upfal. Probability and Computing, Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[54] Klaus Mosegaard and Malcolm Sambridge. Monte Carlo analysis of
inverse problems. Inverse Problems, 18:29–54, 2002.

[55] Biswanath Mukherjee, L. Todd Heberlein, and Karl N. Levitt. Intrusion
detection system. IEEE Network, May/June 1994.

[56] Jerome K. Percus, Ora E. Percus, and Alan S. Perelson. Predicting the
size of the T-cell receptor and antibody combining region from consid-
eration of efficient self-nonself discrimination. Proceedings of National
Academy of Sciences USA, 90:1691–1695, 1993.

[57] A. S. Perelson and G.F. Oster. Theoretical studies of clonal selection:
minimal antibody repertoire size and reliability of self-nonself discrimi-
nation. In J. Theor. Biol., volume 81, pages 645–670, 1979.

[58] A. S. Perelson and G. Weisbuch. Immunology for physicists. Reviews of
Modern Physics, 69(4):1219–1267, 1997.

[59] Martin Torsen Ranang. An artificial immune system approach to pre-
serving security in computer networks. Master’s thesis, Norges Teknisk-
Naturvitenskapelige Universitet, 2002.

[60] Gunnar Rätsch. Benchmark repository, 1998.
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.

[61] Karl Rüdiger Reischuk. Einführung in die Komplexitätstheorie. B.G.
Teubner Stuttgart, 1990.

[62] Stephen Roberts. Extreme value statistics for novelty detection in
biomedical signal processing. IEE Proceedings Science, Technology &
Measurement, 147(6):363–367, 2000.

BIBLIOGRAPHY 137

[63] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the Association for Computing Machinery (JACM),
12(1):23–41, January 1965.

[64] Glenn W. Rowe. Theoretical Models in Biology: The Origin of Life, the
Immune System, and the Brain. Oxford Science Publications, 1997.

[65] Bernhard Schölkopf, John C. Platt, Shawe-Taylor, Shawe-Taylor, Alex J.
Smola, and Robert C. Williamson. Estimating the support of a high-
dimensional distribution. Technical Report MSR-TR-99-87, Microsoft
Research (MSR), November 1999.

[66] Uwe Schöning. A probabilistic algorithm for k-SAT and constraint sat-
isfaction problems. In 40th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 410–414. IEEE Press, 1999.

[67] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

[68] B. W. Silverman. Density Estimation for Statistics and Data Analysis.
Chapman and Hall, 1986.

[69] Shantanu Singh. Anomaly detection using negative selection based on
the r-contiguous matching rule. In Proceedings of the 1st International
Conference on Artificial Immune Systems (ICARIS), pages 99–106. Un-
versity of Kent at Canterbury Printing Unit, 2002.

[70] Timothy K. Starr, Stephen C. Jameson, and Kristin A. Hogquist. Pos-
itive and negative selection of T cells. Annual Review of Immunology,
21:139–176, April 2003.

[71] Thomas Stibor, Kpatcha M. Bayarou, and Claudia Eckert. An investi-
gation of R-chunk detector generation on higher alphabets. In Proceed-
ings of Genetic and Evolutionary Computation Conference – GECCO-
2004, volume 3102 of Lecture Notes in Computer Science, pages 299–307.
Springer-Verlag, 2004.

[72] Thomas Stibor, Philipp H. Mohr, Jonathan Timmis, and Claudia Eck-
ert. Is negative selection appropriate for anomaly detection ? In Proceed-
ings of Genetic and Evolutionary Computation Conference – GECCO-
2005, pages 321–328. ACM Press, 2005.

[73] Thomas Stibor, Jonathan Timmis, and Claudia Eckert. A comparative
study of real-valued negative selection to statistical anomaly detection

138 BIBLIOGRAPHY

techniques. In Proceedings of 4th International Conference on Artificial
Immune Systems, volume 3627 of Lecture Notes in Computer Science,
pages 262–275. Springer-Verlag, 2005.

[74] Thomas Stibor, Jonathan Timmis, and Claudia Eckert. On the ap-
propriateness of negative selection defined over hamming shape-space
as a network intrusion detection system. In Congress On Evolutionary
Computation – CEC 2005, pages 995–1002. IEEE Press, 2005.

[75] Thomas Stibor, Jonathan Timmis, and Claudia Eckert. Artificial im-
mune systems for it-security. it-Information Technology (Systems Biol-
ogy and Information Technology), 48(3):168–173, 2006.

[76] Thomas Stibor, Jonathan Timmis, and Claudia Eckert. Generalization
regions in hamming negative selection. In Intelligent Information Pro-
cessing and Web Mining, Advances in Soft Computing, pages 447–456.
Springer-Verlag, 2006.

[77] Thomas Stibor, Jonathan Timmis, and Claudia Eckert. The link be-
tween r-contiguous detectors and k-cnf satisfiability. In Congress On
Evolutionary Computation – CEC 2006. IEEE Press, 2006 (to appear).
Revised and extended version.

[78] Thomas Stibor, Jonathan Timmis, and Claudia Eckert. On permutation
masks in hamming negative selection. In Proceedings of 5th International
Conference on Artificial Immune Systems, Lecture Notes in Computer
Science. Springer-Verlag, 2006 (to appear).

[79] Thomas Stibor, Jonathan Timmis, and Claudia Eckert. On the use
of hyperspheres in artificial immune systems as antibody recognition
regions. In Proceedings of 5th International Conference on Artificial
Immune Systems, Lecture Notes in Computer Science. Springer-Verlag,
2006 (to appear).

[80] L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady. Novelty detection
for the identification of masses in mammograms. In Proceedings of the
4th IEE International Conference on Artificial Neural Networks, pages
442–447, 1995.

[81] David M. J. Tax. One-class classification. PhD thesis, Technische Uni-
versiteit Delft, 2001.

BIBLIOGRAPHY 139

[82] David M. J. Tax and Robert P. W. Duin. Data domain description using
support vectors. In European Symposium on Artificial Neural Networks
– ESANN, pages 251–256, 1999.

[83] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, second edition, 1999.

[84] Michel Verleysen. Learning high-dimensional data. Limitations and
Future Trends in Neural Computation, 186:141–162, 2003.

[85] Pantelis Vlachos. StatLib. http://lib.stat.cmu.edu.

[86] Emo Welzl. Boolean satisfiability — combi-
natorics and algorithms, 2005. Lecture Notes
(http://www.inf.ethz.ch/∼emo/SmallPieces/SAT.ps).

[87] Slawomir T. Wierzchoń. Discriminative power of the receptors activated
by k-contiguous bits rule. Journal of Computer Science and Technology,
1(3):1–13, 2000.

[88] Slawomir T. Wierzchoń. Generating optimal repertoire of antibody
strings in an artificial immune system. In Intelligent Information Sys-
tems, pages 119–133. Springer Verlag, 2000.

[89] Zejun Wu and Yiwen Liang. Self-regulating method for model library
based artificial immune systems. In Proceedings of 4th International
Conference on Artificial Immune Systems, volume 3627 of Lecture Notes
in Computer Science, pages 353–365. Springer-Verlag, 2005.

[90] Dit-Yan Yeung and Calvin Chow. Parzen-window network intrusion
detectors. In Proceedings of the Sixteenth International Conference on
Pattern Recognition, pages 385–388, 2002.

