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Abstract—We present a model that explains immunological
memory as a consequence of the recursive proliferation of
reactive and suppressive cells, where the relative proportion of
these cells will set a probability for the emergence of a response
(inflammation). We show that the underlying principle of the
proposed model is a special case of Pólya’s urn process. This
insight reveals and explains the emergent functionality of the
model. Additionally, experiments and simulations are performed
to validate the obtained insight of the model.

I. INTRODUCTION

The observation that the occurrence, intensity and quality

of immune responses are influenced by previous events and

responses is perceived as immunological memory, a property

leading to the consideration of the “Immune System” as ca-

pable of cognition [1]. Although this ability to recall previous

responses was known even before the concept of Immune

System was coined [2], it is less clear how this memory is

acquired, recalled or modified.

Classical explanations from Template Theory to Clonal

Selection are based on pattern recognition, which classifies

antigens as Self or Non-Self [3]. These explanations require

the existence of a pattern keeper entity (memory cell), which

determines the responses to a-priori classified Self or Non-

Self antigens, and assumes that responses are antigen-driven.

However, the existence of a memory cell as an entity that

determines immune responses is problematic, and immuno-

logical memory continues to be one of the enigmas of current

immunology [4]. Here, we propose that immune memory is not

localized in a specific pattern-keeper entity, cell or molecule,

but similar to the brain, it is a distributed memory, inherent in

the structure of the system. This approach can be considered

in line with the work initiated by Jerne [5], followed by Vaz

and Varela [6], Coutinho [7], more recently by Carneiro [3]

and León et al. [8], who understands the immune phenomenon

at system level.

In this view, the quality, intensity and specificity of immune

responses will depend on the way the system was generated,

evolved, and modified. Any changes in this immunological

memory will be a consequence a change in the structure of

the system. As well, the discovery of the leading role of

suppression in the determination of immune responses [9]

and the concept of dominant tolerance as an explanation for

the avoidance of autoimmunity [10] indicates that immune

responses depend on the fine equilibrium between reactive

and suppressive mechanisms; therefore any hypothesis of

immunological memory must take this into account.

In this work we present a model that explains immunologi-

cal memory as a consequence of the recursive proliferation of

reactive and suppressive cells, where the relative proportion

of these cells will set a probability for the emergence of a

response (inflammation). The model proposes that immune

memory is the result of the creation of an attractor, which

determines the probability for a response. This probability

can be small, making the response unlikely, or high, making

the response almost certain, or anywhere in-between. For an

external observer, the occurrence of inflammation is perceived

to be a response to Non-Self and its absence is perceived

to be a tolerance to Self, creating the illusion that the anti-

gen determines the response. In contrast, we show that the

attractor is the result of the proliferation of auto-reactive and

suppressive clones in ontogeny, and the numerical relationship

between auto-reactive and suppressor influences will produce

the probability for the emergence of a response. This attractor

will be maintained by virtue of large numbers of cells in

a recursive proliferation process. Memory will be then a

function of the attractor making the system respond within

a probabilistic certainty, perceived as memory.

II. RECURSIVE PROLIFERATION PROCESS

Denote (−) a suppressive cell and (+) an auto-reactive cell.
At starting time t = 0 be given an initial collection C of (−)
and (+) cells. At each time step t = 1, 2, . . . , one cell is drawn
randomly from C and is put back together with one additional

cell of the same type into C. That is, the probability to draw

from C a (−) cell is

p =
number of (−) cells in C

number of cells in C

and to draw a (+) cell

1 − p =
number of (+) cells in C

number of cells in C
,

respectively (see Fig. 1). The collection C is dominated by

suppressive cells if p > 1/2 and dominated by auto-reactive

cells if p < 1/2, respectively. In Salazar-Bañuelos’ immune
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Figure 1. For the sake of clarity a (−) cell is denoted as 0 and a (+) cell as 1. In this example the initial collection C at time t = 0 consists of {1, 0, 1},
that is, one suppressive and two auto-reactive cells. The probability to add at time t = 1 a 0 to C is 1/3 and to add a 1 is 2/3. At time t = 1 the collection
C can either consists of {1, 0, 1, 0} or {1, 0, 1, 1}. The process is continued an infinite number of times.

model [11] this cell adding mechanism is called recursive

proliferation process and is used as the underlying principle

to model immune memory.

A closer investigation of this recursive proliferation process

reveals, that this problem is a special case of Pólya’s urn

process [12], [13] which is defined as follows [14]:

Given an urn which initially contains w white

balls and b black balls. At each discrete time step

(trial) we select a ball from the urn and then return

the ball to the urn along with c new balls of the

same color. This process is repeated indefinitely.

Set c = 1 and denote a (−) cell as a white ball and a (+) cell
as a black ball, then the recursive proliferation process exactly

matches with Pólya’s urn process.

III. PROPERTIES OF THE RECURSIVE PROLIFERATION

PROCESS

Given an initial collection C of (−) and (+) cells, where w
denote the number of (−) cells in C and b the number of (+)
cells in C. Let Xi be a random variable at time (trial) i with

outcome 0 when a (−) cell is selected from C and 1 when a

(+) cell is selected. Mathematically, this selection process is a

sequence X = {X1, X2, X3, . . .} of binary random variables

indexed by time. Let Yn denotes the number of (+) cells

selected in the first n time steps, that is,

Yn =

n∑

i=1

Xi, (1)

then Y = {Y1, Y2, Y3, . . . , } is the partial sum process associ-

ated with X. The proportion of (+) cells in the collection C
after n trials is

Zn =
b + cYn

b + w + c n
. (2)

It is known [14] that when c > 0, Zn converges with probabil-

ity 1 to a random variable U that has the beta distribution with
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Figure 2. Probability density function of the beta distribution for different
values of α and β, where α := b and β := w.

left parameter b/c and right parameter w/c. The probability

density function of the beta distribution is

f(x; α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1, (3)

where Γ is the gamma function (see Fig. 2). Suppose an initial

collection C is given with one (−) cell and one (+) cell, then
U is uniformly distributed (see Fig. 2). Hence, each proportion

of (−) and (+) cells in C can occur with equal probability after

some time steps. In point of fact, Eggenberger and Pólya [12]

showed that in the limit the ratio of white balls to black balls

could be any number between 0 and infinity. In other words,

any feasible proportion of (−) and (+) cells in C can occur

after a finite number of time steps. The interesting property of

this stochastic process is however, that early events determine

the ultimate outcome. This is also mentioned in [13]:

“It is curious that the limiting properties of

a Pólya-Eggenberger urn depend critically on the

initial conditions.”



The phenomenon can also be observed in the performed

experiments provided in the following section.

IV. EXPERIMENTS

As shown in Section III, any feasible proportion of (−)
cells and (+) cells can be attained after an finite time steps.

This is based on the fact that the random variable converges

to a beta distribution, where the parameters of the distribution

are determined by the number of (−) and (+) cells in the

initial collection C. This fact is demonstrated empirically in

the following section.

A. Different Proportions of (−) and (+) Cells in the Initial

Collection

In this experiment different proportions of (−) and (+)
cells in the initial collection C are setup and the evolved

proportions are plotted over time. For the sake of conformity,

denote p the relative proportion of (−) cells in C and 1−p the

relative proportion of (+) cells, respectively. One can observe

that the experiments nicely match with the mathematical

explanation provided in Section III. For an initial ratio of

1 : 1 of suppressive and auto-reactive cells, the final relative

proportion of those cells evolved overtime (that is the value

of p) can result in any feasible ratio (see Fig. 3). In other

words, the immune system can reach any state of the number

of suppressive and auto-reactive cells. If the initial ratio is

biased towards more suppressive or auto-reactive cells such as

depicted in Figure 4, then still any final ratio can be evolved

over time. However, the probability to evolve over time much

more suppressive than auto-reactive cells is far higher. Observe

that the probability density of the beta distribution for w = 20
and b = 1 that is 20 suppressive cells and 1 auto-reactive cell

exponentially increases.

V. THE SIMULATION

In this section the simulation presented in [11] is summa-

rized. The core of this simulation is based on the recursive

proliferation process, that is, Pólya’s urn process. However,

dynamical interactions of cells are also implemented for

having a more realistic immune model.

A two-dimensional space is formed by discrete units rep-

resenting cells in a tissue. The space is divided into a central

restricted area, which simulates the central lymphatic organs

(principally the bone marrow), and remaining space, which

simulates peripheral non-lymphatic tissue. The cells (patches)

produce, dissipate, and diffuse chemicals, which simulate the

production of mediators or lymphokines by neighboring cells.

Independent agents are created by simulating cells from the

lymphatic system. These agents are divided into stem cells and

peripheral lymphocytes, both of which are composed of two

sub-clones: 1) an auto-reactive (+) sub-clone that interacts

with the cells by fractionally increasing the chemicals in

the patch where the cells are located and 2) a suppressive

(−) sub-clone that decreases these chemicals. Stem cells

are generated by recursion as previously described, starting

from the creation of (+) and (−) sub-clones at a ratio of

3 : 1, which favors the predominance of (+) sub-clones.

All cells and interactions are specific for one antigen, and

all simulations take place from these initial conditions.

A. Clonal Expansion

This step simulates the origin of the lymphatic system from

a few “mother cells” in early ontogeny, creating a colony of

cells allocated to the central lymphatic system, mainly the

bone marrow, from which all other lymphatic cells will be

produced over the life of the individual. Because the recursive

stochastic process that generates this colony forms both (+)
and (−) sub-clones, the proportion of sub-clones will

fluctuate with decreasing amplitude as the number of agents

increases, reaching stability in direct proportion to the numbers

of agents created. This colony does not migrate and does

not interact with cells in the peripheral system, resembling

the population of progenitor cells in the bone marrow. The

functions described below can be simulated by the program.

B. Clonal Selection

The initial condition was designed to favor a predominance

of (+) sub-clones over (−) sub-clones, as seen when clonal

selection does not take place. Clonal selection reverses this

situation by eliminating a proportion of the (+) sub-clones

while clonal expansion is taking place, thus simulating the

elimination of auto-reactive clones in the thymus [15].

C. Proliferation

The stem cells in the bone marrow do not migrate to the

periphery, but are the precursors of peripheral lymphocytes,

which are identical to stem cells in all aspects except that they

do migrate to the periphery and move randomly, interacting

with the cells (patches) that they contact in their migration

and decreasing or increasing the production of chemicals

accordingly. The production of peripheral lymphocytes also

is done by recursion; therefore the proportion of (+) to (−)
sub-clones in the peripheral lymphocytes will mirror that

proportion in the stem cells, only at higher numbers. The

probability of discrepancy between the proportion of sub-

clones in the bone marrow and the periphery will increase

as the number of stem cells decreases.

D. Lymphatic-Ablation

This function eliminates all peripheral lymphocytes, leaving

the stem cell colony intact in the bone marrow. This is used to

illustrate that the system is robust, even for events affecting the

entire peripheral lymphocyte population, since the recursive

production of peripheral lymphocytes in the bone marrow

will repopulate the peripheral system, maintaining sub-clone

proportions similar to that of their progenitors. This highlights

the fact that the system will be robust in direct proportion to

the number of stem cells in the bone marrow.
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(b) Run 2 with initial collection C = {(−), (+)}.

Figure 3. Initial collection consists of {(−), (+)}. After approximately 1000 time steps, the relative proportion of (−) cells and (+) cells convergences
to some value p, where p denotes the relative proportion of (−) cells in the collection. One can observe that the relative proportion of (−) cells can vary
between any value from [0, 1]. Additionally one can observe that early proportions (within the first 1000 time steps) of (−) cells and (+) determine the final
value of p.
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(a) Run 1 with initial collection C = {20 × (−), (+)}.
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(b) Run 2 with initial collection C = {20 × (−), (+)}.

Figure 4. In this run the initial collection is skewed, that is, C = {20 × (−), (+)}. One can observe that the value of p prevalently converges to values in
the interval [0.8, 1]. This is not a great surprise because the corresponding probability density of the beta distribution exponentially increases in that interval.
Loosely speaking, the collection will be dominated on average by suppressive cells.

E. Danger

This function produces an instant increase in the chemicals

released by the cells of an specific and defined area in the

periphery. This simulates the effect of an acute injury that

produces a focus of inflammation and shows how the system

behaves according to the several situations that can take place.

F. Observations

We can observe the emergence of a phenomenon where

critical local conditions reach a threshold. While the location

and time for this phenomenon is undetermined, the probability

for this to occur is directly influenced by the proportions

between positive and negative factors, this proportion works

as an attractor to the system.

G. Visualized Simulation Results

Figures 5 and 6 show the output of simulations1 where the

recursive proliferation of (−) and (+) cells follows the rule of
Pólya’s urn process and ends with either with a predominance

of auto-reactive or suppressive cells.

Figure 5(a), shows the emergence of a self generating

process once local critical conditions are reached. This process

escalates with time (cf. Fig. 5(b)). By iterating the simulation,

eliminating all cells and reconstituting them from the orig-

inal population of clones, a similar result can be observed

1Written in NetLogo (http://ccl.northwestern.edu/netlogo).
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Figure 5. Output of a simulation where the recursive proliferation process ends in a predominance of auto-reactive cells.

(cf. Fig 5(c)). If an external factor produces critical local

conditions as is seen here by increasing the mediator locally

“Danger” (cf. Fig 5(d)) the increase in activity escalates

indistinctly as when it emerges from cell activity (cf. Fig 5(e)).

Figure 6 shows the case when early in the recursive

generation of clones, an elimination of positive clones takes

place (Clonal Selection), ending in a slight predominance of

negative or suppressive clones. In this case although local

increase of activity can be observed all over the screen, this

activity does not reach critical conditions (cf. Fig 6(a)), even

after a period of time (cf. Fig 6(b)). The elimination of cells

and their reconstitution based on the original clone selection,

reproduce the same lack of emergence (cf. Fig 6(c)). If in

this case we increase the mediator locally to reach critical

levels “Danger” (cf. Fig 6(d)), then similar to the previous

simulation, the increase in activity is down-regulated and

prevented for escalation (cf. Fig 6(e)). This two examples

indicates that the directions of the responses are kept within a

certain level of predictability by the proportions produced by

the recursive process, working as an attractor. the inclusion

of Danger, highlights the fact that external factors other than

cells can trigger a response, yet the result of this response will

be a function of the attractor, and exemplified here by the two

different outcomes in the evolution of identical Danger factors.

The consistence of the response based in the attractor is what

constitute the memory of the system, both by producing or

preventing the spontaneous emergence of the phenomenon

by cell activity, and by the escalation or control of external

(Danger) factors.

VI. DISCUSSION

The complexity of biological phenomena prevents their

explanation by the reductionist approach. A problem with this

approach is that it investigates components and interactions

isolated from the totality of their environment, wherein ev-

erything is relevant to everything. Another problem is the

impossibility of knowing the complete set of relevant factors

with their specific weights and temporal status, making a

complete logical-mathematical formalization of the phenom-

ena at the cellular and molecular level practically impossible.

Here, we have taken the approach of considering that to

unveil the mechanisms behind a biological phenomenon, the

phenomenon itself needs to be delimited. In other words,

we should abandon attempts to find a mechanism capable

of explaining how the Immune System (a concept) works,

for the investigation of the mechanisms responsible for the

phenomena itself as is our case here with immune memory,

avoiding a self-referential and metaphorical concept, as is the

case with the Immune System.
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Figure 6. Output of a simulation where the recursive proliferation process ends in a predominance of suppressive cells.

Immune responses depend upon cellular and molecular in-

teractions at the dynamic (microscopic) level of the system.

However, these responses are not themselves cellular or molec-

ular events, but rather they are new phenomena that emerge

from these interactions in a holistic way, such as the well

characterized phenomenon known as inflammation. In this

view, immune memory is the result of the mechanisms that

made previous events relevant for either the occurrence or

prevention of inflammation as an emergent phenomenon.

The emergence of inflammation from the background micro-

scopic level is the phenomenon itself. In this concept, the

relevant factor for an immune response is that which triggers

the emergence of the response (Butterfly Phenomena). Any

factor can be a potential trigger, because at the microscopic

level, everything is relevant to everything, whether it be a cell,

molecule, or any other factor. In other words, any entity have

the same ontologic value with respect to the emergence of

the phenomena, even though the entities may have different

ontologic values among themselves with respect to their indi-

vidual interactions at the microscopic (dynamic) level. For the

purpose of the emergence of a phenomenon, it follows that we

can abstract the microscopic level into interactions that either

increase (+) or decrease (−) the probability of the system

for reaching the threshold for emergence of inflammation.

In our example, the creation of the attractor by recursive

proliferation processes is based on cellular clones as factors.

However, it should be indicated that for the emergence of

inflammation, such factors can include not only cells and

molecules, but also any factor, including external ones. These

factors become relevant if they overcome the attractor and

trigger the emergence of inflammation. An example is the

case of tissue injury (represented in this model as ”Danger”),

which does not constitute autoimmunity, but is the response

to the local increase of pro-inflammatory factors that reach

a threshold. Abstracting the microscopic level to positive or

negative interactions for the emergence of the response has

two implications. First, this abstraction permits the inclusion

of all factors relevant for the emergence of inflammation, even

those explicitly unknown to us, but whose precise description

is irrelevant for the emergence of inflammation because they

only have the possibilities of being pro-inflammatory, anti-

inflammatory or neutral. Second, this abstraction permits the

formalization for the generation of clones, which we have done

here with the special case of Pólya’s urn process.

Similar to any other emergent phenomenon from a complex,

dynamical system, inflammation depends upon reaching local

critical conditions, in this case, the equilibrium between pro-

inflammatory and anti-inflammatory factors. Although such



equilibrium does not determine (in the sense of causality)

the phenomenon, it does determine its probability, and this

probability is kept relatively constant by virtue of the recursive

stochastic process of cell proliferation reaching very large

numbers, as shown here with the special case of Pólya’s urn

process. Whereas this equilibrium explains the consistency and

predictability of the direction of future responses, such pre-

diction is not deterministic as it is the case for antigen-driven

responses in the classical explanation of immune memory, but

rather is probabilistic. Because the probability has a small

variation, it creates the impression of causality, interpreted as

memory. In the mechanism here, immune memory is function

of the attractor, and any change in this memory requires

changing the attractor set point.

VII. MODEL REVIEW

We consider that our model provides an insight to the

fact that any immune responses occur on top of a system

that has been previously created, evolved and changed as a

consequence of a particular history. This system, which is

primordially suppressive (dominant tolerance), provides the

background and set point from which all immune responses

occur, from physical trauma to autoimmunity. The proba-

bility for interactions to become relevant for the generation

of inflammation is set by the systems previous condition.

For instance, whether or not the presence of tissue specific

antibodies (or any other factor associated with the development

of autoimmunity) will lead to an autoimmune disease will

depend upon whether their contribution can reach a threshold

and overcome the attractor; however for exactly the same

antibodies, the outcome can be different depending on the

attractor set point. One attractor set point could produce a

situation in which autoantibodies are relevant for the devel-

opment of autoimmunity, whereas another set point could

produce a situation in which they are irrelevant, as in a

healthy carrier of autoantibodies. Our model does not ignore

the importance of specific cellular or molecular interactions in

the development of the immune response, but rather explains

why these interactions become relevant for the emergence of

inflammation.

One important aspect of the lymphatic system is its high

turnover, with a constant production of lymphocytes and

their elimination by several mechanisms including apoptosis.

Although we did not include this in our simulations, the

random elimination of agents will not substantially change

the proportion of agents. In fact, after elimination of all

peripheral lymphocytes in the function “lymphocyte ablation”,

the agents are regenerated by recursion from the clones in the

bone marrow, thus explaining the robustness of the system.

In contrast to the case with peripheral agents, we should

consider that the resilience of the system, and in consequence

its memory, is in direct relation with the number of clones

in the bone marrow. As well, changes in the proportion

of reactive and suppressor clones in the bone marrow can

change immunological memory and increase or decrease the

possibilities for inflammation to emerge. Therefore, we would

expect that physical changes in the bone marrow would lead

to changes in immunological memory. These changes in the

dynamics of the system are interesting aspects of the model

to explore further.

VIII. SUMMARY

We explored and investigated Salazar-Bañuelos’ immune

model which suggests that immunological memory is a func-

tion of a recursive proliferation process. In this model the

relative proportion of auto-reactive and suppressive cells will

set the emergence of a reactive or suppressive immune re-

sponse. We showed that the underlying principle of this model

can be considered as a special case of Pólya’s urn process.

This crucial insight revealed and explained the emergent

functionality of the model. It has not escaped our notice that

the model consists of dynamical interactions of cells which

were so far not considered in terms of the urn process. In

future work these dynamical interactions have to be explored

and linked to the principle of Pólya’s urn process for obtaining

a complete picture of this exciting model.
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[13] H. M. Mahmoud, Pólya Urn Models. Chapman & Hall/CRC, 2008.
[14] K. Siegrist, “Virtual laboratories in probability and statistics,” 2009,

http://www.math.uah.edu/stat/.
[15] H. von Boehmer, H. Teh, and P. Kisielow, “The thymus selects the

useful, neglects the useless and destroys the harmful,” Immunology

today, vol. 10, no. 2, pp. 57–61, 1989.


