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Abstract—Bluetooth provides encryption, authentication, and
integrity protection of its connections. These protection mech-
anisms require that Bluetooth devices initially establish trust
on first use through a process called pairing. Throughout this
process, multiple alternative pairing methods are supported.

In this paper, we describe a design flaw in the pairing mech-
anism of Bluetooth. This flaw permits two devices to perform
pairing using differing methods. While successfully interacting
with each other, the devices are not aware of the Method
Confusion. We explain how an attacker can cause and abuse
this Method Confusion to mount a Method Confusion Attack. In
contrast to other attacks targeting the pairing method, our attack
applies even in Bluetooth’s highest security mode and cannot be
mitigated in the protocol. Through the Method Confusion Attack,
an adversary can infiltrate the secured connection between the
victims and intercept all traffic.

Our attack is successful in practically relevant scenarios. We
implemented it as an end-to-end Proof of Concept for Bluetooth
Low Energy and tested it with off-the-shelf smartphones, a
smartwatch and a banking device. Furthermore, we performed a
user study where none of the 40 participants noticed the ongoing
attack, and 37 (92.5%) of the users completed the pairing process.
Finally, we propose changes to the Bluetooth specification that
immunize it against our attack.

I. INTRODUCTION

Bluetooth has steadily gained prominence as a communi-
cation protocol for wireless, short-distance, device-to-device
communication. In 2010, the Bluetooth Special Interest Group
(Bluetooth SIG) standardized Bluetooth Low Energy (BLE),
offering a low-cost and low-power communication protocol to
IoT vendors [1]. Further enhancing its popularity, BLE is now
used in a wide range of products in mobile computing, health-
care, finance, energy, logistics and entertainment applications.
In 2019, the Bluetooth SIG expected that 4 billion Bluetooth
capable devices would be shipped by the end of the year; about
3.2 billion with support for BLE [2]. Many of these devices
handle sensitive data or run critical applications and therefore
require heightened security to protect communications. For
example, smartwatches or fitness trackers often connect to
their owner’s smartphone via BLE to exchange personal user
data and notifications.

There are known attacks on Bluetooth Classic (BC) and
BLE including downgrade or cryptographic attacks [3, 4, 5,
6, 7]. However, none of them apply to the current Bluetooth
5.2 specification if a secure connection mode is used.

To account for the need for security, Bluetooth offers en-
cryption, authentication, and integrity protection on application
request. In order to support these features, a trusted connection
has to be established between the participating devices. This
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procedure, commonly known as pairing process, establishes
trust on first use.

In Bluetooth, multiple pairing methods are available. There-
fore, both devices need to mutually agree on one of these
methods. Depending on the pairing method, the user may
be involved and obligated to transfer authentication values
between the devices to authenticate the pairing.

However, some pairing methods pick those authentication
values from the same value space. Furthermore, the Bluetooth
pairing fails to verify whether both devices actually conduct
the same pairing method. It is, therefore, possible that two
separate pairing processes which perform entirely different
pairing methods interact with each other. Even though the user
participates in the pairing process, she is not provided enough
information to recognize such a Method Confusion.

In this paper, we show that an attacker can abuse this flaw
and attack the pairing process by applying an adversarial ac-
tion we call Method Confusion Attack. The attacker primarily
intercepts and hijacks the pairing attempt between two devices
(which have not yet established a trust connection). Subse-
quently, the attacker performs two different pairing methods
with both victims (Method Confusion). The victims at this
point assume to be pairing with their desired peer. The attacker
now gains secret information, which in turn can be used to
influence the pairing processes in such a way that the Method
Confusion concludes in successful pairings. While the victims
assume to have established a trusted connection, they instead
paired with the attacker, who is now in a stable Man-in-
the-Middle (MitM) position. The cryptography of each single
pairing method itself is not broken by our attack. It cannot
be prevented by Bluetooth’s existing security mechanisms.
Changes to the specification are required to mitigate it.

Our contributions can be summarized as follows:

• We introduce the Method Confusion Attack. It abuses
a design flaw to establish a MitM position in a
specification-compliant ‘secure’ setup consisting of two
BLE devices.

• We show how our attack impacts millions of device com-
binations by testing the vulnerability of popular off-the-
shelf devices (smartwatch, smartphone, banking device).

• We discuss that in certain implementations our attack
could be spotted and mitigated by an informed and careful
user. We conducted a user study in which none of the 40
participants noticed the attack.

• Based on these findings, we propose an implementation
hotfix for device vendors and also suggest multiple long-
term fixes for the Bluetooth specification.
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Fig. 1. ECDH Public Key Exchange and schematic calculation of shared
secret.

In this work, we describe how our attack targets BLE
devices. While our arguments and experiments will be based
solely on BLE, we also discuss how this attack is applicable
to BC (see Section VIII-C).

We disclosed this design flaw to the Bluetooth SIG. They
acknowledged our findings and are cooperating with us to
target the issue.

II. BLUETOOTH BACKGROUND

As a primer for the discussion of the attack and related
work, we now provide a short summary of important aspects
of BLE.

Introduced in 2010 by the Bluetooth SIG, BLE is included
in every iteration of the Bluetooth specification since version
4.0. Since then, its popularity and market share have been
rapidly growing, replacing BC in many new devices [2].

BLE can provide an encrypted, integrity-protected, and
authenticated connection between devices, if this is requested
by the application. The basis for these security features is
established in a process called pairing. First, the user has to
enable Bluetooth advertisements, making the device visible to
other Bluetooth devices. Next, the pairing process is initiated
on the other device. At the end of pairing, both devices have
authenticated each other and share a key (e.g., the LinkKey)
for cryptographically secure data transfer.

Since its creation, the Bluetooth specification was amended
multiple times with new pairing methods. In the following,
we will discuss methods that concern BLE. Later in Section
VIII-C, we will point out how the pairing methods and
vulnerabilities of BLE correspond and likely translate to the
ones of BC.

• Legacy Pairing is supported in BLE since its introduction
in version 4.0. It acts by establishing a shared secret
between both peers. This is achieved by either entering
the same PIN on both devices, Out of Band (OOB)
(e.g., NFC) or via a preconfigured publicly known value
(e.g., Unit Key or Just Works). The established secret is
then used to derive the necessary encryption keys. There
exist simple attack schemes for this form of pairing (cf.
Section IX-A). Connections that rely on this method can,
therefore, not be considered as significantly protected.
Hence, we will not describe this method any further.

• Low Energy Secure Connections is supported by BLE
since version 4.2. Low Energy Secure Connections
(LESC) uses an Elliptic Curve Diffie-Hellman (ECDH)-
based key exchange on curve P-256 [1, Vol. 3 Part H

RI

Calculate Ea =
f6(DHK,NI , NR, rb,
IOcapI , addrI , addrR)

Calculate Eb =
f6(DHK,NR, NI , ra,
IOcapR, addrR, addrI)

Ea

Check Ea, abort if fail

Eb

Check Eb, abort if fail

Fig. 2. Secure Connections LTK validation. iocapX : IOCaps of X; addrX :
X’s device address; ra, rb, NX : values exchanged in Authentication stage
(cf. Fig. 3,4).

2.3.1] to negotiate a long-term secret. This is a significant
improvement over the open key exchange of legacy
pairing since an adversary cannot acquire the key by
passive eavesdropping. Further, ECDH supports perfect
forward-secrecy for the established connection.
If protection against an active MitM attacker is required,
the origin of the key exchange material is verified by a
‘secure backchannel’. For instance, the user might act as
this backchannel. The verification is performed through
one of four Association Models; chosen dependent on
device capabilities and security requirements.

LESC is the method mainly targeted by our attack, we will,
therefore, expand upon it in the following.

A. The Pairing Process

In the following, we describe LESC-based pairing, as it is
defined in the specification [1, Vol. 3 Part H 2.3]. The device
initiating the pairing process is referred to as Initiator (I), the
answering device is called the Responder (R).

1) Pairing Feature Exchange: Before the actual pairing
process, both devices exchange information about their re-
spective security requirements and Input-Output Capabilities
(IOCap)s.

2) Public Key Exchange: Both devices exchange their
ECDH Public Key (PK) information and calculate their shared
Diffie-Hellman (DH) key. The exchange is visualized in the
schemata of Fig. 1. The � operation is to be interpreted as
scalar multiplication on the Elliptic Curve (EC) body.

Please note that the parties have not yet authenticated each
other’s PKs (PKI and PKR). Therefore, the shared secret
(DHK) established using those PKs cannot be trusted.

3) Authentication: Only in the subsequent Authentication
stage are these previously exchanged PKs actually
authenticated. The method used for authentication (i.e.,
the Association Model) varies. The decision on which
Association Model will be used is based on the information
gathered in the previously mentioned Pairing Feature
Exchange. Both devices conduct this model-selection process
independently. After completion of this decision process, both
devices assume that their pairing partner has concluded upon
the same method as they did. The exact decision process is
detailed in Section II-C.
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Fig. 3. Numeric Comparison.

The devices can conclude on one of the following Associ-
ation Models:

• Just Works: The keys are not authenticated (i.e., unau-
thenticated security requirement).

• Out of Band: The PKs are authenticated over a backchan-
nel separate from Bluetooth (e.g., NFC, QR-Code).

• Numeric Comparison: The user is displayed a 6-digit
number on both devices and has to confirm if they are
equal.

• Passkey Entry: The user is displayed a 6-digit passkey on
one device and is asked to enter it into the other device.

Only the Numeric Comparison (NC) and Passkey Entry (PE)
methods (besides OOB) are capable of properly authenticating
the peer and avoiding MitM attacks as discussed in Section
IX-C (MitM protection). NC and PE are central to our attack
and are discussed in further detail in Section II-B1 and II-B2.

After completion of the Authentication stage, the integrity
and authenticity of the PKs are assumed to be verified.

Note that no stage does in fact authenticate whether both
partners have performed the same Association Model. This is
a design flaw, which enables our Method Confusion Attack
(as acknowledged by Bluetooth SIG; see Section X).

4) Long-Term Key Calculation and Validation: The now
trusted PKs are then used to establish a secure channel between
both parties. The LTK and MacKey are derived from the
now authenticated PKs:

MacKey||LTK = f5(DHK,NI , NR, addrI , addrR) (1)

where f5 is a cryptographic key generation function described
in the Bluetooth specification [1, Vol. 3 Part H 2.2.7]. NI and
NR are Nonces that were exchanged in the Authentication
stage (e.g., Section II-B1). The MacKey is of no further
importance for our attack.

Subsequently, confirmation values are calculated on both
sides (Ea and Eb). They are then exchanged over the new
secure channel and are validated by the peers as can be seen
in Fig. 2. Based on the trust established with the peers’ PKs,
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Fig. 4. Passkey Entry.

this step retrospectively validates integrity and authenticity of
all previously exchanged values.

B. MitM protected Association Models
Besides OOB, NC and PE are the only Association Models

which provide MitM protection. As our attack targets this kind
of protected authentication, they are of central interest to us
and are detailed in the following.

1) Numeric Comparison: NC authenticates the PKs by
creating a hashsum of the PKs that are to be validated. This
hashsum is presented in the form of a 6-digit number to the
user on both devices. If the user confirms those numbers to
be equal on both devices, the keys are authenticated.

To avoid replay attacks, this hash needs to involve random
nonces (NI and NR). Those nonces get exchanged in a
particular order as shown in Fig. 3 and are preceded by a
confirmation message. The confirmation message and the order
of the exchanges are important. In particular, the confirmation
message assures that no partner knows the other partner’s
nonce before they have fixed their own choice of nonce.
Otherwise, an attacker would be able to easily find and choose
nonces that cause collisions in the confirmation value V a,
increasing the likelihood of wrongfully approving keys that
are not legitimate.

2) Passkey Entry: The PE requires one of the devices to
choose and display a random 6-digit passkey. This passkey
has to be entered by the user into the other device. The device
which displays is chosen based on its IOCap.

The authentication then gets executed as seen in Fig. 4.
The steps in the marked box are executed for each of the
20 bits of the entered passkeys (rai, rbi : i ∈ [0, 19]).
If the process does not abort before completion, the PKs
are considered authenticated. This bit-wise challenge-response
process assures that both parties are in possession of the
correct passkey.

C. Association Model Agreement
Each device has individual capabilities and security require-

ments. For instance, laptops have a display and a keyboard, but



headphones might have neither. To support a large variety of
devices, the Association Model is dynamically selected based
on the pairing devices’ capabilities and security requirements.
In BLE, the Pairing Feature Exchange is used to agree on a
pairing method. For the Association Model agreement, three
features are of interest [1, Vol.3 Part H 2.3]:

• OOB-bit: Indicates that OOB data is ready
• MitM-bit: Indicates the requirement of authentication
• IOCaps: Indicate provided capabilities for user interac-

tion
In BLE, the possible IOCaps are the following:

• DisplayOnly: The device can only display a 6-digit nu-
meric value.

• DisplayYesNo: The device can display a 6-digit numeric
value and the user can input a confirmation (yes or no).

• KeyboardOnly: The user can input a 6-digit numeric value
and a confirmation.

• KeyboardDisplay: The device can display a 6-digit nu-
meric value and the user can enter a 6-digit numeric value
and a confirmation.

• NoInputNoOutput: The device has no ability to commu-
nicate with the user.

When the pairing features have been exchanged, the de-
vices decide independently from each other which Association
Method is used. First, if any device has OOB data of the peer
ready, the OOB-bit is set and the OOB authentication method
is used. Our attack is not applicable to OOB and we will not
further discuss this method. Next, if no device sets the MitM-
bit, Just Works (JW) is used as authentication. JW offers no
MitM protection during pairing and therefore is not further
discussed (attacks targeting JW are listed in Section IX-C).

If the MitM-bit is set, the IOCaps are used to determine
whether NC or PE is used. Fig. 5 shows the mapping of
IOCaps to the resulting authentication method for Initiator
and Responder, respectively. Based on this table some require-
ments can be derived. For instance, NC requires DisplayYesNo
or DisplayKeyboard on both devices. PE requires Display* at
one device, and *Keyboard at the other.

Furthermore, this description shows that it is possible to
enforce a pairing method. For example, to perform NC with
a KeyboardDisplay device, DisplayYesNo may be announced.

D. Advertising and Discoverability

As our Proof of Concept (PoC) implements the interception
of advertisement packets, we also discuss basic features of
the advertising process [1, Vol. 3 Part C 9.2]. Advertising in
BLE is controlled by the Generic Access Profile (GAP). A
BLE device that is ready to accept pairing requests will enter
discoverable mode. The device will then periodically transmit
advertising packets over one of three channels (37, 38, 39) [1,
Vol. 4 Part E 7.8.5].

The interval of these transmissions has a fixed component
of between 20ms to 10.24 s [1, Vol. 4 Part E 7.8.5] and a
small random component. This form of dynamic interval is
chosen to reduce the chances of collisions on the medium.
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Fig. 5. Provided IOCap and resulting Association Model for LESC [1, Vol.
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There are various types of advertising messages. For our
scenario, the pairing with a yet unknown peer is most rel-
evant. Therefore, we will focus on the advertisement mes-
sage ADV IND. This advertisement type signals surrounding
devices that incoming connection requests (e.g., pairing) are
accepted.

The advertisement message starts with the device address,
which can have the following types [1, Vol. 3 Part C 15.1]:

• Public Address: Globally fixed; registered with IEEE.
• Random Static Address: Fixed and chosen randomly; does

not usually change.
In case LE privacy is enabled, these types can also be used
[1, Vol. 3 Part C 10.7]:

• Private Resolvable Address: Derived from a common
secret (Identity Resolving Key (IRK)) between bonded
partners; can change anytime.

• Private Non-Resolvable Address: Randomly generated;
has not to be persistent.

Different data fields may follow the address in an arbitrary
order. If the device is in discoverable mode, it includes also
its Local Name [1, Vol. 3 Part C 9.2.3.2]. The Local Name
is also the identifier presented to the user in the results of a
device discovery (‘Available Devices’).

III. METHOD CONFUSION ATTACK

The Method Confusion Attack targets the pairing attempt
of two BLE devices with the goal to achieve a MitM position.
Instead of a single pairing between R and I , two pairings are
conducted simultaneously with attacker M . I connects to the
MitM Responder (MR), and the MitM Initiator (MI ) connects
to R. One of the pairings is performed via NC, while the other
pairing is performed via PE. This leads to a situation virtually
identical to a valid PE pairing between I and R (Method
Confusion): One device displays a 6-digit value, and the other
device prompts for a 6-digit value. However, the attacker has
gained knowledge over the displayed value, which is then used
to complete pairing with both victims.

This attack is mainly possible for three reasons:
1) The Association Models NC and PE use the same form

of check value; i.e., it is not determinable whether a



RMInitiatorMResponderI

IOcapI Triggers IOcapMI = DisplayYesNo

IOcapRIOcapI = DisplayOnly

PKI PKMI

PKRPKMR

Perform Numeric Comparison

V a
Calculate V a Calculate V ara = rb = V a

Display 6-digit V a

User enters Rs Va into passkey
field on I and confirms

User confirms

ra = rb = V a

Perform Passkey Entry

Derive LTKI and MacKeyI Derive LTKR and MacKeyR

EI Triggers Auth Phase 2 EMI

EREMR

Domain of M

Fig. 6. Passkey on Numeric attack implementation. EX is the confirmation value as calculated by device X .

given check value was generated by the NC or PE pairing
process.

2) Devices are not authenticating which Association Model
is actually used by their respective peers.

3) The specification does not prescribe any notification or
wording that makes the user aware of the Association
Model used. This makes it virtually impossible to rec-
ognize an attack; especially since the risk of a Method
Confusion is not known to the user (cf. Section VI-A).

A. Attack Preparation

1) Initiator Connection to MitM: In order to apply Method
Confusion, I must initiate pairing with MR instead of R, so
the attacker can act as MitM. We assume that the user attempts
to pair two devices, I and R, with each other. R starts to
advertise itself, while I searches for advertisements.

At the same time, MR is also advertising as Responder
under the same name as R. The user now observes MR in the
pairing menu of I , where MR appears indistinguishable from
R. To prevent the device R from showing up in the menu as
well, R’s advertisement signal may be jammed as we describe
in our end-to-end PoC (cf. Section IV). Eventually, the user
engages in pairing with MR instead of R as they perceive MR

as the desired pairing partner.
2) MitM Interaction during Attack: As soon as the pair-

ing request arrives at MR, MI initiates a connection with
device R. Since I and R are now only communicating to
M (MR,MI ), M holds a MitM position during the pairing
process. Note, that all the communication between M and I is
handled by the MR entity and all the communication between
M and R is handled by the MI entity. Both entities of M
share their information with each other, and have access to
each other’s variables and state.

Based on the provided IOCaps of the attacked devices,
our attack has two variations: Passkey on Numeric (PoN) and

Numeric on Passkey (NoP). Which of the two variants is
applicable in each scenario is discussed in Section VIII-A.

We will now discuss the attack in detail.

B. Passkey on Numeric

In PoN, I performs PE with MR, while R performs NC
with MI . Fig. 6 shows the concurrent interactions of I and R
with the MitM. First, the Pairing Feature Exchange between
I and MR is performed:

1) I initiates MR and transmits its security requirements and
IOCaps (Keyboard*).

2) MR responds to I and transmits its security requirements
(set MitM-bit) and IOCaps (DisplayOnly).

This triggers MI to begin Pairing Feature Exchange with R:
1) MI initiates R and transmits its security requirements (set

MitM-bit) and IOCaps (DisplayYesNo).
2) R responds to MI and transmits its IOCaps (Dis-

playYesNo / DisplayKeyboard).
Next, PKs are exchanged between I and MR respectively

MI and R simultaneously.
At the beginning of the authentication phase, MR suspends

the pairing procedure with I . In the meantime, MI performs
a NC-based authentication with the victim R:

1) CR, NI and NR are exchanged.
2) MI and R calculate V a.

V a is then presented to the user as a 6-digit number on R’s
display. R is now waiting for the user to compare the number
and then to confirm the NC authentication. MI has gained
knowledge over V a.

Then, the PE procedure between MR and I is continued:
1) MR sets its passkey rb to V a
2) I and MR gradually exchange passkey bits (rai).

At this point, I is requesting the user to enter a 6-digit
passkey to perform the PE authentication.



In summary, I prompts the user to enter a 6-digit value while
R displays a 6-digit value and awaits confirmation. This
situation is virtually equivalent to a legitimate PE pairing
dialogue. We assume the user transfers the value from R to
I and confirms the dialogues. Dependent on the dialogue
design and previous experience a user may be able to detect
the ongoing attack at this point. In Section VI, we analyze
the detection risk and reason that it is unrealistic for a user
to spot an ongoing attack. To substantiate that reasoning, we
report the results from a user study (Section VII), which align
with our prognosis.

MR chooses rb:

On MR: rb = V a (2)

Since the passkey entered on I is the V a displayed on R, the
following holds:

On I: ra = V a (3)

From (2) and (3) it follows:

Between I and MR: ra = rb (4)

Therefore, the PE procedure completes successfully and the
Authentication stage ends on device I and MR.

Subsequently, the Long-Term Key (LTK) Calculation and
Validation stage (Section II-A4) begins by I transmitting its
confirmation value EI . Since I and MR have exchanged their
PKs earlier, they will calculate the same DH-key DHKI,MR

.
The same applies to MI and device R which calculate
DHKMI ,R.

After receiving the EI from I , MR will trigger MI to
calculate EMI as:

EMI = f6(DHKMI ,R, NI , NR, rb, IOcapI , addrI , addrR) (5)

EMI
is then sent to R.

When the user confirms the NC dialogue on device R,
the device completes its Authentication stage and waits for
a confirmation message. As R now receives EMI

, it validates
the value successfully and replies with ER to MI . Therefore,
the pairing between R and MI is successfully completed.

Upon receipt of ER on MI , the message is discarded and
M triggers MR to calculate EMR

as

EMR = f6(DHKI,MR , NR, NI , ra, IOcapR, addrR, addrI) (6)

This value is then transmitted to I .
I now validates the received EMR

successfully, which also
completes the pairing between I and MR.

Note that M only completes the LTK Calculation and
Validation stage if both victims have successfully completed
the Authentication stage. If one victim does not complete the
Authentication stage, the pairing procedures are eventually
terminated by a timeout. Through that, the attacker prevents a
so-called one-sided pairing. This behavior may be altered as
an alternative attack vector as described in Section III-D.

As a result, I and MR establish the same LTK. The
same holds for MI and R. All future communication is
encrypted using keys derived from those LTKs. Consequently,
M is able to relay all communication between I and R by

decrypting the received messages and forwarding them after
re-encryption with the respective peer’s LTK. Therefore, M
is able to eavesdrop on the cleartext of all messages which
are exchanged over the encrypted channel between I and R.
I and R are not aware of the attacker’s presence.

C. Numeric on Passkey

NoP is similar to PoN. The largest difference is that in
NoP I and MR perform NC, while R and MI perform PE. In
consequence, PoN and NoP also differ in their implementation
of the LTK Generation and Validation stage.

MR performs NC-based pairing with I until the point where
V a is displayed at I and known to MR. Simultaneously,
MI performs PE-based pairing with R until the start of the
Authentication stage.

As soon as both pairing couples complete these steps, the
V a calculated by MR is set as passkey at MI . Then, the PE
between MI and R is continued until completion.

When the user confirms the NC dialogue at I , the message
Ea is sent to MR where it is discarded. Then, MI calculates
its confirmation message EMI

, which is sent to R after PE has
completed. R checks the received confirmation message suc-
cessfully, calculates and replies with Eb, thereby completing
the pairing between MI and R.

When MI receives Eb it discards the message, whereupon
MR calculates EMR

and sends it to I . I receives the confir-
mation message and successfully validates it, upon which also
the pairing between I and MR is completed.

As with PoN, this allows the MitM to relay, eavesdrop and
manipulate all further communication between I and R.

D. Alternative One-sided Pairing

If a user enters and confirms the passkey but does not
confirm the NC, our original description of the attack would
abort through a timeout eventually. Sometimes, though, it is
a sufficient goal for an attacker to establish a connection to
one of the victim devices; for instance, if the attacker aims to
extract information like a phone book, fitness tracking data,
or attempts to modify the target bank account settings of a
point-of-sales terminal. For such scenarios, the attack can be
amended by not aborting the pairing. We call this One-Sided
Method Confusion Attack.

IV. IMPLEMENTATION

To prove the real-world viability of the attack, we designed
an end-to-end attack framework. The framework initializes all
devices and orchestrates its three components: 1) a Method
Confusion Attack implementation, 2) a jammer, and 3) in case
LE Privacy is enabled, also an address sniffer.

A. BThack

We implemented the Method Confusion Attack in our Blue-
tooth MitM platform BThack. BThack is based on BTstack [8],
a well-established BLE stack offered by Bluekitchen GmbH.
BThack allows its applications to modify the communication
in various ways.



We combined it with USB Cambridge Silicon Radio, Ltd.,
Bluetooth Dongles (CSR dongles), which operate in HCI
mode. Since BTstack is a commonly used commercial open-
source product, we assume it to be an industry-proven and
specification-compliant implementation of BLE.

In order to reduce the chances of unintended side-effects,
the codebase and control flow of BTstack were altered as little
as possible. This also assures simplified maintenance in case
of upstream updates. To gain complete control over the pairing
process, BThack extends the state machines of BTstack with
callbacks. A BThack application registers custom callbacks
to interrupt the control flow of the state machine at certain
points. By virtue of BTstack’s single-threaded design, the stack
then suspends execution and allows memory modification
before eventually resuming. This simplifies, for example, the
synchronization of our MitM Initiator and Responder.

B. BThack MitM Application
The BThack MitM application consists of two memory-

independent processes, each containing its independent BLE
stack. Each of the processes communicates with its individual
USB-BLE device (CSR dongle) and with each other using
Inter Process Communication (IPC). One of the processes
takes the role of a Responder (R), while the other acts as
Initiator (I). Through IPC, they are able to synchronize the
state machines of both virtual devices and relay messages.

The PoN attack as seen in Fig. 6 was implemented as
follows. The first victim device (I) connects to our MitM
Responder (MR). This, in turn, triggers the MitM Initiator
(MI ) to connect to the device originally intended by the victim
(R). At the passkey generation of MR, a callback is placed.
When triggered, the callback waits for MI and R to finish
NC and sets V a as passkey in MR. MI waits for the signal
of MR that PE was successful before it eventually confirms
NC. After pairing is completed, the IPC is used to forward
the communication between I and R.
NoP was implemented analogously with exchanged roles of
Initiator and Responder.

C. Selective Jamming
As preparation for the Method Confusion Attack, the victim

Initiator I has to establish a connection to our attack device
MR instead of R. We, therefore, have to prevent R’s adver-
tisement messages from reaching I , for instance by jamming
them. At the same time, we have to avoid jamming the other
device’s, or even our own (MR’s), advertisements. To assure
that, we perform a selective jamming of advertisements.

To perform Selective Jamming, we have to identify adver-
tisement packets on-air and selectively induce interference. An
interference message needs to be sent before the packet has
finished transmission. Therefore, a low latency implementa-
tion is required. To fulfill that requirement, we adapted the
work of Cayre et al. [9], which uses a customized firmware
[10] for the nrf51 BLE chip [11]. The firmware abuses the
address matching functionality of the nrf51 [11, 17.1.13]. The
(original) address matching feature allows to configure a 4-
byte pattern that, if observed, triggers the packet reception

process. The designated use of this functionality is to filter
incoming packets for their header address to provide selective
reception. The custom firmware instead utilizes this feature to
scan for an arbitrary pattern on-air. Further, it configures the
radio to stop any packet reception after 0 bytes and switch into
transmission mode, transmitting a dummy packet. The caused
interferences of two simultaneous accesses to the medium
then alters the payload and causes a checksum mismatch
of the advertisement packet; this causes the packet to be
discarded upon reception. All of these actions are performed
in the radio’s hardware without CPU involvement keeping the
latency as low as possible.

Bluetooth scrambles payload data with a standardized pseu-
dorandom sequence before transmission [1, Vol. 3 Part D
1.1.2.2]. The offset of our matching pattern has to be known to
pre-calculate the scrambling for it. The matching pattern can,
therefore, be any 4-byte value that has a predictable occurrence
and position in the target’s advertisement payload.

If LE Privacy is not enabled, the advertisement address is
always fixed to the beginning of the payload. In that case,
the matching pattern is the first 4 bytes of the advertisement
address.

Otherwise, the advertisement address is variable and we use
the Local Name of the device as matching pattern. While the
packet layout is variable, it is typically consistent between de-
vices of the same model / implementation. We can, therefore,
analyze one advertisement packet of R to obtain the position
of the Local Name or alternatively guess it. The matching
pattern is then set to the first 4 bytes of the Local Name. In
order to avoid jamming our own advertisements of MR, we
move the Local Name entry to a different position in their
payloads by placing a data entry before it.

Our hardware platform uses three micro:bit development
boards, each hosting a nrf51 radio chip, to observe and jam
all three advertisement channels simultaneously.

D. Interaction of the Components

The address of the victim is typically static. In fact, multiple
studies have shown that LE Privacy mode is seldomly used
among peripheral devices [12, 13, 14]. In that case, the jammer
is configured to intercept the packets based on R’s address.

However, if LE Privacy is enabled, R’s Local Name is used
for jamming. In that case, the framework also initializes a
sniffer with disabled CRC check to keep track of the victim
Responder’s address. It constantly scans for R as it comes
online and advertises.

Simultaneously to the jamming, the BThack MitM ap-
plication is started to advertise under R’s Local Name (cf.
Section IV-B).

As soon as the BThack MitM application reports a connec-
tion attempt (from I to MR), the jammer is halted. Then, the
current address of R is passed from the sniffer to the MitM
application which then initiates a connection between MI and
R. The attack subsequently completes as described above (cf.
Section IV-B).



V. EVALUATION

We evaluated our end-to-end PoC in four steps. We con-
ducted a pre-test to validate the jamming functionality isolated
from the actual Method Confusion Attack. Then, we conducted
a full end-to-end lab-test to prove that the Method Confusion
Attack is capable of gaining a MitM position among custom
devices. Subsequently, we showed that our implementation
also works with off-the-shelf devices. Finally, we conducted
a performance evaluation to measure throughput and delay.
For all tests, we used our jamming implementation with three
micro:bit devices from Section IV-C.

For the lab test, we implemented a basic BTstack application
running on CSR dongles. The Responder dongle R, the
Initiator dongle I , and the malicious device M were placed so
that the three devices formed a triangle with a right angle at R;
the distance between I and R was 2m. This way, high-quality
reception for all devices was guaranteed. Through these steps,
we were able to accommodate for the weak antenna setup
of our jamming application (micro:bits). With a high-power
transceiver and better antenna the distance and constellation
of the devices would be more flexible.

A. Testing Jamming of Bluetooth Advertisements

We validated the jamming functionality by conducting a se-
ries of repeatable tests. For that, we placed R into discoverable
mode and attempted pairing from R while our jamming system
was active. We tested jamming based on the known device
address (LE Privacy disabled) and also on its Local Name (LE
Privacy enabled) for a timespan of 10 minutes each (repeated
3 times). In all of our tests no advertisement messages from
R reached I .

B. End-to-End Lab Test

In our full end-to-end test, we confirmed that our imple-
mentation of the Method Confusion Attack is capable of
compromising a BLE connection that was established using
LESC.

Since the Method Confusion Attack has two variations, we
test two scenarios. The only difference between both test cases
are the IOCaps of R.

• Scenario 1: Responder’s IOCaps were DisplayYesNo;
Initiator’s IOCaps were DisplayKeyboard; attack scheme
was PoN

• Scenario 2: Responder’s IOCaps were KeyboardOnly;
Initiator’s IOCaps were DisplayKeyboard; attack scheme
was NoP

The experimental procedure was the following: R was
placed into advertising mode and I scanned for available
devices. When I detected R’s name among the scan results,
it attempted a connection to that device. When a connection
was established, pairing was requested.

When one of the devices was displaying a 6-digit value,
while the other prompted a passkey field, we transferred and
confirmed the value (cf. Section VI-A). As soon as pairing
resulted in an encrypted connection, secret information was
exchanged over that channel.

In both scenarios, the attacker used the end-to-end attack
framework (cf. Section IV) to target the pairing attempts.

Both scenario tests succeeded, meaning that the attacker
was in both cases able to establish a paired MitM position.
Further, the attacker was able to eavesdrop on the secret
information exchanged between the victims. This was verified
by comparing the eavesdropped data with the cleartext that
was legitimately decrypted by the victims.

C. Production-Device Evaluation

We also evaluated the attack with openly available off-the-
shelf BLE-capable devices to verify the attack in real-world
scenarios. The tested devices are likely to be used by regular
users and may pose, if compromised, an open attack surface
and critical data leak.

Again, we tested both the NoP and the PoN variant. In both
scenarios, the attacked Initiators were a OnePlus 7 Pro with
Android 9.0, an iPhone 11 with iOS 13.4.1 and a Thinkpad
W540 with Windows 10, all providing DisplayKeyboard. The
two attacked Responder devices were:

• Samsung Galaxy Watch 42mm: smartwatch running Tizen
Wearable OS 4.0; IOCaps were DisplayKeyboard; pairs
with a smartphone using NC; attack scheme was PoN

• Reiner SCT tanJack Bluetooth: wireless TAN-Generator,
IOCaps were KeyboardOnly; pairs with a smartphone
using PE; attack scheme was NoP

Otherwise, the experimental procedure was equivalent to the
lab-test.

The attacker was able to complete pairing with the victim
devices and achieve a MitM position in all tested cases. The
successful attacks proved the viability of Method Confusion
with openly available unmodified devices.

D. Performance Evaluation

After a successful Method Confusion Attack, the MitM acts
as additional hop between the attacked devices. To estimate the
effects on network performance, we measured throughput and
Round Trip Time (RTT).

Typically, BLE applications communicate over an abstrac-
tion layer called Generic Attribute Profile (GATT) which can
guarantee a reliable, ordered communication [1, Vol. 3 Part
G 1.1]. We implemented a basic GATT-based application
in which both devices constantly transmit packets of fixed
size. Upon reception, the packets are validated and counted.
To measure the RTT, the application periodically sends a
probing message that is acknowledged upon reception. The
time difference in transmission of the probe and reception of
the response is the RTT.

We evaluated the connection without MitM as well as
with MitM in place (Fig. 7). Overall, the connection quality
achieved appears to be sufficient for most applications. For
instance, a VoIP call requires 21 kbps (throughput) and should
for optimal quality not exceed an (RTT) of 300ms [15].



Direct with MitM
Payload Size Throughput RTT throughput RTT

200 B 392 kbps 165 ms 384 kbps 350 ms
100 B 400 kbps 80 ms 380 kbps 273 ms
50 B 296 kbps 52 ms 280 kbps 110 ms

Fig. 7. Average Performance of a GATT Measurement Application.

VI. ROLE OF THE USER IN THE ATTACK

A. User Model

In the course of a Method Confusion Attack, one of the
victim devices displays a 6-digit number and expects the user
to compare and confirm that number. Simultaneously, the other
victim device expects the user to enter a 6-digit number.

The Bluetooth specification does not provide any rules
for these interactions. In fact, the design and wording on
how expectations are communicated to the user vary between
implementations. In Fig. 8, we collected a number of pairing
dialogues from popular off-the-shelf BLE products.

For example, in a pairing attempt that is under attack of
Method Confusion, the user is shown Fig. 8a on Android
device I and Fig. 8c on Android device R.

We assume that the user would transfer the value between
the devices and confirm both dialogues.

B. Chances of Detection

One may argue that under certain circumstances a user could
realize that two different Association Models are performed.
Users may spot this based on the expectations communicated
to them.

We argue though, that the user would be typically un-
able to notice the Method Confusion Attack. Foremost, a
regular user cannot be expected to know which actions a
specification-compliant Bluetooth implementation may request
from them. Furthermore, Method Confusion is based on a
so far undisclosed design flaw in the pairing method; it was
never intended that the user may need to verify consistent
use of Association Models. Therefore, implementations do not
specifically highlight the Association Model they employ.

Our examples demonstrate, that it is difficult to distinguish
the dialogue for NC and the dialogue for PE (on a display-
device). More importantly, the difference between a legitimate
and an attacked pairing attempt is sometimes even impossible
to spot: When comparing the example attack from the above
section, i.e., Fig. 8a and Fig. 8c, with a legitimate benign
(i.e., not attacked) PE dialogue combination for Android (i.e.,
Fig. 8b and Fig. 8c), it is apparent that the user has only a
negligible chance to realize any differences between Fig. 8a
and Fig. 8b. Some interfaces (e.g. iOS) may be more intuitive
and rather raise awareness with the user.

We have conducted a survey of over 35 popular devices
(cf. Section VIII-A). None of these devices differentiated their
PE-display dialogues significantly from their NC dialogues.

It is, therefore, unlikely that the user recognizes any irreg-
ularities. To further strengthen that assumption, we conducted
a user study in which none of the 40 participants recognized
the attack.

(a) Android 10.0 - Numeric Com-
parison.

(b) Android 10.0 - Passkey Display.

(c) Android 10.0 - Passkey Enter.

(d) TAN Generator -
Passkey Enter (Translation:
”Enter Pairing-Code:“)

(e) Samsung Galaxy Smart
Watch - Numeric Compari-
son.

Fig. 8. Examples of common pairing dialogues.

VII. USER STUDY

To further investigate the chances of attack detection, we
performed a user study to determine whether participants
recognize irregularities in the pairing dialogs when a Method
Confusion Attack is performed.

A. Study Preliminaries

The study was conducted at the campus of a major research
university, where participants were recruited at a public social
event. Due to the location, a rather technically-experienced
participant group was recruited. We argue that a higher ed-
ucated and technical audience provides a stricter evaluation
for our attack. Any individuals known to the experimenters
like family members or friends were excluded from the
study to avoid acquaintance bias. As compensation for their
participation, participants were granted a food voucher.

Our institution does not require IRB approval for user
studies, but we carefully designed our study to adhere to
common standards in the security and usability community
[16]. All participants signed a consent form and had to read
and accept a privacy disclaimer before data collection was
performed. To account for the priming effect, subjects were
told that they were participating in a ‘user study about wireless
connectivity’. We offered a debriefing option to participants
after conclusion of the study. The data collected in the study
was safely stored and only accessible to the participating
researchers. The appendix provides an overview of the par-
ticipant demographics.

B. Experimental Procedure

The target of the study was to evaluate how users would
behave when confronted with a Method Confusion Attack



on everyday devices. The subjects were provided with three
common Bluetooth-capable devices (A–C) and a Bluetooth-
enabled smartphone (D):

• A. Wireless Headphones: Sony WH-1000XM3; capable
of OOB (NFC) pairing.

• B. Wireless In-Ear-Headphones: SoundPeats TrueCap-
sule; capable of JW pairing.

• C. Mobile TAN Generator: Reiner SCT tanJack Blue-
tooth; capable of PE pairing.

• D. Android Smartphone: Samsung Galaxy S8 Edge -
Android 9.0; capable of all LESC pairing methods.

The devices were provided together with their vendor-supplied
manuals.

The subjects were asked to pair the devices (A–C) with
the smartphone (D). This was described as preparation to
subsequently fill out a short survey about their user experience
with those wireless devices (given in the Appendix). There
was no time limit imposed. Instead, the participants were told
that they were free to stop their attempts whenever they felt it
suitable. For instance, if they grew frustrated with repeatedly
failed pairing attempts or bad UI design.

After explanation of the procedure, the participants were
left alone with the task. This way, we prevented that any
cues from the experimenter would be “picked up” by the
participants [17]. We addressed the “helpful participant” bias
by two additional measures that were clearly communicated
to all participants beforehand. It was urged that the main
objective of the study would be to collect user experience,
and that failed attempts had the same value to our research as
successful ones. The participants were also made aware that
they would receive the compensation either way; even if a
pairing attempt did not succeed and they would move on to
another device.

After they attempted the pairing, the survey was conducted
as announced irrespective of whether they were able to pair
with all the devices or not.

C. Hidden Attack

The users were not made aware of the fact that the pairing
between devices C and D was attacked using Method Con-
fusion. To strike a reasonable balance between simple study
design and realism, we did not conduct the jamming process
in the background, but simulated it. As preparation for that
the devices C and D were once paired with each other in
advance. After successful pairing, device C was showing up
under the ’Paired Devices’ section in the Bluetooth menu of
D. C was not shown anymore under ’Available Devices’ even
if C was advertising. Finally, we renamed the device C in D’s
Bluetooth menu from its original name of ’tanJackXXXX’ to
the inconspicuous designator ’Audi Q6’ (i.e., a well-known
car manufacturer). Therefore, the user was now unable to find
the original device when it began advertising.

Instead, the BThack MitM application advertised itself
under the name ’Reiner SCT*’, which was the device name
printed prominently over the device’s screen. If the user
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Fig. 9. Mapping victim IOCap to MitM IOCap

initiated the pairing to the attacker’s MitM application, the
attack would be performed as described in Section III-C.

D. User Study Results

The study showed that 37 (92.5%) of the participants
eventually entered the NC-value shown in device D into the PE
field of device C. Through that action, the MitM attacker was
able to complete pairing with both devices. In turn, 3 (7.5%) of
the participants were not able to conduct the pairing. Since the
situation presented to the participants was virtually identical
to a valid PE pairing, none of the participants suspected an
attack. Instead, all of the failed attempts were assumed to be
their own mistakes or Bluetooth connectivity issues.

In conclusion, the study lends substantial support to our
argumentation in Section VI-A.

VIII. DISCUSSION

In this subsection, we present data on the applicability of
the Method Confusion Attack to the Bluetooth device market.
Next, we discuss possible short-term and long-term fixes.
Finally, we provide information on the applicability of the
attack for BT Classic.

A. Applicability, Restrictions, and Impact

As a reminder, we summarized the attack requirements
in the matrix in Fig. 9. Further, we already successfully
demonstrated our attack with several popular devices (see Sec-
tion V). While many attacks exist which target the Bluetooth
pairing process (cf. Section IX) none of them are applicable
when MitM protection is used. Relevant organizations in the
standards space like NIST officially strongly recommend that
all vendors that use Bluetooth should utilize the strongest
Bluetooth security modes, as those enable MitM protection
[18]. Our attack specifically targets devices that rely on that
protection feature.

While MitM protection may not be common for the average
Bluetooth device, security critical device classes are enforcing
MitM protection more regularly.

The Bluetooth SIG’s Launch Studio lists 22,757 Declaration
IDs for “previously qualified designs and declared products”
for the time period of January 2015 - April 2020 [19]. Of
these, 17,154 are specifically for end products including many
devices from popular brands with large numbers of users.
Further, many of the IDs are bulk listings for dozens or even
hundreds of different products. For example, ID D049484
(February 27, 2020) contains 592 Toyota car models and
details about the associated car multimedia system. While



the public part of Launch Studio does not provide a detailed
enough search functionality to determine which devices actu-
ally rely on MitM protection, it allows to identify potentially
sensitive device categories. For example, one can quickly
identify devices that likely communicate highly sensitive in-
formation such as heart rate/pressure monitors, blood glucose
monitors, or smart baby monitors. Access for SIG members
even includes data that indicates support of MitM protection,
but also does not state whether it is actually employed. Internet
search (for manuals and setup videos) can then help to verify
if a device actually uses MitM protection.

We investigated two sensitive device classes to better un-
derstand the distribution of MitM-protected devices. First, we
researched which devices of their class are making up the
relevant part of their market. Then, we determined whether
these devices rely on the MitM protection of Bluetooth pairing.

1) Smartwatches: These devices are using Bluetooth to
transfer notifications, messages, health data and location-
tracking information to users’ smartphones. For 2019, the
overall number of shipped devices increased to 92.4 Million
(up from 75.3 Million in 2018) [20]. “Major players” are
Apple, Samsung, Fitbit, Garmin, and Fossil in a relatively
“fragmented” global market [21]. We examined manuals and
setup videos of these vendor’s smartwatch device to determine
their method of pairing (links to the manuals are provided in
the Appendix). We found that all examined Samsung, Garmin
and Fossil smartwatch devices are utilizing either NC or PE
Bluetooth pairing, and are, therefore, enforcing Bluetooth’s
MitM protection. Apple watches perform OOB pairing and
do, therefore, not rely on Bluetooth’s MitM. Fitbit uses JW
combined with application layer encryption. In summary, of
the total market, at least 12.3% (first quarter 2018) – 15.1%
(first quarter 2019), e.g., data for Samsung, Garmin, and Fossil,
likely rely on Bluetooth’s MitM protection [22].

2) Car Multimedia: Multimedia systems in cars interact
with smartphones to provide hands-free telephony, GPS track-
ing and access control. We determined the best selling car
models of 2019 [23]. Again, we examined setup manuals of
the most recent entertainment system of these models (see
Table in the Appendix) and determined that all of them are
utilizing Bluetooth’s MitM protection feature (i.e., either PE
or NC for pairing). The 2019 sales of these cars amount to
over 8.3 Million vehicles [23]. Note our Toyota example from
above, which strongly suggests that the entire current range of
products is using Bluetooth’s MitM protection feature.

In summary, we assume that a sizable percentage of the
markets for smartwatches and car entertainment systems is
vulnerable to our attack.

B. Proposed Fix

In the following, we discuss possible countermeasures that
can be implemented against the attack. For every fix, we
discuss how it would affect the current device base and
standards and how it influences other security aspects.

1) Enforcing Pairing Method: In some cases a vendor of
a product can assume certain properties of the devices the
product will be paired with.

This might be the case if the product is just to be paired
with another device that is also issued by the vendor. In this
case the pairing method can just be fixed by setting IOCaps
on both products that restrict the Association Model to one
specific method (cf. Section II-C).

2) User Interface Design Hotfix: The Bluetooth specifica-
tion does not dictate a specific wording or UI design for user
dialogues required for NC and PE. Therefore every device
manufacturer and OS vendor chooses visual presentation and
wording independently. Typically, these design decisions are
dictated by device restrictions like screen size as well as qual-
ity and design premises like creating an intuitive uninterrupted
user experience.

As a hotfix / first mitigation to the attack, vendors can
warn the user against misusing the information presented.
For instance, a NC dialogue box could warn the user of not
entering the shown number anywhere, comparable to a credit
card PIN. Colors and different text styles can be utilized to
improve effectiveness. Uzun et al. [24] conducted a user study
on the Bluetooth dialog in which they proved that a clearer
wording can lead to drastically improved user awareness.

3) Authenticating Association Model: We argue that relying
on the user to be aware of the Association Model is not a
sustainable practice.

Primarily, the pairing methods of Bluetooth were designed
with the goal to ease the pairing process and allow average
users to conduct a secure pairing with minimal, simple interac-
tion. The average user is typically also not aware that attacks
like Method Confusion are a threat and special attention on
the used Association Model is required. In fact, the only duty
the user is made aware of is the task of comparing or entering
numbers.

Secondly, a user often has none or no clear indication
which Association Model is performed by the device and
is not able to decide whether a pairing is under attack (cf.
dialogue examples in Section VI-A).

We argue that Method Confusion needs to be prevented
through the protocol itself. We suggest embedding the infor-
mation on which Association Model is used into the informa-
tion that is compared or transferred by the user. Specifically,
we propose that a passkey used by PE has to be distinctly
distinguishable to a value displayed in NC. For instance, a
PE-passkey may always have its least significant bit set to
1 while a NC-value has its least significant bit set to 0. The
application expecting a PE-passkey would therefore be able to
detect and abort Method Confusion Attacks when it receives a
NC value. This solution has the benefit of being fairly easy to
amend to the existing protocol. Primarily, devices attempting
to support this would not be required to implement new input
methods. Secondly, the protocol would not require changes.

By using one bit of the 20-bit value to signal the Association
Model, we reduce the space of possible values from 1.000.000
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Fig. 10. BC: Mapping victim IOCap to MitM IOCap

to 500.000. Therefore, a MitM attacker has better chances of
correctly brute-forcing the passkey during pairing. However,
given recent hardware capabilities this is still sufficiently large
to prevent an attacker from guessing the correct PE-passkey
/ NC-value during the pairing process. Therefore, we argue
that the benefits of this method may outweigh that drawback.
As the Bluetooth SIG pointed out, another concern with this
solution is its backward compatibility. Devices that do not
follow these updated guidelines can cause the connection
attempt to fail in 50% of the cases.

An alternative to reutilizing the existing value space is to
extend and divide the existing one into two disjoint sets, each
assigned to one of the Association Models. For instance, one
may only allow 5 Latin letters for the PE-passkey and only
6 digits for the NC-value. While this may conserve or even
reduce the guessing probability, we argue that this proposal
is harder to amend. The implementation requires a significant
change in protocol and device interfaces and affects backward
compatibility significantly.

C. Applicability to BT Classic

While we have discussed our attack with a focus on BLE,
we anticipated that it is also applicable to BC.

The commonly accepted secure methods of pairing in BC
are Secure Simple Pairing (SSP) and Secure Connections (SC).
SC is a mode of SSP that enforces higher requirements on the
cryptographic primitives used. SSP itself is virtually equivalent
to LESC with three exceptions:

• SSP uses the P-192 EC as default [1, Vol. 1 Part A 5.3];
only if operating in SC-only mode it uses P-256 (as LESC
always does).

• SSP uses E0 [25] as encryption; only in SC-only mode
it uses AES-CCM [26] (as LESC always does).

• SSP does not support KeyboardDisplay as IOCap.
Otherwise, the Bluetooth specification states that the four

Association Models of SSP are functionally equivalent to the
ones of LESC [1, Vol. 1 Part A 5.4.1]. We were made aware
that KeyboardDisplay is not available in BC by the Bluetooth
SIG during the disclosure process. Consequently, our attack
matrix for BC is altered as displayed in Fig. 10. We argue,
therefore, that our results are transferable between LESC,
SSP, and consequently SC. The comments we received from
the Bluetooth SIG during the disclosure process support this
assumption (Section X).

IX. RELATED WORK

To better contextualize how our attack relates to other attack
schemes, we now present the most relevant ones that were
discussed in prior work.

A. Offline PIN Crushing in Bluetooth Legacy Pairing
Jakobsson and Wetzel [3] describe how the legacy method

of BC’s key establishment is vulnerable to offline brute-
force attacks on the used PIN. Essentially, an attacker may
capture the communication of the key-generation material and
the subsequent authentication handshake. This information is
solely protected by the shared symmetric secret (i.e., the PIN).

The issue roots in the fact that the PIN is the only non-
public information and is also limited in entropy (typically 6
digits). The attacker is, therefore, able to exhaust all possible
PINs; by re-simulating the captured processes for each PIN.
The attacker can terminate when the simulated authentication
handshake was successful. This way, the used PIN can be
found and the long-term secret can be calculated.

This attack was later refined by Kügler [27], who exploited
the radio implementation of Bluetooth in combination with the
aforementioned bruteforce attack to establish a MitM position
between the victim devices.

BLE legacy pairing relies on similar methods to exchange
the cryptographic key material and, therefore, suffers from
similar vulnerabilities. Ryan [28] describes how these issues
can be exploited in BLE by a passive attacker.

B. Passkey Entry Reuse Attack
PE is sometimes implemented with a device-specific but

fixed passkey. This passkey is chosen randomly by the man-
ufacturer and then printed on or stored in the device’s ROM.
Through that, the manufacturer aims to support the PE method
on devices without display or with weak entropy sources.

This way of pairing disregards the Bluetooth SIG’s advice
to not re-use PINs. The attacks proposed by Lindell [4] and
refined by Barnickel et al. [29] target these devices.

An attacker eavesdropping during the Authentication stage
(cf. Section II-A3) may learn PKI , PKR and Cai, Cbi, Nai,
and Nbi (where i is the i-th bit of the passkey). Therefore,
an attacker only needs to perform one hashing operation per
passkey-bit to determine if a confirm message Cai / Cbi was
created with rai / rbi set to 0 or 1. The whole passkey can be
recovered in 20 hashing operations. The attacker then inter-
cepts and aborts the pairing process after the Authentication
stage has ended. If the same passkey is now re-used, the
attacker just acts as MitM, pairing both devices as MitM using
the now known passkey.

C. Just Works MitM Attack
In practice, many devices performing SSP, SC or LESC

are not requesting MitM protection during pairing (cf. Section
II-C). This is often the case if devices do not have the
physical interfaces to facilitate MitM-protected pairing modes.
Examples for such devices are In-Ear-Bluetooth headphones or
screenless fitness trackers. According to the Association Model
agreement process, JW is performed in these cases. Therefore,
there is no protection against an active MitM attacker provided.
An attacker may completely take over the communication
with both parties and implement its PKs into the pairing
process. Examples of such attacks can be found in the work
of Hypponen and Haataja [5].



D. Downgrade Attacks

The exchange of IOCaps described in Section II-A1 is
vulnerable to interception and tampering. This is due to the
lack of authenticity between the two parties at this point of
pairing. In consequence, an attacker can act as MitM falsifying
the IOCap and, thus, downgrade the authentication method to
JW [5]. Subsequently, an attacker may continue the attack as
described in the previous Section IX-C. However, the MitM-
bit protects against such an attack. We want to point out that
the Method Confusion Attack is fundamentally different from
a downgrade attack. Different from our proposal, downgrade
attacks do not succeed if the MitM-bit is set.

E. Fixed Coordinate Invalid Curve Attack

Biham and Neumann [6] show that all SSP (and as they
argue SC, LESC) pairing methods are vulnerable to a so-called
Fixed Coordinate Invalid Curve Attack. The attack abuses
that only the x-component of the PKs is validated during the
Authentication stage. Therefore, the attacker can manipulate
the y-value during the PK exchange. This way reducing the
possible ECDH keyspace to two possible keys, which can then
be guessed. The Bluetooth SIG addressed this vulnerability
by amending the specification [30]. It now requires devices to
validate whether the PKs lie on the ECDH-curve.

F. Attacks not Targeting the Pairing

While the attacks described in this section focus on the
Bluetooth pairing process, there are also other attack vectors.
For example, the KNOB attack [7] focuses on breaking the
encryption itself by downgrading the entropy of a connection.

Fawaz et al. [31] found that many BLE devices do not
properly implement privacy-preserving features, such as device
address randomization. This allows adversaries to track users
through advertisement messages of their BLE devices. The
authors developed BLE-Guardian, which hides the presence
of selected devices from an attacker.

Further, it is a conundrum that Bluetooth applications are
challenging to implement correctly. This is mainly due to the
huge size and complexity of the specification. Multiple attacks
resulting from implementation mistakes were uncovered by
careful analysis like [32] and [33].

X. RESPONSIBLE DISCLOSURE PROCESS

We reached out to the Bluetooth SIG as well as to Google
and Apple; the two vendors with the largest market share for
mobile operating systems. We received immediate responses
from all parties and were also contacted by CERT/CC which
takes part in coordinating the efforts. Google and Apple
informed us that they take the issue very seriously and are
working on a solution, but gave no concrete details. The
Bluetooth SIG pointed out that certain limitations of our
attack exist for BC. Those comments were incorporated into
this paper’s revision. Otherwise, the SIG acknowledged our
findings, i.e., the vulnerability of BLE, and agreed that the
same weakness should also apply to BC. They did not approve
to incorporate our proposed fixes into the specification:

‘The Bluetooth SIG and the working group concur
with your paper’s findings that the proposed method
does expose the end-user to a viable man-in-the-
middle attack, however the recommended changes
to mitigate this attack vector at the protocol level
were not approved.’ [excerpt from email 12.3.2020]

They justified this decision through the lack in backward com-
patibility of our proposed fixes. Instead, the SIG announced
the decision to reach out to their members about the issue with
the help of CERT/CC mid to late March 2020.

XI. CONCLUSION

We demonstrated a novel attack on the BLE pairing in
BT version 5.2. The attack utilizes a method we call Method
Confusion to gain a MitM position between two paired Blue-
tooth devices. It abuses a critical design flaw that – upon our
disclosure – was acknowledged by the Bluetooth SIG (see
Section X).

The attack’s applicability was verified by adopting a com-
monly used BLE driver into our framework BThack, capable
of performing the MitM attack. Using this, we attacked
multiple smartphones, a smartwatch, and a banking device.
All attacks succeeded and we expect many other devices
to be vulnerable. To verify the real-world impact of the
attack, we also designed an end-to-end PoC that includes an
advertisement jammer.

Furthermore, we evaluated if users are able to notice the
attack by performing a user study with 40 participants. None
of the participants noticed the attack and 92.5% faithfully
completed the pairing leading to a MitM position.

We proposed multiple fixes to this problem. Some of them
can be realized in a backward-compatible fashion. Others
require a change to the specification.

Bluetooth is a major wireless communication standard and
especially the number of BLE devices continues to increase
rapidly. Many devices such as point-of-sale terminals and
smartwatches require the protection promised by BLE. Our
findings enable an attacker to steal and manipulate data and
target otherwise protected APIs of such devices.

We hope that our work contributes to an increase in Blue-
tooth’s security, so that device vendors can continue using it
as a trusted building block for their products.

AVAILABILITY

We intend to publish BThack and our PoC implementa-
tion of the Method Confusion Attack on https://github.com/
maxdos64/BThack.
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APPENDIX

A. Acronyms

BC Bluetooth Classic.
BLE Bluetooth Low Energy.
Bluetooth SIG Bluetooth Special Interest Group.

DH Diffie-Hellman.

EC Elliptic Curve.
ECDH Elliptic Curve Diffie-Hellman.

GAP Generic Access Profile.
GATT Generic Attribute Profile.

IOCap Input-Output Capabilities.
IPC Inter Process Communication.
IRK Identity Resolving Key.

JW Just Works.

LESC Low Energy Secure Connections.
LTK Long-Term Key.

MitM Man-in-the-Middle.

NC Numeric Comparison.
NoP Numeric on Passkey.

OOB Out of Band.

PE Passkey Entry.
PK Public Key.
PoC Proof of Concept.
PoN Passkey on Numeric.

RTT Round Trip Time.

SC Secure Connections.
SSP Secure Simple Pairing.

B. Survey & and Survey Results

In the following, the post-study survey and numeric answer
data are summarized.
I. Demographics:
a) Age: on average 22.5
b) Gender: 35% female 65% male
c) Field of studies:

• Computer Science (60%)
• Math (10%)
• Physics (5%)
• Others (20%)
• No answer (5%)

d) Attained degree:
• Bachelor (60%)
• Master (35%)
• PhD (2.5%)
• Other (2.5%)

e) Number of semesters studying:
f) Which is the most interesting subtopic of your studies?:
II. Overall Technical Experience:
a) How many electronic devices do you use every day?:

• 1 (0%)
• 2-3 (37.5%)
• > 3 (60%)
• I do not regularly use any electronic devices (0%)
• No answer (2.5%)

b) Do you regularly use a Laptop/Tablet/etc. at
work/university?:

• Yes (100%)
• No (0%)

c) What is your main application for electronic devices?:
• Social media (37.5%)
• Email (32.5%)
• Office (Word/Excel/etc.) (27.5%)
• Programming (47.5%)
• Others (25%)

d) On a scale from 1 to 4, how experienced would your
rate yourself with technical devices? (1 is no experience, 4
is expert):

• 1 (0%)
• 2 (12.5%)
• 3 (50%)
• 4 (32.5%)
• No answer (5%)

III. Wireless Experience:
a) Do you use any Bluetooth devices?:

• Keyboard/mouse (35%)
• Headset (65%)
• Smart Home (15%)
• Others (32.5%)

b) Are you used to the wireless pairing process?:
• Yes (85%)
• No (15%)



IV. Personal Opinion:

a) Apple does not support wired headphones anymore. Do you
think this is a good idea?:

• Yes (12.5%)
• No (85%)
• No answer (2.5%)

b) Do you think Bluetooth pairing is simple to do, if not why?:

• Yes (80%)
• No (20%)

c) If no, why?:

d) Do you think wireless devices are an improvement over the
common wired alternatives?:

• Yes (62.5%)
• No (37.5%)

e) On a scale from 1 to 4, how secure do you think wireless
devices are? (1 is not secure, 4 is very secure):

• 1 (17.5%)
• 2 (57.5%)
• 3 (25%)
• 4 (0%)

f) Do you have any additional thoughts?:

C. Market Survey on spread of Bluetooth MitM protection

Samsung Gear Watches
Galaxy Watch https://youtu.be/8pSaUKQNN-E?t=67 NC
Galaxy Watch Active https://youtu.be/ yGoPkB7jIA?t=201 NC
Galaxy Watch Active 2 https://youtu.be/6QS7R6Dpy80?t=126 NC
Galaxy Sport https://youtu.be/nDVJbUEhTYk?t=220 NC
Galaxy Gear S3 https://youtu.be/Zd5IEFxw23Q?t=83 NC
Galaxy Gear S2 https://youtu.be/4Om5eh9OE38?t=522 NC
Galaxy Gear S https://youtu.be/Lc8vv T9Mas?t=69 NC
Galaxy Gear https://youtu.be/oo8Yx9ZTfnw?t=248 NC
Fossil
Fossile Smart Watch Gen 1-
5/Sport (WearOS)

https://youtu.be/7qyp1Y7W1hw NC

Garmin Smartwatches
Garmin Vivoactive 4/4s https://youtu.be/PvaFJVXb-R4?t=72 PE
Garmin Vivoactive 3/3s https://youtu.be/T4DSrSkBkyc?t=58 PE
Garmin Vivomove https://youtu.be/T4DSrSkBkyc?t=58 PE
Garmin Swim 2 https://youtu.be/bk7GRfLzHMs?t=64 PE
Garmin Forerunner 645 https://youtu.be/OxjXhTZgNXs?t=92 PE
Garmin Forerunner 45 https://youtu.be/3e2U JD9F2M?t=88 PE
Garmin Forerunner 245 https://youtu.be/coBOyf3irY0?t=71 PE
Garmin Forerunner 945 https://youtu.be/diqRxRw w U?t=88 PE
Garmin Approach S40 https://youtu.be/lvq eUrxVdE?t=46 PE
Garmin Fenix 5 https://youtu.be/DdRQCWzNW7s?t=48 PE
Garmin Fenix 6 / tactix https://youtu.be/BNxyYGrAXuo?t=82 PE

Fig. 11. Market Survey Result: Smartwatches that rely on Bluetooth MitM
protection

Toyota Corolla https://www.toyota.com/content/entune/pdf/
Bluetooth setup.pdf

NC

Ford F-Series https://owner.ford.com/support/how-tos/sync/
sync/setup/how-to-connect-or-pair-my-phone-
with-sync.html

PE

Toyota RAV4 https://www.toyota.com/content/entune/pdf/
Bluetooth setup.pdf

NC

Honda Civic https://youtu.be/M1oQ9hNI630 NC
Honda CR-V https://www.handsfreelink.com/Honda/en-

US/US/PairYourPhone/Instructions?modelid=
RW2H8KKNW&carrierid=107&phoneid=
5473131

NC

Toyota Camry https://www.toyota.com/content/entune/pdf/
Bluetooth setup.pdf

NC

Ram pick-up https://www.mopar.com/en-us/technology/
bluetooth-pairing.html

NC / PE

Toyota Hilux https://www.toyota.com/content/entune/pdf/
Bluetooth setup.pdf

NC

Chevrolet Silverado https://my.chevrolet.com/bluetooth NC
Volkswagen Tiguan https://youtu.be/cyvzrf7US2E?t=29 NC

Fig. 12. Market Survey Result: Car Entertainment Systems (Most popular
models in 2019) that rely on Bluetooth MitM protection


