
Leveraging String Kernels for Malware
Detection

Jonas Pfoh, Christian Schneider, and Claudia Eckert

Technische Universität München
Computer Science Department

Munich, Germany
{pfoh,schneidc,eckertc}@in.tum.de

Abstract. Signature-based malware detection will always be a step be-
hind as novel malware cannot be detected. On the other hand, machine
learning-based methods are capable of detecting novel malware but clas-
sification is frequently done in an offline or batched manner and is often
associated with time overheads that make it impractical. We propose
an approach that bridges this gap. This approach makes use of a sup-
port vector machine (SVM) to classify system call traces. In contrast to
other methods that use system call traces for malware detection, our ap-
proach makes use of a string kernel to make better use of the sequential
information inherent in a system call trace. By classifying system call
traces in small sections and keeping a moving average over the probabil-
ity estimates produced by the SVM, our approach is capable of detecting
malicious behavior online and achieves great accuracy.

Keywords: Security, Machine Learning, Malware Detection, System
Calls

1 Introduction

Detecting malware is an ever present challenge in the field of security. Tradition-
ally, malware detection makes use of signature-based methods. That is, known
malware samples are analyzed to create a repository of signatures which are then
matched against a static object to determine whether the particular object is
infected with malware. While this approach is straightforward, it has two fun-
damental issues. The first stems from the static nature of the analysis. A static
analysis indicates that it is performed on an inert object, that is, an object that
is not being executed or in any other way active. Malware authors take advan-
tage of this fact by obfuscating the inert object in such a way that it no longer
matches any of the the signatures in the repository. However, when executed,
the actions of the active process prove malicious. This may be achieved by sim-
ple packing and unpacking of the malicious portions of the object or by more
advanced polymorphism techniques.

The second issue with such an approach is a result of its reliance on signa-
tures. These signatures must be generated prior to a successful match, which

2 J. Pfoh, C. Schneider, C. Eckert

makes such an approach disadvantageous in situations where no prior sample
existed for signature generation. For example, novel malware that makes use of
so-called “0-day” exploits (exploits which have not yet been seen in the wild)
are difficult to detect with a signature-based method. To address these issues,
dynamic machine learning-based analysis has often been considered in various
forms [1–5].

In a dynamic analysis, the behavior of the malware is analyzed rather than
the inert object. This circumvents traditional code obfuscation as the behavior
remains malicious and it is this behavior that is analyzed. Obfuscating behavior
becomes much more difficult as the malicious act must be carried out in some
form. That is, one can attempt to conceal their intentions, but once the ma-
licious act is carried out, this behavior is ideally observable and can be acted
upon. Furthermore, machine learning techniques lend themselves well to mal-
ware detection as such techniques make an attempt to generalize and learn the
features of malware that differentiate them from benign software. This can then
also be applied to novel malware, thus countering the threat of 0-day exploits.

While dynamic approaches show much promise they are not immune to short-
comings of their own. While obfuscating behavior is more difficult than obfus-
cating code, it is not impossible. Depending on how the behavior of a process
is modeled, dynamic analysis is generally vulnerable to a class of attacks called
mimicry attacks [6, 7]. This class of attack attempts to “act benign” while se-
cretly carrying out some malicious action. Additionally, the large time complex-
ity combined with the massive amount of data that needs to be classified often
makes a practical solution difficult.

In this paper we model process behavior though system call traces and
present a practical machine learning-based method for malware detection. Specif-
ically, we make use of a support vector machine (SVM) in combination with a
string kernel function called a string subsequence kernel (SSK) [8]. This kernel
function has properties that lend themselves well to malware detection in spite
of mimicry attacks. Additionally, we present a novel method for classifying the
behavior of processes in an online manner. Finally, we present an evaluation of
our approach which includes several comparisons with other machine learning
methods for malware detection.

2 Background

For the classification of system call traces, we make use of support vector ma-
chines (SVMs) [9]. SVMs are a maximal margin hyperplane classifiers. That is,
given a training set X = {(xm, ym)}Mm=1, where xm is a training vector and ym
is the associated class +1 or −1, the SVM identifies the hyperplane for which
the separation between the most relevant training vectors (i. e., the support vec-
tors) and the hyperplane is maximized, then classifies new vectors based on their
relation to this hyperplane. The hyperplane is represented by a weight vector
w ∈ RD and a variable b ∈ R and is formally defined for some C > 0 in the

Leveraging String Kernels for Malware Detection 3

following optimization problem:

minimize
w,ξ,b

‖w‖2

2
+
C

M

M∑
m=1

ξm

subject to ym(〈w,xm〉+ b) ≥ 1− ξm,m = 1, · · · ,M

(1)

where ξi represents slack variables that are responsible for preventing an over-
fitting of the model.

By introducing a Lagrangian with multipliers αm ≥ 0, the training phase de-
termines which training vectors will become support vectors. Then, the classifi-
cation occurs by comparing the test vector to each support vector and measuring
the similarity. The decision function f is formally defined as:

f(x) = sgn(g(x)) (2)

where

g(x) =

M∑
m=1

ymαm〈x,xm〉+ b (3)

Here the dot product (〈a,b〉) plays the role of the kernel function, which
measures the similarity between the two vectors. For simple geometric classifica-
tion, a dot product may suffice as a measure of similarity. However, for detecting
malware through system call traces, a more complex kernel function is neces-
sary. This kernel function must be carefully chosen for a given domain and is
discussed in further detail in Section 2.1.

While SVMs produce a binary result as seen in (2), it is often beneficial
to work with a posterior probability P (y = 1|g(x)) based on g(x) defined in
(3). Such a posterior probability is especially helpful when the output is to be
combined with other factors to reach a final decision.

Several methods for probability estimation have been proposed. We make
use of a method proposed by Platt [10]. Platt’s method estimates the posterior
probability by using the following sigmoid function:

P (y = 1|g(x)) =
1

1 + eAg(x)+B
(4)

where A and B are found by minimizing the negative logarithmic likelihood of
the training data.

2.1 Kernel Function

In looking for a kernel function, we begin by examining the nature of the input
itself. The input consists of a string (i. e., sequence) of system call numbers. For
the language processing domain, string kernels were introduced to classify texts
or strings [8]. In essence, our input is very similar, though instead of classifying
strings over the roman alphabet, for example, we are interested in classifying
strings over the alphabet of all system calls. That is, we define our alphabet,

4 J. Pfoh, C. Schneider, C. Eckert

Σ, as all possible system calls and a string is a sequence s ∈ Σ∗ of letters (i. e.,
system calls). Based on this similarity, we choose a string kernel for our method.

Specifically, we choose to use the string subsequence kernel (SSK) [8]. This
kernel measures the similarity between inputs by considering the number of
common subsequences. A subsequence allows for non-matching, interior letters
between its elements, though the kernel penalizes the similarity as this number
of interior letters increases. For example, the string ABC would clearly match
on the string ABC, but it would also match on the string AaaaBbbbCccc, though
with a lower similarity measure due to the interior aaa and bbb. This property
of the kernel is especially attractive as a sequence of system calls may contain
interior system calls that might be irrelevant to the malicious nature of the
sequence.

The SSK is formally defined as:

k(s, t) =
∑
u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λl(i)+l(j) (5)

where n is the size of the subsequence and λ ∈ (0, 1) is the decay factor used
to weight the contribution of the match based on the number of interior letters.
The notation u = s[i] denotes that u is a subsequence of s for which there exist
indices i = (i1, . . . , i|u|), with 1 ≤ i1 < · · · < i|u| ≤ |s|, such that uj = sij , for
j = 1, . . . , |u|. Finally, l(i) represents the length of the subsequence including
interior letters.

3 Method

We begin this section by arguing for system call traces as a model for process
behavior. We present the observation that a process in complete isolation cannot
perform any malicious action on the rest of the system. Hence, in order for a
process to act maliciously it must interact in some manner with the rest of the
system and if the isolation mechanism in place is sound, this interaction must
take place through the interface provided by the operating system (OS) (i. e.,
system calls). System calls are necessary to perform actions such as file operation,
network communication, inter-process communication, etc. As a result of the
above observation, system call traces are often used to model process behavior
[1, 3, 4].

However, previous approaches often make use of polynomial kernels or other
methods that do not fully consider the sequence of the system calls [1, 3, 5].
That is, in the most trivial case, the number of times that a system call occurs
in the trace is taken into account without considering the order of the system
calls. This is most likely due to the fact that string kernels incur a massive time
overhead when used with large amounts of data. However, if one can mitigate
the increased time overhead, an approach that considers sequential data has the
potential to produce very high accuracy rates. Intuitively, considering sequential
data is logical. If one were to manually analyze a system call trace, one would
consider the order of the system calls in addition to which system call is being

Leveraging String Kernels for Malware Detection 5

executed. In an effort to baseline the time overhead, we began training the SSK
with our raw data and broke the test off after two months of running with no
result in sight. So with practical analysis as a goal, clearly this time overhead
must be addressed.

We address the time overhead of the SSK with the observation that if we
are able to classify a process by updating an interim classification value and
making a decision before the process has finished, we inherently address online
classification while reducing the time overhead by not having to analyze the
entire system call trace.

Training. To prepare the training data, we iterate over each individual system
call trace and extract contiguous sub-traces of size S starting at random points
within the traces. We iterate over all the training traces several times in order to
get several sub-traces from each original trace. These size S sub-traces become
our training set. We do this for two reasons. First, training the SSK with circa
2000 full-length traces, some of which may contain hundreds of thousands of sys-
tem calls, takes months even on modern hardware. Second, classifying against a
support vector with hundreds of thousands of system calls is equally time con-
suming. The clear concern is that some of these sub-traces may not be indicative
of the class they belong to because they represent a relatively small fraction of
the entire trace. However, with enough sub-traces we will eventually collect some
that are indicative of the class they belong to. The beauty of a SVM is that it
will decide which of the sub-traces to use as support vectors (hopefully those
indicative of the training class) and which to disregard.

Classification. The classification works by sliding a window of size S over the
system call trace that is to be classified. This sliding window moves forward by
S/2 elements in the trace for each iteration. Then, for each iteration, probability
estimates are taken using Platt’s method [10] as described in Section 2 and
factored into a cumulative moving average for each class. If we let pi = P (y =
1|xi) represent the probability estimate as approximated by (4) for an iteration
i, we represent the cumulative moving average after iteration i as:

Ui =
p1 + · · ·+ pi

i
(6)

In addition to calculating the cumulative moving average, we also experi-
mented with a simple moving average of the probability estimates. This is a
similar method, though instead of considering all previous window iterations, a
simple moving average only considers the last y window iterations in the average
(where y may be arbitrarily set). Formally,

Si =
pi−y + · · ·+ pi

y
(7)

where i ≥ y.

6 J. Pfoh, C. Schneider, C. Eckert

We continue our classification by defining two thresholds T1 ∈ [0.5, 1] and
T−1 ∈ [0.5, 1]. These thresholds are compared to Ui and 1 − Ui, respectively
and if either threshold is exceeded, the classification ends by predicting the
class represented by the exceeded threshold. Formally, the decision function is
represented as follows:

Di =


1 if Ui > T1,

−1 if 1− Ui > T−1,

Di+1 else

(8)

Clearly, Ui > 0.5 ∧ (1 − Ui) > 0.5 can never be true if Ui ∈ [0, 1], therefore
if T1 ∈ [0.5, 1] and T−1 ∈ [0.5, 1], only one single case of the decision function
will ever be true for a given iteration. For practicality, if the cumulative moving
average never exceeds either threshold and there are no more system calls in
the trace, the decision function simply predicts 1 if Ui > 0.5 or it predicts −1
otherwise.

4 Evaluation

In this section we present the results of our experiments when testing our SVM-
based method for malware detection on real-world data

4.1 Data Collection

We ran this experiment on two sets of sample traces collected from Windows
XP SP3. We chose Windows XP as it is a popular commercial OS and numerous
malware samples are available for this platform.

The first set of system call traces was collected using Nitro [11], a VMI-based
system for system call tracing and trapping. This dataset includes 1943 system
call traces of malicious samples taken from VX Heavens1 and 285 system call
traces of benign samples taken from a default Windows XP installation and
selected installations of well-known, trusted applications.

The second set of traces is taken from a level slightly above system calls.
Windows XP wraps its system calls in APIs that it provides to programmers
through system libraries. While these traces are technically at a level slightly
above the system calls themselves, they serve the same purpose and demonstrate
that our method works at both levels. This dataset was collected by hooking
these API functions and was first used by Xiao and Stibor [4]. It consists of 2176
API call traces of malicious samples and 161 API call traces of benign samples.

We chose to introduce the second independent data set for two reasons. First,
the second data set makes use of API call traces rather than system call traces
directly. This gives us a chance to observe the accuracy of our approach for
system calls as well as API calls. The second and perhaps more important reason

1 http://www.vxheavens.com

Leveraging String Kernels for Malware Detection 7

for including a second data set is to confirm that our method also works on
an independent data set that was not collected by us. This strengthens the
credibility of our approach as it allows us to present results based on data that
others have previously used in similar experiments. In fact, we directly compare
the results of our method with that of Xiao and Stibor in Section 5.

One might notice that the amount of benign and malicious samples are some-
what imbalanced. We address this by making use of cross-validation as described
in Section 4.2 and by reporting the false positive rate in addition to the recall
as seen in Section 4.3.

4.2 Setup

We begin by preparing the training set as described in Section 3. That is, we it-
erate over the full system call traces and extract random contiguous subsequence
of size S (in our experiments S = 100). We iterate a number of times as to have
2000 random contiguous subsequences in each training set. We take care that the
training samples can be traced back to their original trace as to make sure we
properly perform a two-fold cross-validation. That is we are careful that, when
testing, we train the SVM with samples that do not come from traces in the
testing set. Making use of cross-validation allows us to “simulate” the detection
of 0-day malware as the classification is performed on data that was not seen
during the training phase.

With the data collected and prepared, we make use of LIBSVM [12] along
with a provided string kernel extension to perform both training and classifica-
tion as described in Section 3. Since the SSK is not implemented in LIBSVM or
the string kernel extension, we incorporated the SSK implementation proposed
by Herbrich [13]. This implementation had to be further modified such that it
accepts an input over an integer alphabet as opposed to a roman letter alphabet
used in text classification. It is also important to note that LIBSVM calculates
probability estimates by making use of an improved algorithm for minimizing
the negative logarithmic likelihood proposed by Lin et al. [14].

With these tools and the data prepared, we set up the experiment as de-
scribed in Section 3. We also found that it was necessary to factor several values
into the moving average before checking either threshold. This allows the moving
average to factor in the first several iterations before a decision is made. For this
reason we always factor the probability estimates for the first 10 iterations in
our moving average before we begin considering the thresholds.

4.3 Results

For each experiment, P represents the number of positive (malicious) samples
and N represents the number of negative (benign) samples. The variables asso-
ciated with tuning our detection mechanism (n, λ, T−1, T1) are experimentally
optimized. A discussion of each of these variables can be found below. Then, as
each experiment runs, we collect the number of correctly and incorrectly clas-
sified results as true positives (TP), true negatives (TN), false positives (FP),

8 J. Pfoh, C. Schneider, C. Eckert

Test Average
Num. n λ T−1 T1 Avg. TP FP TN FN Iterations

1 3 0.50 0.50 0.75 CMA 1929 11 274 14 13.2608
2 4 0.50 0.50 0.75 CMA 1910 15 270 33 29.4753
3 5 0.50 0.50 0.75 CMA 1903 20 265 40 19.7244
4 3 0.25 0.50 0.75 CMA 1702 17 268 241 209.4165
5 3 0.75 0.50 0.75 CMA 1902 14 271 41 120.6194
6 3 0.40 0.50 0.75 CMA 1919 12 273 24 14.1831
7 3 0.60 0.50 0.75 CMA 1929 14 271 14 22.4475
8 3 0.50 0.50 0.50 CMA 1941 35 250 2 10.8406
9 3 0.50 0.50 0.75 SMA 1869 7 278 74 11.3321

10 3 0.50 1.00 0.90 SMA 1906 48 237 37 722.3012

Test FP Rate Recall Precision Accuracy F-Measure

Num. FP
N

TP
P

TP
TP+FP

TP+TN
P+N

2
1

Precision
+ 1

Recall

1 0.0386 0.9928 0.9943 0.9888 0.9936
2 0.0526 0.9830 0.9922 0.9785 0.9876
3 0.0702 0.9794 0.9896 0.9731 0.9845
4 0.0596 0.8760 0.9901 0.8842 0.9295
5 0.0491 0.9789 0.9927 0.9753 0.9857
6 0.0421 0.9876 0.9938 0.9838 0.9907
7 0.0491 0.9928 0.9928 0.9874 0.9928
8 0.1228 0.9990 0.9823 0.9834 0.9906
9 0.0246 0.9619 0.9963 0.9636 0.9788

10 0.1684 0.9810 0.9754 0.9618 0.9782

Table 1: Experimental results for system call trace dataset (P = 1943, N = 285)

and false negatives (FN). With this information we calculate the classification
measures presented in Table 1 and Table 2 and discussed below. Finally, we also
present the number of average iterations (the average number of times the SVM
classifier had to be called until either threshold was met) and the type of moving
average (CMA = cumulative moving average, SMA = simple moving average)
used in each experiment.

We began by considering the threshold values. These values are quite impor-
tant as they most directly affect the average number of iterations it takes to make
a decision. As the thresholds rise, so does the average number of iterations in
general. However, if a threshold is too low, the number of false positives and/or
negatives rises. In addition, we noticed that our SVM was much more sensitive
to malicious samples than it was to benign samples. That is, the average of the
malicious probability estimates rose much more quickly to 1 for malicious sam-
ples than the average of the benign probability estimates for benign samples.
We speculate that this is due to the fact that the traces from the malicious sam-
ples are more similar to one another than the traces from the benign samples.
That is, the diversity among the benign samples is higher due to the fact that
while malicious behavior is generally easier to define, benign behavior is simply
“everything else”.

Leveraging String Kernels for Malware Detection 9

Test Average
Num. n λ T−1 T1 Avg. TP FP TN FN Iterations

1 3 0.6 0.5 0.75 CMA 2029 19 142 147 37.2174
2 3 0.5 0.5 0.75 CMA 1971 19 142 205 31.3479
3 3 0.4 0.5 0.75 CMA 1699 15 146 477 32.8015
4 4 0.5 0.5 0.75 CMA 1660 20 141 516 29.1656
5 5 0.5 0.5 0.75 CMA 1697 18 143 479 32.2657
6 3 0.5 0.5 0.75 SMA 1456 16 145 720 14.1694
7 3 0.5 0.7 0.9 SMA 1961 21 140 215 51.3697

Test FP Rate Recall Precision Accuracy F-Measure

Num. FP
N

TP
P

TP
TP+FP

TP+TN
P+N

2
1

Precision
+ 1

Recall

1 0.1180 0.9324 0.9907 0.9290 0.9607
2 0.1180 0.9057 0.9905 0.9042 0.9462
3 0.0932 0.7808 0.9912 0.7895 0.8735
4 0.1242 0.7629 0.9881 0.7706 0.8610
5 0.1118 0.7799 0.9895 0.7873 0.8723
6 0.0993 0.6691 0.9891 0.6851 0.7982
7 0.1304 0.9012 0.9894 0.8990 0.9432

Table 2: Experiment results for API call trace dataset (P = 2176, N = 161)

We next considered the size n of the subsequence that the kernel function
looks for in the traces being compared. What we observed is that as we increased
n from the initial value of 3, the classification measures for both datasets became
worse. This may seem somewhat counterintuitive. However, n is very dependent
on S (the size of the window). Since the SSK function does not compute distance
between matched subsequences, it must look for exact subsequence matches and
as n approaches S, the probability that two subsequences of size n exist in two
separate traces of relatively small size decreases.

We then began to experiment with various values for λ ∈ (0, 1). λ is the
decay factor used to weight the contribution of the match based on the number
of interior letters. That is, as λ approaches 1, interior letters are increasingly
penalized. We were surprised by the drastic increase in the average number of
iterations it took for a decision to be reached as λ moved away from 0.5. This
can most dramatically be seen for values λ = 0.25 and λ = 0.75 in Table 1. We
found that these values caused the probability estimates to remain closer to 0.5,
this caused the decision function to take longer when the probability estimates
where favoring the malicious (i. e., “+1”) class, as this threshold is set to 0.75.

Finally, we considered using simple moving averages as opposed to cumulative
moving averages to make a classification. We found that using a cumulative
moving average performed slightly better than a simple moving average. We
reasoned that because the average number of iterations is so low when using the
cumulative moving average, the success of two methods would not differ greatly if
all other factors remained the same. One would expect to see a greater difference
in the performance of the two methods if the average number of iterations is much

10 J. Pfoh, C. Schneider, C. Eckert

Author Approach FP Rate Recall Accuracy

1 Pfoh et al. SVM+SSK (syscalls) 0.0386 0.9928 0.9888
2 Pfoh et al. SVM+SSK (API) 0.1180 0.9324 0.9290
3 Rieck et al. [3] SVM+Poly � � 0.88
4 Rieck et al. [3] SVM+Poly (extended) � � 0.76
5 Liao and Vemuri [15] kNN (total) 0.0 0.917 �
6 Liao and Vemuri [15] kNN (novel) 0.0 0.75 �
7 Xiao and Stibor [4] STT 0.4286 0.9955 0.9721
8 Xiao and Stibor [4] STT+SVM 0.3748 0.9997 0.9790

Table 3: A comparison of results from various machine learning approaches to
malware detection using system call traces. The � symbol indicates that the
information is not available.

higher. This is supported by the API call dataset in which the average number
of iterations is higher and the success of the two methods differ more greatly.
In both cases, however, the experiments that made use of a cumulative moving
average performed better.

After having experimentally optimized the various variables, we see that
n = 3, λ = 0.5, T−1 = 0.5, T1 = 0.75, and using a cumulative moving average
produces the best results for the system call datasets. We show that these values
contribute to a 99.28% recall, a 99.43% precision, a 98.88% accuracy, and a
99.36% F-measure, with only a 3.86% false positive rate. We performed more
thorough testing on the system call data set as it is the data we collected and
it is the system call traces that our system focuses on rather than API call
traces. We tested our method on the second dataset (i. e., the API call dataset)
to strengthen our claim that our approach performs well. For this dataset, we
produced the best results with n = 3, λ = 0.6, T−1 = 0.5, T1 = 0.75. With these
inputs, our approach produced a 93.24% recall, a 99.07% precision, a 92.90%
accuracy, and a 96.07% F-measure, with a 11.80% false positive rate.

5 Related Work

In this section, we compare the results of our approach with those of other
approaches. To our knowledge, there are no other approaches that make use of
string kernels with SVMs, however we compare our approach with another SVM-
based approach, a k-nearest neighbor approach, and an approach that makes use
of probabilistic topic models.

5.1 SVM/Polynomial Kernel Function

The first approach we will compare our results with is the work of Rieck et
al. [3]. This approach models the system trace by counting the frequency of each
system call. The frequency of a system call becomes the weight of that particular
system call and this information is stored in a separate vector for each trace.

Leveraging String Kernels for Malware Detection 11

These vectors can then be introduced as arguments to a kernel function. In this
case, Rieck et al. make use of a polynomial kernel.

For their testing, they made use of a corpus of 10,072 malware samples di-
vided into 14 malware families. The results of this approach can be seen in
Table 3, lines 3 and 4. Line 3 represents a round of testing the authors did us-
ing normal cross-validation as is the case in our testing, while line 4 represents
testing that took place with an extended dataset that included malware that
belonged to none of the malware families along with benign processes. We see
that, comparatively, our approach is more accurate. This is not surprising as the
approach used by Rieck et al. does not consider any sequential information at
all.

5.2 k-nearest Neighbor Classifier

Liao and Vermuri [15] present an approach that makes use of a k-nearest neigh-
bor (kNN) classifier. A kNN classifier makes use of frequencies by storing the
frequency of a single system call on a per-trace basis. That is, to train such a
classifier each trace is processed and the frequency with which each system call
is used is stored per trace. In order to classify an unknown trace, the classifier
computes the k most similar traces from the training set and classifies the un-
known trace based on the labels associated with the k most similar traces. In
this instance, the authors make use of the cosine similarity.

For their experimentation, the authors made use of 5,285 benign traces and
24 malicious traces. When training, they used 16 of the 24 malicious traces. This
leads to a situation in which the results in line 5 of Table 3 include the same 16
of 24 traces when testing as when training. Clearly, the classifier classified these
16 traces 100% correctly. Therefore, the results on line 6 of Table 3 represent
results that are a better measure of the approach. Despite this, our approach
achieves a higher recall than both approaches and the 0% false positive rate for
each test can be attributed to the fact that there are far more benign traces than
malicious traces.

5.3 Probabilistic Topic Model

Finally, Xiao and Stibor present an interesting approach that makes use of the
supervised topic transition (STT) model. This approach assigns system calls to
topics. That is, the algorithm groups the system calls based on co-occurrence.
The model is then built by modeling the topic transitions rather than the system
call transitions that one might expect.

This approach makes use of an algorithm that iteratively alternates between
a Gibbs sampling approach and a gradient descent approach to update the topic
assignment and the topic transition model in parallel to train the algorithm.
The classification then takes place by generating a topic transition model for the
unknown trace and probabilistically predicting a label.

In addition to a pure STT approach, the authors also considered a classifier
that makes use of a SVM. In this instance, the same training method is used,

12 J. Pfoh, C. Schneider, C. Eckert

however the topic transitions are fed into a SVM. This SVM makes use of a
Radial Basis Function (RBF) kernel.

In their experimentation, the authors made use of the same API call dataset
we used and tested several methods. The two most successful are described here
and the results are depicted in Table 3. Line 7 represents the pure STT approach
while line 8 represents the approach in which the authors combined their STT
model with a SVM classifier. While this approach performs slightly better than
our approach when considering the recall, the fact that they report a 37% and
43% false positive rate favors our approach in this regard.

6 Discussion

In this section we discuss the applicability of our approach to online scenarios
and discuss the impact of mimicry attacks on our approach.

6.1 Online Classification

As mentioned in Section 3, our method inherently lends itself to online classifica-
tion due to the fact that it considers additional system calls as they are produced
by the process (i. e., while the process is still running). However, we must also
consider the time overhead. The issue with classifying an entire system call trace
using the SSK is that a single trace may be hundreds of thousands of system
calls long and examining two traces of this length for matching subsequences
will clearly lead to a large time overhead. We solve this problem by keeping the
lengths (S) of the traces that we input into the SVM relatively small (100 system
calls).

By setting S to a relatively small value we make the use of the SSK feasi-
ble. However, in order for our classification to be accurate, we need to iterate
over some number of windows before a final decision can be made. That is, we
must still consider the number of iterations that it takes our method to make a
decision. As is shown in Table 1, the average number of iterations for the exper-
iment with the highest accuracy is 13.26, while in Table 2 the average number
of iterations for the experiment with the highest accuracy is 37.22. That is, our
method of classification can make a decision after only considering a relatively
small number of system calls, which significantly reduces the time overhead and
allows for online classification.

One may criticize the point that our approach does not consider the entire
trace, however all such approaches must address this practical problem somehow.
The problem is that one may have to wait an indefinite amount of time for a
process to finish. For example, a permanently resident process will only end
execution once the system is shut down. That is, practically, one will always
have to set a maximum trace length to address this and other approaches do
this arbitrarily [16] while our approach makes use of the given thresholds to
determine when to stop.

Leveraging String Kernels for Malware Detection 13

6.2 Mitigating Mimicry Attacks

Mimicry attacks [6, 7] are a class of attacks in which either an adversary drowns
the individual steps necessary for delivering the malicious payload in “benign
steps” or an adversary “acts benign” for a certain amount of time before deliv-
ering a malicious payload.

While this class of attacks is certainly a concern for any system that models
program behavior through system call traces, the use of the SSK significantly
raises the bar against this type of attack. As mentioned in Section 2.1, the
SSK matches on subsequences, where the definition of a subsequence allows for
interior system calls. In a simple case, if we consider the system call sequence
“12,19,39” to be indicative of malicious behavior, a mimicry attack might try
to fool the security mechanism by introducing interior “benign” system calls.
For example, the attacker might augment the malicious program such that the
system call trace was as follows: “12,17,13,19,32,39”. This may be enough to
fool signature-based or simple “bag of words” approaches to malware detection,
but the beauty of the SSK is that it, by design, will still match on these traces.

On the other hand, if an adversary decides to “act benign” for a time before
delivering a payload, our approach may miss the payload if either threshold has
been met. The solution for this is simply to raise the threshold. In the most
extreme case, one could raise the threshold for the benign class to 1.0. This
will result in a system that continuously scans a trace and will only exit if a
malicious classification is made. Such an approach would also be applicable in
detecting injected code (e. g., shellcode). Due to the fact that any process will be
scanned until the threshold for malicious activity is reached, any benign process
that is injected with malicious code will also be potentially detected. In order
for such an approach to be successful one would most likely have to consider the
simple moving average of the probability estimates as described in Section 3. We
performed such a test on our system call data and were able to produce 96%
accuracy as can be seen in Table 1.

7 Conclusion

This paper proposes a novel method for practical malware detection with system
calls using the SSK. We address the large time overhead generally associated with
such an approach by considering the moving average of probability estimates
over a sliding window. This moving average is then compared to a threshold to
predict a class.

Our experimentation shows that this method is both accurate and consider-
ably reduces the time overhead associated with using the SSK for this domain.
We test our method on two separate datasets and the fact that our method
shows promising results for both datasets makes us confident that this method
is universally applicable. Additionally, we compare our approach with other ma-
chine learning-based approaches and could show that our approach performs very
well in comparison. Finally, we argue that our approach raises the bar against
mimicry attacks through the use of the SSK and our threshold mechanism.

14 J. Pfoh, C. Schneider, C. Eckert

References

1. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware be-
havior using machine learning. Technical report, Berlin Institute of Technology
(2009)

2. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables
in the wild. Journal of Machine Learning Research 7 (December 2006) 2721–2744

3. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification
of malware behavior. In: Proceedings of the Conference on Detection of Intrusions
and Malware and Vulnerability Assessment, Berlin, Heidelberg, Springer (2008)
108–125

4. Xiao, H., Stibor, T.: A supervised topic transition model for detecting malicious
system call sequences. In: Proceedings of the Workshop on Knowledge Discovery,
Modeling and Simulation, New York, NY, USA, ACM (2011)

5. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection
of new malicious executables. In: Proceedings of the IEEE Symposium on Security
and Privacy, Washington DC, USA, IEEE (2001) 38–49

6. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings
of the IEEE Symposium on Security and Privacy, Washington, DC, USA, IEEE
(2001) 156–168

7. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the ACM Conference on Computer and Communications Secu-
rity, New York, NY, USA, ACM (2002) 255–264

8. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernels. Journal of Machine Learning Research 2 (March
2002) 419–444

9. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA
(2001)

10. Platt, J.C.: 5. In: Probabilistic Outputs for Support Vector Machines and Com-
parisons to Regularized Likelihood Methods. MIT Press, Cambridge, MA, USA
(2000) 61–74

11. Pfoh, J., Schneider, C., Eckert, C.: Nitro: Hardware-based system call tracing for
virtual machines. In: Advances in Information and Computer Security. Volume
7038 of Lecture Notes in Computer Science. Springer (November 2011) 96–112

12. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2 (2011) 27:1–27:27 Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

13. Herbrich, R.: Learning Kernel Classifiers: Theory and Algorithms. MIT Press,
Cambridge, MA, USA (2001)

14. Lin, H.T., Lin, C.J., Weng, R.C.: A note on platt’s probabilistic outputs for support
vector machines. Machine Learning 68(3) (October 2007) 267–276

15. Liao, Y., Vemuri, V.R.: Using text categorization techniques for intrusion detec-
tion. In: Proceedings of the USENIX Security Symposium, Berkeley, CA, USA,
USENIX (2002) 51–59

16. Wang, X., Yu, W., Champion, A., Fu, X., Xuan, D.: Detecting worms via mining
dynamic program execution. In: Proceedings of the International Conference on
Security and Privacy in Communications Networks. (2007)

