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Abstract

Virtual machine introspection (VMI) describes the method of monitoring, analyzing,
and manipulating the state of a virtual machine from the hypervisor level. This lends it-
self to many security applications, though they all share a single fundamental challenge:
One must address the fact that the hypervisor has no semantic knowledge about what
the system state means (e. g., where key data structures are). Traditionally, this seman-
tic knowledge is simply delivered to the hypervisor in the form of debugging symbols,
symbol tables, etc. If such semantic information does not exist, it must be acquired
through other, often tedious, means such as reverse engineering or “trial and error”. On
the other hand, it is possible to derive information about the guest OS by considering
hardware features and their specifications. This derivative method is possible with-
out any delivered semantic information about the guest OS and has several additional
advantages including guest OS portability and resistance to evasion techniques.

The main contribution of this research is an examination of derivative VMI methods
and their strengths. As there is little prior work formally exploring the potential of
derivative VMI methods, we inspect Intel’s IA-32 and IA-32e architectures and investi-
gate their potential for derivative VMI. Through this inspection, we discover and present
several portions of the hardware specifications which are conducive to derivative VMI.

This culminates in the introduction of a novel derivative method for collecting system
calls from the hypervisor. This method is completely guest OS agnostic and has been
tested on a variety of guest OSs. In addition, our method cannot be evaded from within
the guest. Furthermore, we show that our method keeps the collection overhead to a
minimum by comparing its performance to a similar system. We extend this work by
presenting a novel approach to malware detection that makes use of a support vector
machine (SVM) to classify system call traces. In contrast to other methods that use
system call traces for malware detection, our approach employs a string kernel to make
better use of the sequential information inherent in a system call trace. By classifying
system call traces in small sections and keeping a moving average over the probability
estimates produced by the SVM, our approach is capable of detecting malicious behavior
online and achieves a very high accuracy.
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Zusammenfassung

Virtual-Machine-Introspection (VMI) bezeichnet die Überwachung, Analyse und Ma-
nipulation des Zustands einer virtuellen Maschine auf der Hypervisor-Ebene. Diese
Methode eignet sich besonders für Sicherheitsanwendungen. Eine fundamentale Heraus-
forderung dieses Ansatzes ist das Fehlen von semantischem Wissen über den System-
zustand innerhalb des Hypervisors (z. B. wo im Speicher sich wichtige Datenstrukturen
befinden). Traditionelle Methoden liefern dieses semantische Wissen einfach an den
Hypervisor in Form von Debugging-Symbolen, Symboltabellen usw. Wenn dieses se-
mantische Wissen nicht vorhanden ist, muss es durch andere, oft mühsame Wege wie
Reverse Engineering erworben werden. Anderseits ist es möglich, Wissen über den Zu-
stand des Gast-Betriebssystem aus den Hardwarefunktionen und ihren Spezifikationen
abzuleiten. Diese, sogenannte derivative Methode ist ohne zusätzliches semantisches
Wissen über das Gastsystem möglich und hat mehrere zusätzliche Vorteile, beispiel-
sweise Portabilität zwischen verschieden Gastsystemen und Resistenz gegen Umgehung
der Isolation und der Sicherheitsmechanismen.

Der wichtigste Beitrag dieser Forschungsarbeit ist die Untersuchung von derivativen
VMI-Methoden und ihrer Stärken. Da es bisher wenige Arbeiten in dieser Richtung gibt,
untersuchen wir die IA-32 und IA-32e Architekturen von Intel sowie deren Potenzial für
derivative VMI-Techniken. Durch diese Untersuchung haben wir diejenigen Teile der
Hardware-Spezifikationen identifiziert, die geeignet für derivatives VMI sind.

Diese Untersuchung führt letztendlich zu der Einführung eines neuen derivativen
Verfahrens zur Erfassung von System-Calls durch den Hypervisor. Diese Methode
ist vollständig portabel zwischen verschieden Gast-Betriebssystemen und ist mit einer
Vielzahl von Systemen getestet worden. Ein besonderes Merkmal unserer Methode ist,
dass der Mechanismus nicht vom Gast umgegangen werden kann. Durch einen direkten
Vergleich mit einem ähnlichen System mit unterschiedlichem Ansatz zeigt sich, dass un-
sere Methode performant ist und den zusätzlichen Overhead minimiert. Wir verwenden
die erfassten Daten zur Malware-Erkennung. Hierfür präsentieren wir einen neuartigen
Ansatz zur Klassifikation von Programmverhalten auf Basis der System-Call-Traces mit
Hilfe einer Support-Vector-Machine (SVM). Im Gegensatz zu anderen Methoden, die
System-Call-Traces für Malware-Erkennung nutzen, verwendet wir einen String Kernel,
um die sequentiellen Informationen besser nutzen zu können. Durch die Aufteilung der
Traces in kleine Abschnitte und ein gleitendes Mittel über die Wahrscheinlichkeiten ist
unser Ansatz geeignet, bösartiges Verhalten mit sehr hoher Genauigkeit zu erkennen.
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Chapter 1
Introduction

As virtualization has become more prevalent in the recent past, there has been an
emphasis on leveraging this technology for security applications. Virtualization generally
describes a technology in which an instruction set or binary interface is virtualized. This
has many benefits including the ability to emulate foreign hardware or exposing several
virtual hardware interfaces on a single physical host. The software layer that exposes
this virtual hardware interface (i. e., virtual machine) is referred to as a virtual machine
monitor (VMM) or hypervisor1 and the software that runs within the virtual machine
is referred to as the guest.

In order to leverage this technology for security applications it is necessary to inspect
or manipulate the guest from the hypervisor at run time. This inspection and/or ma-
nipulation is generally referred to as virtual machine introspection (VMI) [26]. A more
detailed explanation of virtualization and VMI can be found in Chapters 2 and 3.

1.1 Motivation

Before a hypervisor can perform any sort of introspection of the guest operating sys-
tem’s (OS) state, it must have some semantic knowledge about that guest’s state. That
is, the introspecting component must understand what the binary state it is examining
represents. Without additional knowledge it is difficult to determine which instructions
or data structures one is inspecting when simply given binary information. This disso-
ciation between the binary data and its meaning is referred to as the semantic gap [14].
The semantic gap is an issue that all VMI mechanisms must address as any component
within the hypervisor has no native knowledge about the guest. Addressing this lack of
knowledge is a fundamental challenge of VMI.

Traditionally, hypervisors make use of information delivered to them in an out-of-
band manner to bridge the semantic gap. For example, the hypervisor is provided with

1We use the terms hypervisor and VMM interchangeably.
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1 Introduction

debugging symbols for the guest OS’s kernel before introspection begins. This deliv-
ered information provides the hypervisor with the information it needs to interpret the
raw state of the guest and perform introspection. This approach, while simple, has two
fundamental issues. First, it requires that semantic information be gathered for every
potential guest configuration one is interested in inspecting or manipulating. For exam-
ple, the debugging symbols gathered for Linux kernel version 3.0 may not be applicable
for Linux kernel version 2.6.32 and will certainly not be applicable for the Windows XP
SP2 kernel. This results in one having to gather this information for each potential guest
OS. Furthermore, if the guest OS is closed source, gathering this semantic information
becomes very difficult without intricate knowledge of its internals. The second funda-
mental issue is that the semantic information that the hypervisor is using to perform
introspection is not bound to the actual software architecture. That is, the software
architecture may dynamically change at run-time, however the semantic information
that the hypervisor has remains static. This change in the software architecture may
happen by design in the form of an update or for malicious reasons. In any case, if
the hypervisor is not updated with new semantic information it may no longer have a
correct understanding of what is happening within the guest. This may be especially
dangerous in a security application.

There is an additional method for bridging the semantic gap, namely the derivative
method. This method addresses the semantic gap by looking to the (virtual) hardware.
That is, much can be derived about an OS simply by understanding the hardware on
which it runs. The hardware operates under a strict set of specifications that all software
must adhere to. For example, the Intel IA-32 architecture specifies that the CR3 register
must hold the address of the top-level page directory when paging is active [35]. All OSs
that wish to run on this hardware must adhere to this specification because if they do not,
processes will not have access to their individual address spaces. It is this observation
that the derivative method takes advantage of. That is, with a thorough knowledge
of the hardware specifications, information can be derived about the guest OS. If we
continue with our example, a VMI mechanism taking a derivative approach might make
use of this knowledge of how the paging system works to enumerate processes within the
guest without any information about the guest OS itself. Clearly, this approach does
not suffer from the same issues that the delivery approach suffers. Any guest OS that
wishes to run on the hardware, must abide by the specifications and therefore a derivative
approach will work for all guests that run on a given hardware without additional effort.
Additionally, the hardware architecture will not change against specification at run-time.
Therefore we can be assured that the information we are basing our introspection on
will remain valid throughout the lifetime of the guest.

While this approach seems promising one must explore to what extent it is feasible.
Clearly, there will be portions of the guest state that require delivered information
to understand. There are OS mechanisms that do not require special assistance from
the hardware. It will be difficult, if not impossible, to derive information about these
mechanisms. This means that one must take the time to understand the hardware

2
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1.2 Contribution

and identify what useful information can realistically be derived about the guest OS.
Additionally, it must be shown that such derivative approaches can be effective from a
security perspective and one must explore what impact they have on performance.

1.2 Contribution

This thesis attempts to address the question, “What information can we derive about
a guest OS, given that we know nothing about the guest OS?”. From this follows,
“What feasible properties can we identify that hold for derivative methods of VMI?”,
“Is the gathered information useful from a security perspective?”, and “Can we gather
this information in a efficient manner?”. Concretely, the contributions of this thesis are
summarized in the following paragraphs.

Identifying the Derivative Method as a Feasible Approach to VMI

We begin our work by exploring the challenges that must be overcome when leveraging
VMI to its full potential and we introduce a taxonomy which helps in examining and
reasoning about possible VMI approaches. We introduce several patterns to describe
the various methods in which VMI components bridge the semantic gap. As part of this
taxonomy, we describe both delivery and derivative approaches and draw conclusions
about the advantages and disadvantages of each. Finally, we conclude that a derivative
approach has only been used in limited cases and has properties that make it interesting
for further research.

Identifying Portions of Intel’s IA-32 and IA-32e Architectures Viable for
Derivative Mechanisms

After identifying derivative methods as the target for further research, we take a general
approach and look at what the hardware specifications for Intel’s IA-32 and IA-32e
architectures2 provide. We pay special attention to the virtualization extensions as well
as to those mechanisms that show promise for a derivative approach. Specifically, we look
at the specifications for various processor registers and discuss how they are relevant to
derivative VMI. In addition, we examine the virtualization extensions that Intel provides
and identify where they are lacking from a VMI perspective. That is, the virtualization
extensions were designed with performance in mind and not VMI. This leaves us in a
situation where there are often events that we wish to trap to the hypervisor, however
trapping these events is not supported by the hardware. For these situations, we discuss
how the interrupt mechanism may be used to address these situations.

2We will collectively refer to these two architectures as the x86 architecture going forth.
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Identifying Feasible Properties for VMI-based Security Mechanisms

In addition to the properties native to derivation-based VMI mechanisms, we explore
further properties for VMI-based security mechanisms. Particularly, we take a close
look at the property of transparency as it relates to hypervisors as well as VMI mecha-
nisms. In 2007, Garfinkel et al. considered hypervisor transparency and concluded that
“...building a transparent VMM is fundamentally infeasible, as well as impractical from
a performance and engineering standpoint” [24]. They argue that this is due to dis-
crepancies in the VM that, from an engineering standpoint, will always remain in some
fashion. These discrepancies include simple logical discrepancies, such as instructions
that do not perfectly conform to the specification, as well as timing discrepancies that
will always remain as long as the hypervisor must perform some non-virtualizable ac-
tions in software. We extend this argument to include VMI mechanisms and consider the
drivers for the need for transparency. With these drivers identified, we propose feasible
properties that can displace transparency in certain situations.

Presenting an Introspection Mechanism That Makes Use of Derivative Methods

We provide a proof of concept that derivative methods are feasible for useful VMI mech-
anisms. We do this in the form of Nitro, a framework for trapping system calls to the
hypervisor in a derivative manner. We show that Nitro is capable, useful, flexible, and
resistant to evasion attempts.

Demonstrating that Nitro is Both Efficient and Useful from a Security Perspective

Finally, we consider the performance of Nitro by looking to the methods used to facilitate
system call trapping. We consider some of the design decisions we made and argue as
to why these work to boost performance. In addition to some standalone performance
testing, we also compare Nitro to a similar system that relies on delivered information
and show that Nitro out performs this system. The final step we take is to consider the
system call traces themselves and show that these can be used to successfully perform
malware detection. To do this, we take advantage of support vector machines (SVMs)
in conjunction with string kernels, initially introduced for natural language processing.

1.3 Outline

The second chapter of this thesis serves to provide general background to virtualization.
Chapter 3 expands on this by taking a closer look at VMI. This includes a taxonomy
that we introduce to help in describing and reasoning about VMI approaches. We follow
this with a short look at related work and identify that there has been relatively little
research in the area of derivative VMI methods. We conclude Chapter 4 by arguing that
derivative VMI mechanisms are worthwhile for further research based on the properties
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they inherently provide in addition to the limited amount of existing work. Chapter 5
begins with a look at transparency and how it relates to virtualization in general and
VMI specifically. After arguing that transparency is an infeasible goal, we investigate
the drivers for transparency in a VMI application and present feasible goals in lieu of
transparency. We conclude Chapter 5 with requirements to achieve each goal. This
is followed by an in-depth look at Intel’s x86 architecture in Chapter 6. This chapter
aims to describe general approaches to derivative VMI mechanisms as well as the specific
features of the x86 architecture that lend themselves to derivative methods. The seventh
chapter introduces Nitro, our framework for trapping system calls to the hypervisor using
derivative methods. In this chapter we describe the implementation of Nitro and include
a look back at the properties discussed in Chapters 3 and 4. We demonstrate that Nitro,
in fact, carries these properties. Chapter 8 provides an evaluation of Nitro which includes
the results of performance testing in addition to a comparison with another system for
system call trapping from the hypervisor. Chapter 9 aims to take the system call traces
produced with Nitro and show how they can be used to effectively detect malware using
machine learning techniques. Specifically, we look at support vector machines (SVMs)
in conjunction with string kernels. String kernels are interesting as they have never been
used in malware detection, to our knowledge, and have interesting properties that make
them particularly suitable for malware detection. Chapter 10 presents the results of our
experimentation using our SVM-based approach to malware detection. In addition, we
compare our method to several other machine learning methods for malware detection
using system call traces and show that our approach performs among the best. Finally,
we conclude this thesis in Chapter 11.
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Chapter 2
Background

This Chapter will detail the groundwork that this thesis is built upon. Since virtual-
ization covers a very broad spectrum, we will acquaint the reader with the necessary
background.

2.1 Virtual Machines

In order to understand virtualization, it is necessary to understand what a virtual ma-
chine (VM) is. Furthermore, in order to understand what a virtual machine is, we must
define a machine. A machine is a system that performs useful work on one’s behalf.
In order to perform this work, it is often necessary to provide input. In this case,
the machine must provide an interface for accepting this input. For example, computing
hardware is a machine that provides an interface in the form of registers and the instruc-
tions it accepts. Generally, an OS will make use of this interface to have the hardware
perform work on its behalf. This work might consist of simple arithmetic operations or
more complex I/O. If we expand this example further, the OS together with parts of
the hardware may also be considered a machine that does useful work on behalf of a
process. This is a layered architecture with the hardware representing the bottom-most
layer as is depicted in Figure 2.1

The interface that is provided by a machine plays an important role. In order to
ease discussion, we introduce names for the various interfaces. The interface that the
hardware provides is referred to as the instruction set architecture (ISA) [75] interface.
The ISA is, depending on the hardware, generally quite complex and can be further
divided into two parts. First, the user ISA is that portion of the ISA that any layer
above may access. In contrast, the system ISA is that portion of the ISA which facilitates
access to specific system resources and only privileged layers above may make use of.
This privileged layer generally consists of the OS. In Figure 2.1, interface ‘1’ depicts the
system ISA, while interface ‘2’ depicts the user ISA and together they form the ISA.

The interface that the OS and the user ISA collectively provide to the layers above
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Figure 2.1: Computing system layered architecture

is referred to as the application binary interface (ABI) [75]. While a process may not
have direct access to the system ISA, it may still need to access system resources. To
facilitate this, the OS provides an interface to the layers above, generally in the form of
system calls (Figure 2.1, interface ‘3’). These system calls allow a process to use system
resources while allowing the OS to control that access. In Figure 2.1, the ABI is depicted
by interfaces ‘2’ and ‘3’.

Given these definitions, we can better understand what a virtual machine is. A virtual
machine implements (i. e., virtualizes) a machine in software. This leads to several
options. For example, one can implement a virtual machine that provides a virtual ISA
interface for a system to run on. Additionally, one can implement a virtual machine
that provides an ABI directly for processes. Specifically, we refer to a virtual machine
that provides a virtual ISA interface for an entire system as a system VM and we refer
to a virtual machine that provides an ABI for a single process as a process VM [75].

2.2 Process Virtual Machines

In the purest sense, many multitasking OSs are, by their nature, a process VM. They
provide an ABI, which is implemented using the ISA that the OS is running on, and
provide each process an individual address space. That is, the process may run as if it
is the only process running in memory. However, generally when we speak of a process
VM, we refer to an additional layer between the OS and the process.

A process VM must implement the ABI that it exports (we will refer to this interface
as the target interface) using the interface on which the VM is running (we will refer to
this interface as the host interface). That is, if a process VM is running directly on an
OS, the VM must implement the target interface that it provides to layers above using
the host interface that the underlying OS provides. In order to accomplish this, the VM
may rely on one of two methods, either interpretation or binary translation [75].
Interpretation is the most straightforward method in that it simply relies on em-

ulating each individual instruction accepted by its target interface using instructions
accepted by the host interface. While this method may be straightforward, it may also
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prove inefficient, as each target instruction may require several instructions on the host
interface.

On the other hand, binary translation attempts to address the inefficient manner of
interpretation. This method attempts to inspect the process and translate blocks of
target instructions into blocks of instructions for the host interface that perform the
same task [74]. Once this translation is complete, the translated block may be run
directly on the host interface. While the initial translation of a block may incur high
time overhead, subsequent executions of that block will not incur the same overhead as
these translations may be cached.

It is also possible to combine these two methods in an effort to streamline the VM. That
is, one may use interpretation for portions that may not be particularly performance
critical as it is the more straightforward method and use binary translation for portions
that are performance critical.

One popular advantage of process VMs is that they can be implemented in such a
way that they provide a platform-independent environment for their processes. That is,
one must put in the effort of implementing the VM for several platforms. However once
this is finished, processes written to run within the VM can run on several platforms
without adjustment. This approach can be seen in many popular examples such as the
Java VM and the ActionScript VM (Adobe Flash).

2.3 System Virtual Machines

The term virtual machine was coined to describe system virtual machines during their
inception in the 1960s and 1970s [29, 75]. A system virtual machine provides an ISA
interface for an entire system to run on. The system running within the VM is often
referred to as the guest OS while the software layer that manages the VM is often
referred to as the virtual machine monitor (VMM) or hypervisor 1. These components
are shown in Figure 2.2.

System VMs were originally conceived and used in the 1960s and 1970s, but lost their
acclaim in the 1980s and 1990s due primarily to reduced hardware costs. That is, as
hardware became smaller and cheaper, it also became more accessible and there was less
need to share hardware through virtualization. However, starting in the 2000s there has
been a resurgence of virtualization technology both in industry and in academia [67].
This has several reasons. The first is, once again, cost. Although the cost of hardware
has come down since the 1970s, the proliferation of computing technology in all aspects
of society has, once again, made virtualization an attractive option to reduce costs and
to manage space. In addition to cost, the isolation that system virtualization offers is an
attractive property in a variety of applications. System virtualization is a straightforward
mechanism to mitigate the consequences of crashes or intrusions. Looking to the future,

1We use the terms hypervisor and VMM interchangeably.
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Figure 2.2: Bare-metal VM (Type I) architecture (A) and Hosted VM (Type II) architecture
(B)

Rosenblum and Garfinkel speculate that system virtualization will be an increasingly
sought after technology to address security and reliability [67].

2.3.1 System Virtual Machine Architectures

While system VM architectures vary greatly, they can be broadly divided into two
categories: bare-metal VMs (Type I) and hosted VMs (Type II) [28].

In bare-metal VM architectures, the VMM runs directly on the hardware as is depicted
in Figure 2.2(A). In contrast, a hosted VM runs within an OS environment as shown
in Figure 2.2(B). While a bare-metal VM architecture is generally less complex due to
the smaller code base which results from the lacking host OS, the hypervisor cannot
rely on a host OS to provide low level services and must implement them on its own.
For example, in a bare-metal VM architecture, the VMM must include drivers for all
hardware devices. Whereas in a hosted VM architecture, the VMM can rely on the
host OS to provide access to the hardware. While the VMM can rely on the host OS for
some services, it may still be beneficial for the VMM to access portions of the hardware’s
system ISA. For this reason, it is often the case that, even in a hosted VM architecture,
a portion of the VMM is integrated into the host OS in the form of drivers or modules.

2.3.2 System Virtual Machine Interfaces

System VMs may be roughly categorized based on the virtual ISA interface (i. e., target
interface) they offer. The first of such categories is an emulation VM. That is, the VM
offers an ISA that may differ from the underlying hardware’s ISA. This allows a system
intended for a particular hardware architecture to run on unintended hardware. Tradi-
tionally, VMs and emulators were often acknowledged independently, however they share
many concepts [52]. As a result of this, more current definitions of VMs include emu-
lation VMs [75]. As with process VMs, emulation can be implemented either through
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interpretation or binary translation. Interpretation is a matter of directly implementing
the target interface in software and interpreting each target instruction for the host archi-
tecture. In contrast, binary translation relies on translating blocks of target instructions
to functionally equivalent host instructions. While interpretation incurs a relatively high
performance overhead, its strength lies in its flexibility. There are no interfaces which
cannot be emulated through interpretation. That is, emulating an architecture by means
of interpretation allows one to emulate any architecture, even architectures for which
hardware may not yet have been released [51]. Conversely, while binary translation may
decrease the performance overhead, it may not be able to emulate all interfaces [75].
For example, if the target architecture supports a mechanism such as virtual addressing
and the underlying host architecture does not offer such a mechanism, there might not
be a way to translate this and the virtual address mechanism must be implemented in
software (i. e., interpreted).

In direct contrast to emulation, a same-ISA VM offers an ISA that is identical to
that of the underlying hardware. If the host ISA supports various privilege levels, these
can be leveraged to implement such a VM. If the reader will recall from Section 2.1,
the ISA may be divided into two parts, namely the user ISA and the system ISA. In
this case, the VMM runs with system privileges and may make use of the entire host
ISA, while the guest OS runs with user privileges and may make direct use of the host
user ISA. Since the guest OS will still try to access the host system ISA interface, the
VM must take care to virtualize this portion of the ISA for the guest OS [29, 59, 75].
Popek and Goldberg identified three properties that a same-ISA system VM should
possess, namely efficiency, resource control, and equivalence [59]. They stress that user
ISA instructions must be executed natively, the hypervisor must have full control over
all resources, and that programs running within such a VM should perform identically
to the same program running on physical hardware. These VMs incur much less time
overhead compared to emulation. Such an approach can be improved further through
special hardware assistance for virtualization in the physical hardware. This is explained
further in Section 2.3.3.

Between emulation and same-ISA VMs, there has emerged an approach that lies some-
where between these two more traditional methods of system virtualization, namely par-
avirtualization [89, 88]. In a paravirtualized environment the VM offers a target ISA
interface that consists of the host ISA interface (or a majority thereof) in addition to
some extended interface, sometimes referred to as the hypercall interface [9]. Generally,
the portion of the VM that offers the host ISA interface is implemented in the same
manner as a same-ISA VM, while the hypercall interface is implemented through in-
terpretation. These hypercalls are generally very few and allow the guest OS to send
status signals to the VMM or make special requests of the VMM that either the physical
hardware does not support or streamlines the sharing of hardware resources. Of course,
in such an environment the guest OS must be aware of the hypercall interface in order to
make use of it. That is, to take full advantage of paravirtualization a specialized guest
OS kernel is required.
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2.3.3 Hardware-Assisted System Virtual Machines

As mentioned in Section 2.3.2, same-ISA VM’s performance may be improved by making
use of hardware extensions that are available in modern processors. While such exten-
sions may exist on other hardware, for the purposes of this discussion we will focus on
the extensions provided by Intel (Vanderpool/VT-x) [35] and AMD (Pacifica/SVM) [5]
for the x86 family of processors. At a high level, these virtualization extensions add an
additional layer to the protection mechanism already available in the x86 architecture.

As discussed in Section 2.1, a hardware platform’s ISA may be divided into user and
system ISAs. In the x86 architecture, the ISA is split into four privilege levels or rings
numbered 0 to 3, where ring 0 provides the highest privilege level and ring 3 provides
the lowest. As mentioned in Section 2.3.2, same-ISA VMs may be implemented taking
advantage of these privilege levels, in which the VMM runs in ring 0 and the guest in
a lower privilege level. The problem with such an implementation is that the guest OS,
which expects to run in ring 0, must run at a lower privilege level and the VMM must
handle all interaction with the system ISA interface on behalf of the guest. What the
virtualization extensions provide is another level of protection. That is, a new set of
virtualization privilege modes is introduced, namely VM mode and root mode. Each of
these new privilege modes has the traditional privilege levels nested within. So, a guest
OS may run within ring 0 as it expects, but may not realized that it is also running in
VM mode. There are still some portions of the ISA interface for which the VMM will
need to get involved and when the guest attempts to access these, the hardware will
switch back to root mode and let the VMM resume. This is referred to as a VM exit,
while a switch from root mode to VM mode is referred to as a VM entry.

This allows the guest OS to access those parts of the system ISA interface that are
not critical for the purposes of virtualization, thus improving performance as the guest
OS is running directly on the host hardware. The VMM must only get involved in those
portions of the system ISA interface that are critical for virtualization.

2.4 Conclusion

The background in this chapter lays the foundation for an interesting concept that arises
in virtualized environments, namely virtual machine introspection (VMI). As system
virtualization inherently gives the hypervisor complete control of all system state infor-
mation, the hypervisor can use this knowledge to inspect, interrupt, and/or manipulate
the VM. This has very interesting implications especially from a security perspective. In
the next two chapters we explore VMI more extensively. We will explore the VMI pro-
cess, introduce patterns by which one can perform VMI, and discuss common challenges
and properties of VMI.
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Chapter 3
Virtual Machine Introspection

Virtual machine introspection (VMI) describes the act of examining, monitoring,
and manipulating the state of a guest OS running inside a virtual machine from the
isolation of the hypervisor.

The above definition of virtual machine introspection is based on the foundation that
Garfinkel and Rosenblum laid [26]. They outline three properties of virtualization that
enable VMI:

Isolation This property ensures that the guest OS remains in confinement and is unable
to tamper with the VMM or any component within.

Inspection This property allows the VMM to examine the entire state of the guest OS.

Interposition This property refers to the ability to inject actions into the normal oper-
ation of the guest system.

It is from these properties that we developed our definition. The ability to examine
and monitor the guest OS is possible through the inspection property. The ability to
manipulate the guest OS comes from the interposition property. Finally, the isolation
property enforces that this can take place in confinement from the guest OS. Ultimately,
these properties allow us to gather a complete and untainted view of the VM state,
operate in complete isolation of any entity running within the VM, and manipulate the
VM state if or when necessary.

3.1 The Semantic Gap

Despite the power that one has from the vantage point of the hypervisor, there remains
one fundamental challenge that all VMI approaches share:
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Interpreting the immense amount of binary low-level data that comprise the system
state to obtain an abstract high-level view of the guest OS

This challenge expresses a need to interpret a massive amount of data that, from the
vantage point of the hypervisor, is simply binary data. It may be very difficult for a VMI
component to act directly on this binary data. This is due to the fact that it is generally
an immense amount of data that has little meaning at face value. This lack of meaning
or semantics is referred to as the semantic gap [14]. The meaning of this binary data
must be evaluated such that the VMI component can act upon it. In order to perform
this evaluation it is often the case that some external knowledge of the guest hardware
or OS is necessary. Once some external knowledge has been applied, it becomes clear
what the binary data represents. This process is illustrated in Figure 3.1. Figure 3.1(A)
shows the data in its raw state. It may be difficult to incorporate this information
into an analysis without additional information. However, when we combine this binary
information with further semantic information, we are able to interpret the information
and make better use of it in our analysis. In this case, we combine the binary data with
the knowledge that it represents an Ethernet frame and the knowledge of the involved
protocol specifications to get the view depicted by Figure 3.1(B).

00 90 7f 41 c2 a0 f0 4d  a2 dc 13 d9 08 00 45 00
00 54 00 00 40 00 40 01  1f 25 83 9f 32 29 d1 55
94 66 08 00 8a 46 1e 95  00 03 eb 50 99 4f 00 00
00 00 09 ae 02 00 00 00  00 00 10 11 12 13 14 15
16 17 18 19 1a 1b 1c 1d  1e 1f 20 21 22 23 24 25
26 27 28 29 2a 2b 2c 2d  2e 2f 30 31 32 33 34 35
36 37

A

Ethernet Frame

Destination: 00:90:7f:41:c2:a0 Source: f0:4d:a2:dc:13:d9 Type: IP

IP Packet

Version: 4    Header Length: 20 bytes    Type of Service: 0x00  
Total Length: 84 bytes    ID: 0x0000    Flags: 0x02    Fragment Offset: 0

Time To Live: 64    Protocol: ICMP    Checksum: 0x1f25
Source: 131.159.50.41    Destination: 209.85.148.102

ICMP Packet

Type: Echo Request (Ping)    Code: 0    Checksum: 0x8a46
Identifier: 0x1e95    Sequence: 0x0003

Data

eb 50 99 4f 00 00 00 00 09 ae 02 00 00 00  00 00 10 11 12 13 
14 15 16 17 18 19 1a 1b 1c 1d  1e 1f 20 21 22 23 24 25 26 27 
28 29 2a 2b 2c 2d  2e 2f 30 31 32 33 34 35 36 37

B

Figure 3.1: The binary representation of an ICMP packet (A) is difficult to interpret until
semantic information is applied (B).
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3.2 The VMI Process

In this section, we take a closer look at how VMI is performed in a general sense. That
is, we look at each individual step that is taken starting with collecting the raw state and
finishing with a comprehensible aggregated view of what is happening with the guest
VM.

3.2.1 States and Views

All VMI approaches inspect guest system state. The guest system state is comprised
of all guest system information and is simply the concatenation of all observable values
within the VM. These observable values include the contents of CPU registers, volatile
storage, stable storage, and the state of any connected devices. We further break this
state down into two categories. We refer to the guest state that is visible to the guest
as the guest-visible state and the guest state that is visible to the VMM as the VMM-
visible state. These may differ for two primary reasons. First, there may be state that
the guest simply cannot see, for example, read-only registers or the state of emulated
devices. Second, there is some state that the hypervisor knowingly hides from the guest
(e. g., to protect the value in a register).

As stated in the chapter introduction, it may be very difficult for a VMI component to
act directly on the state. In order to perform meaningful analysis, the VMI component
must not just be able to observe the state, but must also be able to make sense of the
state. In order to do this, some external knowledge must be applied to construct a useful
view of the system state. A view is a concise representation of the state that incorporates
external knowledge about either the guest software architecture or the guest hardware
architecture. More specifically, a view may be zero or more of the following:

1. The view may be a portion of the state.

2. The view may be a permutation of the state.

3. The view may be an interpretation of the state.

In some cases, one might be interested in focusing on a particular portion of the state.
In this case, external knowledge must be applied to identify and locate the portion of
the state that one is interested in. For example, extracting just the process list from the
entire state requires an understanding of how the guest OS stores this information and
in what data structures.

Permutation of the state may be necessary to identify (dis)similarity between states.
If we continue with our example of the process list, we might consider two process lists
equivalent if they contain the same processes even if they occur in a different order.
This, again, requires external knowledge to be applied. In order to permute the items in
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the data structure containing the process information, this data structure must be well
understood.

Finally, the view may be an interpretation of the state. Defining exactly how this
interpretation is performed is situational, but may be as simple as counting instances
of a data structure. To further the on-going example, the processes in the process list
are counted and the sum is saved while the process list itself is discarded. That is, the
number of processes currently running is information that has been interpreted from the
process list. As in the above examples, this, again, requires knowledge of the appropriate
data structures to complete.

3.2.2 View-Generation and Aggregation

A view is the “essence” of a system state with respect to one’s particular application.
In order for this “essence” to be extracted, the semantics of every single represented bit
must be well-known. When we say that the semantics of a bit is known, we mean that
its meaning within the context of the guest system is known. Once this “essence” has
been extracted, we may work with it and the challenge set forth for VMI in the chapter
introduction has been addressed. Hence, the process of generating a view is vital in any
VMI application and we may benefit from a closer look at view generation.

In order for the meaning of every bit within the view to be known, the process in which
a view is generated must incorporate knowledge of the virtual hardware architecture
and/or the guest system software architecture (i. e., the combined architecture of the
guest OS and all software running on the guest OS). Making use of knowledge of the
virtual hardware architecture allows us to translate guest virtual addresses to guest
physical addresses, for example, as this is a process that is define by the hardware
architecture. On the other hand, making use of knowledge of the guest system software
architecture allows us to locate the process list data structure, for example, as this data
structure is defined by the software architecture.

In addition to which information is incorporated for view generation, the perspective
from which it is generated is equally important. As mentioned in Section 3.2.1, there is
guest-visible state and VMM-visible state. In this vein, the view may also be generated
either from the perspective of the guest or from the perspective of the VMM. We refer to
view generation that occurs from the perspective of the guest as internal view-generation
as it is happening within the guest and view generation that occurs from the perspective
of the VMM as external view-generation as it is happening outside of the guest.

While view-generation may be described as generating a view from a state, this is
often not enough as one may have to incorporate multiple sequential views to generate
a clear picture of what is happening within the VM. This is important for many VMI
applications that consider a sequence of views and combine these views into a final
aggregated view. For example, a compromised process may sequentially open a large
number of sockets. A single view may seem benign as the process only opens a single
socket at a time. However, it may become clear that malicious activity is transpiring
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when looking at a sequence of views. Thus, we introduce the notion of combining several
consecutive views of a system run into an aggregated view.

The flow of information is depicted in Figure 3.2. View generation makes use of the
observable state along with knowledge of the virtual hardware architecture (HW knowl-
edge) and/or the guest system software architecture (SW knowledge). This information
is used to generate views which are then combined to culminate in a final aggregated
view. It is important to note that this is a generalization and, depending on the actual
application, some components in the information flow may not be considered. For ex-
ample, an application may rely on either internal or external view generation, rather
than both. Additionally, view generation may rely on knowledge of either the hardware
architecture or the software architecture as opposed to both. Finally, the aggregation
step is completely optional as there are some VMI applications that do not require this
and can work on a single view.

guest-visible state

VMM-visible state

-

-

HW knowledge

SW knowledge

6 6

? ?

internal view-generation

external view-generation

-

-

internal view

external view

aggregation -aggregated viewr

6

Figure 3.2: Visualization of VMI information flow, where knowledge of the virtual hardware
architecture (HW knowledge) and/or the guest system software architecture
(SW knowledge) is combined with the guest-visible state and the VMM-visible
state in the respective view-generation to create a view. These views may then
be combined to create a final aggregated view.

3.3 VMI Patterns

Having taken a look at the general VMI process it becomes clear that view generation
is a very important step in any VMI application and that there are various ways to
achieve a final aggregated view. That is, VMI applications may perform view generation
externally or internally. Additionally, an application may choose to combine internal
view generation with external view generation. Furthermore, an application may make
use of knowledge of the virtual hardware architecture, the guest software architecture,
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or a combination of the two. To help in considering various VMI approaches, we present
three VMI patterns that can, in combination, describe any VMI approach.

Nance et al. take a similar approach by classifying VMI approaches with regard to
semantic awareness [54]. In their classification, they consider a system “semantically
aware” if it uses knowledge of the guest software architecture and “semantically un-
aware” otherwise. However, we recognize that systems that are “semantically unaware”
according to Nance et al. must still base their knowledge on an understanding of the
hardware architecture. To this end, we present three view-generation patterns that may
be used alone or in any combination as a means for bridging the semantic gap, namely:
the out-of-band delivery pattern, the in-band delivery pattern, and the derivative pat-
tern. What follows is an in depth discussion of each pattern and its properties.

3.3.1 Properties

We begin by presenting the various properties that each pattern may have.

3.3.1.1 Guest OS Portability

Guest OS portability refers to a property that allows the same VMI mechanism to work
for various guest OSs without major changes. In order to achieve guest OS portability,
the underlying VMI mechanism may not rely on knowledge of the guest OS itself, but
rather on knowledge of the virtual hardware specifications. We sometimes refer to a
component with this property as guest OS agnostic.

For example, Jones et al. make use of the CR3 register in order to track processes [38].
How this register is to be used within the memory management unit (MMU) is specified
by the x86 architecture and all OSs running on this hardware and using the MMU must
conform to these specifications. Thus, this basic method can be used to track processes
in various guest OSs without change as long as the OSs support virtual memory.

3.3.1.2 Binding

Litty et al. introduced the notion of non-binding information [46], this being information
that is not bound to the assumptions it relies on. This is often a concern in monitoring
any software system. Consider a kernel data structure that must be monitored and the
information we have is that this data structure can be found at a particular offset with a
specified size. The problem that we run into is that the information about the position
and size of the data structure is not bound to any assumption that we can rely on. That
is, if the data structure is moved (for malicious or benign purposes) and we are not made
aware, we are basing our monitoring on information that is no longer correct. Based on
this, we consider an approach to have the binding property if it relies on information
that is bound to assumptions that cannot change during run-time.
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3.3.1.3 Isolation

Isolation is a straightforward property that states that an introspecting component can-
not be influenced in an unintended manner by component within the guest OS. This
is standard property that we generally take for granted when working in virtualized
systems, however we must be aware that the semantic information and view generation
may not always be completely isolated from the guest OS.

3.3.1.4 Inspection of Suspended VM

This is another fairly straightforward property and it describes the ability to inspect a
VM while the VM itself is inert. This may be important for static analysis of a VM, as
is the case in digital forensics. In such a case it may be beneficial to inspect a suspended
VM as this gives the benefit of inspecting a machine whose volatile storage is intact
without having the concern that the system may cause further damage.

3.3.1.5 Full State Applicability

This is a very interesting property that describes the coverage of an approach in terms
of the state. That is, there are some approaches that can be used to inspect and inter-
pret the entire state of the VM. This property describes such approaches. Conversely,
there exist approaches for which some parts of the state cannot be inspected and/or
interpreted. A very simple in-guest example of this is a host-based monitor that runs in
user space. Such a monitor is unable to monitor the memory of the kernel or of other
processes due to inaccessibility and is therefore not full state applicable.

3.3.2 Out-of-Band Delivery

This pattern is depicted in Figure 3.3 and is the most commonly used method for bridging
the semantic gap. Here semantic knowledge is delivered to the external view-generating
component in an out-of-band manner. That is, the external view-generating component
receives the semantic knowledge in advance, before VMI begins. For example, the VMM
may make use of a previously delivered symbol table based on the guest OS kernel to
determine the position of key data structures.

The view-generating component makes sole use of knowledge of the software archi-
tecture. Since this knowledge is delivered in an out-of-band manner, this component
is only fit to create a view based on the knowledge it currently has. If a malicious en-
tity changes the software architecture (e. g., by inserting some hidden data structure),
clearly the view-generating component is no longer fit to provide an accurate view. The
semantic knowledge (i. e., the software architecture description) that the view-generating
component uses is in no way bound to the actual software architecture of the running
guest. For this reason, such an approach is non-binding.
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HypervisorAggregation

Guest OS Kernel

View-generation

Virtual HardwareSystem State

SW 
Knowledge

Figure 3.3: Out-of-Band Delivery: The view generation makes use of knowledge of the
software architecture, which was delivered out-of-band, to interpret the system
state from within the hypervisor.

Very closely related to the non-binding nature of this pattern is the lack of guest
portability. That is, if the guest system software is changed or replaced completely, new
knowledge must be delivered to the view-generating component or in the worst case, the
view-generating component must be constructed anew to accommodate the new system
software.

As seen in Figure 3.3, this pattern makes use of external view generation. The fact
that the view generation is performed externally results in two properties of this pat-
tern. First, the component is isolated from the guest. Therefore, any malicious entities
which may have compromised the guest OS cannot influence or corrupt view generation.
Second, the VM does not need to be running while the view generation takes place. This
allows one to mitigate the external effects of keeping a compromised system running.
For example, it is beneficial to suspend a system which acts hostile to neighbors on a
production network while still being able to examine it.

This pattern is easily applied and implemented when compared to the derivation
pattern, which is detailed below. In a practical example, monitoring any kernel-level
data structure externally requires delivering the address and the layout of the data
structure to the monitoring component. This information can generally be obtained
through debugging methods.

3.3.3 In-Band Delivery

The in-band delivery pattern is depicted in Figure 3.4 and it describes an approach in
which an internal component creates a view and delivers this view to the VMM. Since
the view-generating component is internal, it may make use of the guest OS’s inherent
knowledge of the software architecture. That is, semantic knowledge is being delivered
in an in-band manner.

Upon closer inspection, this pattern does not so much bridge the semantic gap, but
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HypervisorAggregation

Guest OS KernelView-generation

Virtual HardwareSystem State
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Knowledge

Figure 3.4: In-Band Delivery: The view generation makes use of its inherent knowledge of
the software architecture to interpret the system state from within the guest
OS and delivers the view to the hypervisor in-band.

rather avoids it. In fact, one could rightfully argue that this is not a method for bridg-
ing the semantic gap in the purest sense since the view is generated from within the
monitored guest OS. However, we include this pattern for the sake of completeness and
because it can be successfully combined with other patterns.

Having an internal view-generating component results in a few disadvantages. First,
since view generation takes place within the monitored guest OS, the component that
implements view generation is susceptible to compromise from any malicious entity that
has compromised the monitored guest OS. In essence, it is necessary to trust a component
which may be compromised. Second, an internal component does not support the ability
to examine a suspended system, creating possible inconsistencies and resulting in the
inability to mitigate external effects. Third, an internal component will always interfere
with the system being monitored and finally, there may be parts of the state not visible to
the view-generating component. Additionally, as with the out-of-band delivery pattern,
this pattern is neither binding nor guest OS portable.

We present this pattern as only making use of guest software knowledge. While it is
practically possible to create a view-generating component that makes use of hardware
knowledge from within the monitored guest OS, such view generation is always best done
externally for one primary reason: Any view-generating component that makes use of
hardware architectural knowledge can be implemented from within the VMM and gains
all of the benefits associated with such an approach (e. g., isolation, consistency, etc.).
On the other hand, implementing a view-generating component in the guest OS brings
no advantages over an approach in which the component is implemented externally. For
this reason, we argue that while implementing such a component internally is practically
possible, there is absolutely no added value and is therefore not discussed further.
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HypervisorAggregation

Guest OS Kernel

View-generation

Virtual HardwareSystem State
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Figure 3.5: Derivation: The view generation makes use of knowledge of the hardware ar-
chitecture to interpret the system state from within the hypervisor.

3.3.4 Derivation

The final VMI pattern is depicted in Figure 3.5 and it moves away from the more com-
mon approaches. This approach has the VMM derive information through semantic
knowledge of the hardware architecture. For example, understanding a particular archi-
tecture and monitoring control registers within a CPU provides us with some semantic
knowledge.

This pattern makes use of the external view-generating component, thus leading to
an approach that is isolated from the guest OS as well applicable in the inspection of a
suspended VM.

Further, it can be seen that the view-generating component constructs its output based
on knowledge of the hardware architecture alone. This results in two additional advan-
tages. First, this pattern is completely guest portable as the view-generating component
has no reliance on the guest software architecture. Second, this is a binding approach
in contrast to the two delivery methods. That is, the hardware architecture description
is bound to the hardware architecture of the virtual machine because there is no way
for a malicious entity that compromised the guest OS to change the virtual hardware
architecture. A malicious entity has no way of changing the hardware, and whatever
changes it may apply to the software will not effect the view-generating component’s
ability to create a view.

This seems like the ideal pattern, though in practice it becomes difficult to implement
as it requires extensive knowledge of the hardware. In addition, there is some state
for which hardware knowledge is not helpful in view generation. This is due to the
fact that there is information that cannot be extracted by only making use of hardware
architectural knowledge, making this approach not full state applicable. For example,
the arrangement of a data structure that performs some bookkeeping for a process is
impossible to derive based on hardware knowledge if this bookkeeping is completely
independent of the hardware. To what extent this limitation exists is explored further
in Chapter 6.
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3.4 Combination of Patterns

The patterns that have been discussed up to this point are in their purest form. It is,
of course, possible to combine such patterns. In fact, it is sometimes beneficial to use
a drawback of one pattern in combination with another pattern to one’s advantage: A
component of rootkit detection often involves trying to determine whether two mecha-
nisms, one often at a higher level than the other, report the same status about some OS
data structure. Such an approach is possible by combining the in-band and out-of-band
delivery patterns and relying on the fact that a capable malicious entity will compro-
mise the internal view-generating component or the guest OS itself, thus leading to an
inconsistency between the two views created, which is then detected.

Property Delivery Derivation
in-band out-of-band

Guest OS portability — — X
Binding — — X
Isolation from guest OS — X X
Inspection of suspended VM — X X
Full state applicability — X* X**

Table 3.1: Comparison of the view-generation patterns (*only when combined with a derivative

approach; **only when combined with an out-of-band delivery approach)

We have summarized the properties of the different patterns in Table 3.1. When
combining such patterns, it is important to carefully consider how the properties of
these patterns will interact with each other. For instance, full state applicability can
only be achieved in combination. That is, no single approach is capable of interpreting
all state. For example, an out-of-band delivery approach may need to calculate a guest
physical address from a guest virtual address. In order to complete this, knowledge of the
hardware architecture is required and no knowledge of the guest software architecture
is of help. Specifically, one must know how the translation from a guest virtual address
to a guest physical address takes place and what data structures are involved. One
might argue that such information might be delivered along with knowledge of the guest
software architecture as the software might need to implement such functions as well.
While this may be true, this knowledge still ultimately comes from knowledge of the
hardware architecture. That is, while virtual to physical address translation might be
implemented in the kernel, this is has been implemented based on knowledge of the
hardware architecture. Conversely, a derivative approach alone cannot interpret all
state. For example, knowledge of the hardware architecture will not help in locating the
process list within the guest kernel as this data structure is completely independent of
the hardware architecture.

On the other hand, deciding what approach is best for a given application is not as
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simple as combining all patterns in order to get the benefits of each. An advantage
of one pattern will not necessarily negate the disadvantage of another. For example,
a combination of a delivery pattern with the derivation pattern will not result in an
approach that is guest portable simply because one of the patterns has such a property.
In fact, in this case, the opposite is true: The disadvantage of one pattern negates the
advantage of another.

There are additional cases in which the properties are independent, for example, a
combination of a delivery and a derivation pattern, though this time with respect to
the binding property. A combination of two such patterns can neither be classified as
binding nor as non-binding. There is simply some information within the system that
is the result of bound knowledge and some information within the system that is the
result of unbound knowledge. How this information is to be used needs to be carefully
considered.

Finally, some patterns are simply not appropriate for a given application. For example,
using the derivation method alone to monitor changes in a file on a disk is a poor choice
as it is impossible to derive the exact sector of a disk on which the appropriate portion
of a file lies without knowledge of the file system structure in use.

3.5 Summary

In this chapter, we have taken a closer look at VMI and its application. We began by
introducing a definition that encompasses all VMI techniques based on the foundation
that Garfinkel and Rosenblum laid [26]. We then introduced the single challenge that all
VMI applications must face, namely the semantic gap [14]. This describes the challenge
that one faces when trying to interpret the binary state that one sees from the perspective
of the hypervisor.

To consider this challenge more closely, we explored a general VMI process. That is,
we considered the steps necessary to interpret the raw state and construct a view of the
guest VM’s state. We identified that view generation is synonymous with bridging the
semantic gap. We then considered the various methods for creating a view with regard
to the information that is included and the perspective from which the view is generated.

Having looked at the process, we identified three patterns with which one can classify
all possible view-generating approaches, namely in-band and out-of-band delivery, and
derivation. Furthermore, we presented a thorough discussion of each pattern’s proper-
ties as well as their advantages and disadvantages for view generation. The patterns
themselves allow us to consider various approaches and provide a taxonomy for VMI
applications that is helpful in discussion. We make use of this in our own work when
considering other approaches and argue that having some form of taxonomy in any field
makes considering new approaches more methodical.

As we have found our taxonomy of VMI methods an invaluable tool for discussion
and analysis of VMI methods, we urge readers to consider approaches based on this
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3.5 Summary

taxonomy. As the taxonomy is based on the single challenge that all VMI methods
share, this is helpful and logical manner to consider various approaches. The patterns are
able to represent all VMI approaches in a consistent way, making them comparable and
allowing one to reason about their properties and appropriateness for a given application.
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Chapter 4
Related Work

Having introduced the various view-generation patterns, we demonstrate their usefulness
and put them to work by presenting related work with respect to these patterns.

4.1 Delivery Approaches

Since the work done by Garfinkel and Rosenblum [26], there has been quite a bit of
work taking similar delivery approaches, all of which can be described with the patterns
we identified. The VIX tool suite [32] is an implementation of the out-of-band delivery
pattern for forensic analysis. This system uses delivered knowledge about the guest
OS in order to implement common Unix tools such as ps and lsmod. Systems such as
HookSafe [86], NICKLE [66], and Rhee et al.’s system [62] strive to monitor or protect the
integrity of kernel code or data structures. These systems all take a delivery approach,
whereby NICKLE needs minimal delivered information as it works by shadowing the
entire kernel memory space. This means that NICKLE is not interested in specific data
structures, but rather the offset of the kernel memory space as a whole. Additionally,
XenAccess [56] uses a delivery approach to provide a library for general VMI functionality
such as memory and disk access. Due to the flexible nature of XenAccess, Dolan-Gavitt
et al. were able to run common forensic tools on a VM though its use [19]. Finally,
Insight also takes an out-of-band delivery approach, but in addition to common delivered
knowledge, Insight is able to parse the source code of the target kernel [69, 70]. This
allows Insight to perform an used-as analysis to allow one to identify the data type of
any data structure in memory.

Both Lares [57] and Xenprobes [61] take a combined in-band and out-of-band deliv-
ery approach to VMI by placing hooks into the guest OS from the hypervisor. This
allows these systems to partially use semantic information that is inherent to the guest
OS. VMwatcher[36] takes a similar approach, but it combines an out-of-band delivery
approach with an in-band delivery approach to perform cross-view validation. That is,
the system compares the process list as collected from the hypervisor with the process
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list as collected from within the guest OS to look for inconsistencies. IntroVirt [39] also
makes use of an in-band delivery approach to bridge the semantic gap. This system de-
fines “predicates” that are executed to detect when vulnerabilities are exploited. These
predicates may make use of functions within the guest OS.

We mention in Chapter 3 that in-band delivery approaches suffer due to the fact
that they run within a possibly compromised guest OS. While this is true, there has
been work to mitigate the risks associated with this. This is an interesting approach as
bridging the semantic gap becomes straightforward due to the fact that code running
within the guest OS may benefit from the semantic knowledge that the running system
has. Such approaches try to implant code within the guest OS, however they take extra
care to secure this code from the hypervisor. Sharif et al. introduce the notion of Secure
In-VM Monitoring (SIM) [73]. This approach attempts to load code into the VM and
protects this code by using gates that protect access to the SIM code through clever use
of shadow page tables. Gu et al. propose a similar approach although they make use of
the guest OS’s protection mechanisms to implant a process and have it seem as if it is a
process already running within the guest [31]. This allows them to run a process in the
context of the guest OS with a “degree of stealthiness”.

Finally, there exist two approaches that take a delivery approach, but are very clever
in how this semantic knowledge is gathered. Rather than using traditional debugging
symbols or symbol tables, these systems make use of an OS identical (or at least similar)
to the guest OS to learn or extract semantic information about the guest OS. The first
system, introduced by Srinivasan et al., moves a process out of the guest OS into a
security VM, but passes system calls back the guest OS to be executed there [76]. This
allows a security critical processes to run in isolation while accessing the kernel of the
guest OS through system calls. The second such system, Virtuoso, performs a simple
task within an OS and records the instruction trace [18]. From these instruction traces
Virtuoso is able to automatically generate a code module that can be run from the
hypervisor and performs the same job as the initial task. In both of these systems there
is no semantic knowledge that is ever explicitly delivered. However they make use of
OSs, which must be similar enough to the guest OS, to bridge the semantic gap. This
is still delivered knowledge, however the delivered knowledge takes the form of an entire
OS. In the case of Srinivasan et al.’s system, the security VM provides a context for the
process to run within. That is, the OS running within the security VM must be similar
enough to the guest OS as to host the process. Additionally, the system call mechanism
must be identical to that of the guest OS for the forwarding of the system calls to be
possible. On the other hand, Virtuoso takes an approach in which it makes use of a
similar OS beforehand to create a module which will run in a similar system later. Here,
again, the OS provides the context for the initial task to run. This is then recorded and
replayed from a different perspective.
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4.2 Derivative Approaches

Litty et al. present a system they call Manitou [47]. It uses the paging mechanisms of
x86 processors from Intel and AMD to perform integrity checks on code pages before
execution. They further this work to create a system called Patagonix for reporting
running processes and maintaining the integrity of code pages [46]. This work uses
knowledge of the hardware architecture, specifically the paging mechanism, to perform
its intended tasks. Jones et al. [37, 38] take a slightly different approach, but also present
a system that implements the derivation pattern. Their system makes use of the paging
mechanism and the memory management unit (MMU) in x86 and SPARC hardware
architectures to identify running processes.

The work of Vogl et al. [82] is another interesting example of how a derivative method
can be applied. This work makes use of debugging and performance monitoring mech-
anisms within the x86 hardware to perform instruction tracing as well as implementing
a shadow stack to protect against stack-based shellcode attacks. The authors make use
of performance monitoring counters (PMCs) in conjunction with the last branch record
(LBR) to collect information about branching statements that have been executed, then
recreate the instruction trace without having to trap each individual instruction. In
addition, they make use of the LBR to implement a shadow stack. That is, they keep a
copy of the stack in the hypervisor and on a return statement they can verify that the
return address has not been modified.

A final approach that combines a delivery approach with a derivative approach for
system call tracing is the Ether system [17]. This system makes use of paging mechanism
in x86 processors to trap system calls. There have been several systems that make use
of the same approach for system call trapping [78, 77, 53, 20, 91], though none take a
purely derivative approach and rely on some delivered knowledge.

4.3 Looking Forward

It becomes evident that there has been quite a bit of research done in the direction of
delivery approaches and relatively little in the direction of derivative approaches based
on the related work. The presented derivative approaches show that such an approach
is feasible, but that there is still much potential. Developing new derivation methods
takes a great deal of understanding of hardware architectures and there simply are
limitations to such an approach. One cannot derive the meaning of every bit of the state
based solely on knowledge of the hardware architecture. However, to what extent such
derivative approaches can be useful is yet to be explored fully. It is exactly this potential
that we explore in this thesis.
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Chapter 5
Feasible Goals

Virtual machine introspection is often used for security applications. In many proposed
VMI systems, the systems’ creators strive for transparent VMI mechanisms [8, 17, 30,
53, 62, 66]. That is, they attempt to argue that the presence of introspection features
are undetectable from within the VM.

We take the position that achieving true VMI transparency is infeasible and, in some
cases, ill-advised. We support this with the thesis of Garfinkel et al., that “building a
transparent VMM is fundamentally infeasible, as well as impractical from a performance
and engineering standpoint”[24]. Garfinkel et al. go on to argue that, from an observation
standpoint, there is little to be concerned about. As virtualization becomes ubiquitous,
simply detecting the presence of a VM will no longer be indicative of monitoring taking
place and that due to this, lack of transparency need not be a concern.

While we agree that as virtualization becomes ubiquitous, running inside of a VM is
no longer an indicator that introspection is taking place, we argue that transparency
remains a concern with respect to VMI. The issue of transparency has simply been
relocated. That is, as virtualization becomes ubiquitous, malicious entities will turn
their attention from detecting virtualization to detecting VMI mechanisms.

This is a very important distinction. We refer to the property that states that virtual
hardware is indistinguishable from physical hardware as VMM transparency and the
property that states that virtual hardware that does not perform any introspection is
indistinguishable from virtual hardware that does perform introspection as VMI trans-
parency. In Section 5.1, we will argue that the thesis presented by Garfinkel et al. for
VMM transparency can be extended to VMI transparency as they can be reduced to
the same problem.

In place of transparency, we suggest two feasible properties that better describe
the level of protection against attacks, namely evasion-resistance and evasion-evidence.
Both properties can be achieved by a construction that we call hardware-rooting.
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5.1 Transparency

Garfinkel et al. concluded that VMM transparency is infeasible by presenting three types
of discrepancies that reveal the virtualized nature of a system [24].

Logical Discrepancies. The first type is logical discrepancies between the virtual hard-
ware and the physical hardware. This might take the form of instructions that have vary-
ing side-effects depending on the (virtual) hardware vendor. Imagine a case in which
the architectural specifications do not specify what happens with the input registers
after an instruction has been executed. One vendor might leave the input values in the
registers, while another vendor might leave some intermediate values in the registers,
while yet a third vendor might zero out these registers. This is an example in which a
simple hole in the specification leads to discrepancies. One might argue that this can
be simply solved by mimicking the target vendor’s hardware exactly. While this is an
ideal solution, practically it is infeasible on modern hardware architectures due to the
size and complexity of the hardware specification. The Intel x86 architecture features
over 500 instructions that are compatible with approximately 35 processor families [35].

Resource Discrepancies. The second discrepancy is a result of shared resources. As
the hypervisor must share resources with the guest, the fact that sharing takes place
might become evident through resources that are unavailable or left in a state which
might be unexpected. Garfinkel et al. use the example of the TBL. The TLB is a
cache used by the hardware to accelerate virtual to physical address translation. As this
cache is shared outside of the VM, the TLB may betray the virtualized nature of the
environment. One could consider implementing the TLB in software. While feasible,
this would bring about a respectable time overhead which would result in a timing
discrepancy.

Timing Discrepancies. Finally, the third discrepancy comes in the form of timing
discrepancies. This is the result of mechanisms which are not virtualizable and must be
implemented in software. This leads to time overheads as well as latency patterns which
one might not expect on physical hardware. In the simplest case, the detection of such
discrepancies becomes a matter of timing a series of instructions one suspects might
be implemented in software. In this case, someone might argue that from within the
hypervisor we also have control over the system clock and can conceal these discrepancies
by manipulating the system clock. While this is correct, this is only feasible if the
system has no access to an external time source. This does not have to be an overt time
source, such as an NTP server, but any external contact can be used to, even implicitly,
convey time. Playing warden to all possible communication that might include timing
information, implicitly or explicitly, is infeasible.
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5.2 Motivations for Transparency

These arguments can also be extended to argue that VMI transparency is infeasible.
Logical and timing discrepancies may come in the form of instructions that need to
be emulated for one’s VMI component to function. Resource discrepancies may come
as a result of virtual devices or resources that a VMI component needs to tap into,
such as a network or storage device. Finally, the most common type of discrepancy
in a VMI component is in the form of timing discrepancies. By the definition of VMI
presented in Chapter 3, a VMI component will either collect information or manipulate
the VM. Either of these actions will incur a time overhead beyond what is normal for
the operation of the system and the resulting timing discrepancy will be detectable.

In fact, we can generalize the arguments of Garfinkel et al. further. They conclude
that it is infeasible to make hardware HW indistinguishable from virtual hardware vHW
due to these discrepancies. We argue that it is infeasible to make virtual hardware
vHW indistinguishable from virtual hardware vHW ′. We can quickly see that both
of these statements can be reduced to the problem statement, “is hardware platform a
distinguishable from hardware platform b?”. This is independent of whether a or b are
virtual or not. We may consider that both a and b are physical hardware platforms from
different vendors. If a and b behave differently in any way, they will be distinguishable.
As both our claim and that of Garfinkel et al. can be reduced to the same problem
statement, we conclude that for the same reasons that Garfinkel et al. found VMM
transparency to be “fundamentally infeasible, as well as impractical from a performance
and engineering standpoint” we claim that VMI transparency is infeasible. If we assume
that vHW ′ is being exposed by an introspecting VMM, this introspection will either take
the form of observable changes in the guest operating system (OS) or extra time spent
in the VMM to perform collection or analysis. In either case, this change in behavior
will be evident to an adversary that is looking for it.

5.2 Motivations for Transparency

Having argued that both VMM transparency as well as introspection transparency are
infeasible, we are left to explore feasible properties to replace transparency. This re-
quires that we consider the motivation for transparency in virtualization-based security
applications. We identify exactly two such motivations.

5.2.1 Avoiding Observation

A VMI system that constitutes a forensic or sandboxing tool for software analysis would
benefit from transparency. Malware authors often try to hinder the analysis of their
malware. One way to hinder a dynamic analysis is to build versatile detection routines
for well-known sandboxing and analysis environments into their malware. If this malware
detects it is running in an analysis environment, it may take action to hinder analysis.
If a VMI system could be designed to be truly transparent, such detections would not
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be possible, hence all malware could be observed.
Remaining transparent while observing an entity mitigates the observer effect. That

is, one can only fully observe the natural behavior of an entity if that entity is unaware
that it is being observed. It is often the case that modern malware will behave differently
when running in a sandbox, for example. If it were possible to observe this malware
in a truly transparent manner, one could always be sure they are observing the natural
behavior of that malware.

Unfortunately, by the nature of the observer effect it is unavoidable. That is, even if
the influence of observation is marginal, the influence remains and an entity willing to
put forth the effort can and will detect this influence. In the case of a virtualization-based
mechanism this influence may be in the form of altered guest OS state, unexpected results
to specific actions, or extra time spent in the VMM for collection or analysis purposes.
One can take steps to mitigate the observer effect and, in fact, a virtualization-based
approach is already a great step in mitigating this effect over an in-OS solution, however
malware observation and analysis will remain a game of back and forth between malware
authors and security experts.

5.2.2 Protection Against Evasion

A VMI system often implements a mechanism to enforce certain security policies. A
naive approach to protecting this mechanism from evasion attempts might be to hide
its existence from an entity within the VM. The logic in this case is that if a malicious
entity is unaware of the presence of a mechanism it becomes difficult to evade. However,
we make the distinction that a system that cannot be evaded does not follow from a
transparent system, even though it is often a motivator. With a priori knowledge of a
system, even a transparent system can be evaded and a system which is not transparent
can be made resistant against evasion attempts. This is an important distinction. Al-
though these properties are often discussed together, a transparent system and a system
that cannot be evaded are two separate goals.

5.3 Feasible Goals

Based on the realization that transparency and evasion resistance are two independent
goals, protecting a virtualization-based security mechanism from evasion attempts is
feasible without transparency. In order to describe these properties, we draw an anal-
ogy between protecting software from evasion and protecting hardware from tampering
by introducing two properties, namely evasion-resistant and evasion-evident. These
properties are analogous to the terms “tamper-resistant” and “tamper-evident” when
protecting hardware. That is, evasion-resistance refers to the property that pro-actively
hinders the evasion of a security component, while evasion-evidence refers to the property
that reactively makes evasions evident such that they can be identified later.
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Figure 5.1: The system call dispatcher is rooted in the IDTR through the IDT.

5.3.1 Hardware Rooting

In order to define the requirements for evasion-resistant and evasion-evident components,
we begin by defining what is meant by hardware rooting. We must begin with a feature
of the hardware (e. g., a register) whose purpose is strictly defined by the hardware
architecture specification to contain the location of one or more data structures. We
will refer to this hardware feature as the hardware anchor. If we can start from such a
hardware anchor and follow references to further static data structures or code segments,
thus building a chain to a critical data structure, we call this critical data structure rooted
in hardware.

Any manipulation of a data structure or code segment along the reference chain from
the hardware anchor to the protected data structure is easily detectable by storing the
initial state of the data structures or code segments along the chain in the hypervisor,
then verifying their integrity during subsequent traversals of the reference chain. For
this reason, it is also important that the data structures and code segments along the
reference chain remain static during the normal operation of the guest or that one know
beforehand all legal data structures or code segments that a pointer may reference. In
this manner any manipulation along the chain will not go unnoticed.

A simple example of hardware rooting is depicted in Figure 5.1. This figure shows
how the system call dispatcher is rooted in a hardware anchor (i. e., the IDTR). The x86
hardware architecture specifies that the Interrupt Descriptor Table Register (IDTR)
must hold the location and size of the Interrupt Descriptor Table (IDT) [35, 5]. In
addition, the x86 hardware architecture specifies the layout of the IDT. The software
must comply with these specifications in order for the system to function properly.

Locating a hardware anchor requires an in-depth understanding of the hardware ar-
chitecture in question and is often a process of manually going through the architectural
specifications to find hardware features (generally registers) that reference specific data
structures or code segments. Admittedly there will be relatively few such hardware an-
chors, however finding a way to root a data structure in hardware has benefits in the
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Guest
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Hypervisor

Host OS
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Figure 5.2: Any entity within the guest OS is confined to VM and cannot manipulate the
system at a level lower than the virtual hardware.

form of the properties discussed below.

5.3.2 Evasion-evidence

An evasion-evident mechanism is a mechanism which does not explicitly prevent evasion,
but is constructed in such a manner that any attempt at evasion can be detected after the
fact. More precisely, it is impossible for an attacker to evade the correctly implemented
mechanism in an ideal system without these changes going unnoticed to the mechanism.
We define a correctly implemented mechanism as a mechanism that perfectly enforces
the policy that it was designed to enforce with no flaws or errors. In the same manner, we
define an ideal system as a system that perfectly implements its design and contains no
flaws or errors. We introduce the terms correctly implemented and ideal system simply to
highlight the fact the we realize there may be a way to circumvent any mechanism if there
is a bug in the system. However, assuming that everything is implemented perfectly,
there is no way for a malicious entity to evade the mechanism and go unnoticed.

In order for a mechanism to be evasion-evident, the protected portions of the VM
state must be rooted in hardware and the state of each data structure or code segment
must be . If we consider Figure 5.1, a mechanism monitoring the system call dispatcher
is evasion-evident as any change to the system call dispatcher is observable from the
hypervisor and relocating it would require making changes to the IDT. In turn, any
change to the IDT is observable from the hypervisor and relocating it would require
making changes to the IDTR. Finally, the IDTR is our hardware anchor and it is also
observable from the hypervisor. This results in the possibility that an alteration may
take place, however the change will be evident as the reference chain can be followed
starting from the hardware anchor (i e., the IDTR). Finally, as depicted in Figure 5.2
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any entity (malicious or otherwise) is unable to move to level lower than the virtual
hardware.

5.3.3 Evasion-resistance

An evasion-resistant mechanism is a mechanism which is impossible for an attacker to
circumvent when correctly implemented and deployed in an ideal system. Here we define
both a correctly implemented mechanism as well as an ideal system in the same manner
that we did in Section 5.3.2.

There are two requirements in order for a VMI mechanism to be evasion-resistant.
First, the monitored or protected portions of the VM’s state must be rooted in the
virtual hardware as discussed in Section 5.3.1. Second, each involved piece of VM state
along the relevant reference chain must be protected such that it cannot be manipulated
in violation of policy. If both of these requirements are met the mechanism is evasion-
resistant.

If we continue with our example using Figure 5.1, the mechanism monitoring the
system call dispatcher is evasion-resistant if, in addition to being rooted in hardware,
the system call dispatcher and the IDT can be protected against manipulation. This
might be accomplished by making use of memory protection mechanisms such as paging
or segmentation. This results in a situation where each link in the reference chain can
neither be manipulated nor relocated and thus, the mechanism is evasion-resistant.

5.4 Mitigating the Observer Effect

Having shown feasible goals for VMI to replace transparency when the goal is protection
against evasion, we would like to address the goal of observation. As stated in Sec-
tion 5.2, avoiding observation remains a large driver for transparency. There are many
applications, such as malware analysis or live forensics, for which true transparency
would be of great benefit. However, as we presented, transparency is an infeasible goal.

This is, however, not to say that VMI is not a promising tool for such applications.
In fact, VMI raises the bar toward transparency substantially, especially in cases where
hardware-assisted system virtualization is leveraged. We simply must be aware that the
observer effect is always, by its nature, present. That is, for any VMI application one
must be aware that full transparency is not feasible, but rather work to mitigate the
observer effect as much as possible.

In contrast to solutions that make use of emulation or in-system hooks, hardware-
assisted system virtualization makes it very difficult to determine that monitoring is
taking place. A dedicated adversary will always be able to detect the presence of a
monitoring component, but hardware-assisted system virtualization makes this more
difficult in comparison to traditional sandboxes [90, 10, 2, 25, 4].
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5.5 Summary

Transparency remains an important aspect in security applications, however it simply
cannot be mistaken as a concrete goal due to the fact that both VMM transparency and
introspection transparency are infeasible from a practical standpoint. However, having
considered the motivations behind the need for transparency, we have identified that
VMI-based tools mitigate the observer effect when compared to in-OS solutions. Ex-
ploring these motivations further led us to the conclusion that in some circumstances the
need for transparency is not necessary and to this end, we introduce evasion-resistance
and evasion-evidence.
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Chapter 6
Derivative Methods

In this chapter, we investigate the potential of Intel’s x86 architecture (i. e., Intel IA-32
and IA-32e) and the virtualization extensions from both Intel (VT-x) and AMD (SVM)
for derivative view-generation. We identify and describe methods for extracting security
relevant information about a guest system from its low-level state through knowledge of
the hardware. These methods allow one to enumerate the running processes, monitor
system calls, or track network connections on a per-process basis in a completely guest
OS agnostic manner.

6.1 Threats

There are certain threats to system security which can be countered by mechanisms
that would benefit from a derivative approach. These threats are presented here. The
building blocks for building derivative VMI methods are then presented in Section 6.2.

6.1.1 Interrupt Hooks

Setting interrupt hooks is a common tactic among rootkit authors, especially hooks in
the system call mechanism. This allows the rootkit to be alerted to certain activities
within the kernel and to intercept the communication between a process and the kernel.
To further understand this threat, it is important to understand the interrupt mechanism
as it is implemented in the x86 architecture.

The standard interrupt mechanism makes use of a system register, the Interrupt De-
scriptor Table Register (IDTR). This system register contains the address and size of
the Interrupt Descriptor Table (IDT), which, in turn, holds the addresses of the various
interrupt handlers. When an interrupt occurs, the system refers to the IDT to deter-
mine the address of the appropriate handler, then invokes this handler. These interrupts
are generally divided into two categories: system interrupts and user-defined interrupts.
System interrupts make up the first 32 entries of the IDT and include general protection
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Figure 6.1: The Interrupt Descriptor Table Register (IDTR) holds the location and size
of the Interrupt Descriptor Table (IDT), which is responsible for storing the
locations of the interrupt handlers.

faults, page faults, division by zero, etc. User-defined interrupts may reside in the table
anywhere after the first 32 entries. This is depicted in Figure 6.1.

Considering the interrupt mechanism, there are three possible stages at which an
attacker could possibly perform interrupt hooking:

1. Manipulate the IDTR to point to a malicious IDT

2. Manipulate the IDT entries to point to malicious handlers

3. Manipulate the handlers to perform malicious activities

In order to protect against interrupt hooking, verifying the integrity of the interrupt
mechanism at all possible stages is imperative.

6.1.1.1 System Call Hooks

A system call is a software interrupt, though the mechanism is a bit more complex as
there are two primary ways a system may choose to handle them. The first is through
the int instruction which triggers a user-defined software interrupt as discussed in Sec-
tion 6.1.1. The second method is referred to as the fast system call method and it uses
dedicated SYSENTER or SYSCALL instructions. Further technical differences are irrelevant
in this section, but note that this mechanism makes use of machine specific registers
(MSRs) that point to the system call dispatcher (i. e., an interrupt handler) directly.
Modern operating systems generally support both mechanisms.

Another critical component of the system call mechanism is the system call table.
This is generally a kernel data structure that contains the entry point addresses for the
individual system call handlers. That is, the system call dispatcher consults the system
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Figure 6.2: The system call mechanisms in the x86 architecture.

call table to determine the memory address of the respective handler, then invokes that
handler. This relationship is depicted in Figure 6.2 for both system call methods.

Considering these two methods for system call invocation, there are five possible stages
at which an attacker could possibly perform system call hooking:

1. Manipulate the IDTR to point to a malicious IDT

2. Manipulate the IDT entries or MSR values to point to malicious dispatchers

3. Manipulate the dispatchers to perform malicious activities

4. Manipulate the system call table entries to point to malicious handlers

5. Manipulate the handlers to perform malicious activities

6.1.2 Information Hiding

Hiding information from the guest OS is another common tactic employed by rootkits.
Information hiding may include a wide range of goals, but we will focus on three of
the most common, namely: process hiding, kernel module or driver hiding, and network
activity hiding. All of these may be used by an attacker to disguise his presence on a
compromised machine. The issue with such hiding is that, from the perspective of an
attacker, there exist several ways to reach each goal. However, there are commonalities
which can be exploited by a security application to counter each goal. These are outlined
below.
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6.1.2.1 Process Hiding

Process hiding is the act of hiding a process or task from tools within the operating
system. A competent user or system administrator will expect to see certain processes
and an unknown process may cause suspicion. An attacker will want to avoid any such
suspicion and therefore employs process hiding techniques.

Process hiding is generally achieved by manipulating the relevant data structures in
the kernel. Essentially, one must manipulate the bookkeeping data structures of the
kernel such that the the particular process is no longer present in them. Then, when the
kernel checks these data structures for a list of running processes, the hidden process
is not among them. There is, however, an interesting caveat when performing process
hiding. The hidden process must still get scheduled to run. That is, hiding a process so
well that the kernel is no longer able to schedule it is counterproductive.

One way to counter process hiding is to perform an enumeration of running processes
(tasks) at two different levels. This is referred to as cross-view validation [11]. First,
a “low-level” task enumeration is performed. That is, the task enumeration is per-
formed by directly inspecting kernel data structures. Then a “high-level” enumeration
is performed by using the OS interface (e. g., using ps -A in Linux). The collected in-
formation can then be compared and any inconsistencies indicate that process hiding
is taking place. For such a technique to work the low-level task enumeration must be
performed at a level lower than the level at which the process hiding is taking place.

6.1.2.2 Kernel Module and System Driver Hiding

As with process hiding, hiding kernel modules or system drivers is the act of hiding these
kernel-level components from tools within the operating system and thus from the user.

While the goal is similar to that of process hiding, the difference is that these compo-
nents get loaded into kernel memory and do not possess a separate virtual address space.
To complicate things further, these components may continue to perform normally even
when the kernel’s handle to the particular component has been completely removed.
That is, the kernel is completely unaware of such a component and yet it continues to
perform its tasks. For example, a Linux module may be loaded into memory, making
the code resident in kernel space. A malicious entity may then remove the entry for this
module from the module list without unloading the code. This results in malicious code
being resident in the kernel without any indication that it is present [16].

Of course, the memory which is in use by a hidden component must be allocated
and one could take the approach of monitoring all allocated portions of kernel memory
and identifying all unknown components (i. e., components for which the kernel has no
handle). However, this approach is highly cumbersome and impractical as it requires
semantic information about every piece of kernel information in order to determine if a
hidden components exists.

An alternative approach is based on the observation that such a component must

42



C
ha
pt
er

6

6.1 Threats

get loaded before it becomes hidden and the loading of such components must be han-
dled within the kernel at a specific location, often through a system call. That is, by
monitoring the appropriate system call for such components we have the opportunity
to recognize when kernel modules or system drivers are loaded and thus alleviate the
need for detecting hidden components. We may use the same method described in Sec-
tion 6.1.2.1, comparing this VMI view to an in-OS view. It is important to note that
this method relies heavily on the guest OS. If the guest OS provides methods other than
system calls to load kernel code, an approach anchored in a derivative component may
not be possible.

6.1.2.3 Network Activity Hiding

Another common practice of rootkits is to hide network activity. That is, an attacker
will want to hide all network traffic created by his tools from the OS as this is another
common avenue by which users and administrators become suspicious. For example, an
attacker may want to set up a back-door that listens on a particular port. The attacker
will want to hide the fact that a service is listening as well as any traffic created by this
service.

Any traffic created within a VM must travel through the hypervisor as the hypervisor
manages all virtual I/O devices that are extended to the VM.1 This can be taken ad-
vantage of and in fact it is impossible for any changes within the guest to hide network
activity (or any I/O activity) from the hypervisor. In addition, it is possible to correlate
network packets with processes on the system, as we will explain in Section 6.2.1.4.

6.1.2.4 Virtual Machine Rootkits

While not seen in the wild, rootkits that move the currently running OS into a VM
have been shown as a proof of concept [68]. Such rootkits make use of the VMENTRY

instructions provided by the virtualization extensions of modern CPUs. Such rootkits
can be thwarted by disallowing the use of these VMENTRY instructions from within the
guest OS or trapping and regulating their usage.

6.1.3 Network-Based Attacks

Network-based attacks include any form of attack or malicious behavior which is carried
out over a network. Ideally these attacks are recognizable when monitoring network
traffic.

Traditional Network Intrusion Detection Systems (NIDS) are a common tool in any se-
curity solution. These systems listen on a network wire and report traffic that is deemed

1There do exist exceptions to this in which devices are passed to the VM at a PCI level, but since
these exceptions can be explicitly avoided in cases where VMI is the goal, we disregard them.
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suspicious, usually based on a set of signatures, i. e., patterns of malicious network traf-
fic. As mentioned in Section 6.1.2.3, all network activity from a guest OS is visible to
the hypervisor, thus introducing a NIDS within the hypervisor is a fairly trivial task.
This NIDS can be used to protect the guest as well as to detect misbehaving processes
in the guest OS. Furthermore, information from the NIDS can then be combined with
contextual information about the process sending or receiving the packet to raise its
accuracy.

With this contextual information it is possible to provide connection profiles for indi-
vidual processes. That is, we can correlate outgoing packets with unique processes, thus
creating a network activity profile on a process granularity. These profiles can then be
used to detect patterns or match signatures at a per-process level.

6.1.4 Malicious Processes

Malicious process detection is a fairly broad goal and recognizing the subtleties of all
malicious processes is unlikely if not impossible through VMI. However, there are some
areas in which VMI can be used to support malicious process detection.

Forrest et al. consider detecting malicious processes from a natural immune system
point of view [22, 21]. They contend that in order to in order to detect whether a process
is acting abnormally, one must be able to model normal behavior. This normal behavior
can be modeled in a number of ways. For example, one could consider network activity
or connection tracking as suggested in Section 6.1.3.

In addition, one could model this normal behavior with system call traces. Once we
have a system call profile for a process, this information can be used to identify misbehav-
ing processes through uncommon activities. Such techniques have been presented using
system call traces collected from within the monitored system [22, 34, 21, 42, 64, 92, 44].
By using derivative methods the properties of these approaches could be strengthened.

6.2 Hardware Mechanisms

In this section, we outline some of the hardware mechanisms that become the building
blocks of a derivative approach. We look at the x86 architecture from two perspectives.
First, we explore the introspective features that the architecture provides. These features
include primarily passive information gathering techniques. Second, we show how the
virtualization extensions can be exploited for introspection purposes. As we will see,
they also allow us to actively intercept certain events and instructions triggered inside
the guest.

Information presented in this section is based on specifications found in the Intel and
AMD Developer Manuals [35, 5] unless otherwise noted. We reinforced this research
through experimentation using the Linux Kernel Virtual Machine (KVM) [40].
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Figure 6.3: The CR3 contains the location of the top-level page directory for the process
that is currently in context.

6.2.1 VM State Access

A very straightforward mechanism for VMI is simply a matter of checking and comparing
CPU and/or memory state at regular intervals. The challenge in such an approach is
determining which portions of the state are helpful. This section outlines exactly those
portions of the state based on knowledge of the x86 architecture.

In addition to identifying those portions of state which are helpful, one must consider
the trigger upon which this state is inspected. A timer may be the simplest solution.
Although, event-based triggers may often be more appropriate. For example, if we
wanted to use a context switch as the event trigger, we may use the mechanism suggested
in Section 6.2.2.1.

6.2.1.1 Control Register 3 (CR3)

The CR3 register holds the address of the top-level page directory for the current context
when paging is activated. That is, each process has a unique top-level page directory
and the address of this page directory is stored in the CR3 register as is depicted in
Figure 6.3. Since each process has a unique top-level page directory, the address of
this directory acts a unique identifier. Hence, monitoring this register may be used to
enumerate processes. The challenge here is determining when a process is in fact no
longer running as opposed to simply idle. One may have to rely on heuristics and create
a baseline for the running system to determine a reasonable idle time. The Lycosid
system [37, 38] makes use of a exactly this mechanism to enumerate processes within a
system.

6.2.1.2 IDTR and System Call MSRs

Monitoring the IDTR and the system call MSRs allow us to monitor for the placement
of interrupt hooks at this level. Generally such a hook is placed within the system call
mechanism, though hooks could be placed to catch any interrupt within the system. We
will focus on monitoring for system call hooks, however the process described here for
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interrupt-based system call hooking may be used to monitor for any hooks within the
interrupt system.

As mentioned in Section 6.1.1.1, there exist two primary system call mechanisms
for system calls within the x86 architecture. The first method is to use the IDT to
store the address of the system call handler and use the int instruction to perform the
actual system call. The base address and size of the IDT are stored in the IDTR and
the layout of the entries in the IDT (gate descriptors) are specified by the hardware
architecture. These gate descriptors provide a logical address for each interrupt handler.
This information allows us to monitor for any interrupt hooks (including system call
hooks) at the IDTR and IDT level.

The second, more recent method involves MSRs which are responsible for handling
fast switching to the system call handler. This fast system call mechanism is provided
through the SYSENTER or SYSCALL instructions. Going forth we will refer to the Intel syn-
tax (i. e., SYSENTER) as the technical differences of these two mechanisms are irrelevant
here. The MSRs store, among other things, the offset for the system call handler.

In the case of system calls, we refer to the code that the IDT or the appropriate MSR
point to as the dispatcher routine. We give it this distinction because this function does
not “handle” the system call. Rather, it examines the calling conditions and refers to a
data structure called the system call table in order to determine where the appropriate
handling function is located, then hands the appropriate information over to this handler.

As mentioned in Sections 6.1.1 and 6.1.1.1, monitoring for hooks at the register or IDT
level alone is not sufficient. We must monitor the integrity of all stages of the system
call mechanism, i. e., the appropriate registers, the IDT, the system call dispatcher, the
system call table, and the system call handlers. Since the location and layout of some
of these functions and data structures are not dependent on the hardware architecture,
some delivered knowledge will be necessary.

It is possible to combine such a derivative method with a delivery approach in which
the size and layout of the dispatcher and handler functions and the system call table are
delivered to the hypervisor. Here we have an example of rooting the semantic information
in the hardware as described in Section 5.3.1, thus providing a solution with increased
robustness against circumvention. Let us consider a simple example. We have the ability
to monitor the IDTR and therefore the IDT. The address of our dispatcher lies within
the IDT and the address of the system call table lies within that dispatching procedure.
Finally, the addresses of the handlers are contained within the system call table. Even
though we rely on delivered information (i. e., the location and layout of the dispatcher,
handlers, and system call table), it is impossible for a malicious entity to manipulate
anything along this chain without the change being evident from the hypervisor since
this chain is rooted in the hardware (IDTR or MSRs). If the malicious entity alters the
system call table, the change is detectable. If it manipulates the dispatcher to use a
cloned system call table, the change is also detectable. This chain continues until we
reach the hardware (in this case the IDTR) and any changes here are clearly detectable
as well. At this point an attacker cannot resort to a level lower than the hardware.
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Both Windows and Linux use system call mechanisms similar to the one described
here. However, it is possible to execute the kernel in a separate virtual address space
rather than in a dedicated region of other process’s address space. In this case the mech-
anism would look slightly different, though a similar technique could be incorporated.

6.2.1.3 GDTR and LDTR

The Global Descriptor Table (GDT) and Local Descriptor Table (LDT) are data struc-
tures that are crucial to the segmentation mechanism in the x86 architecture and the
GDTR and the LDTR are the registers that contain the location and size of GDT and
LDT, respectively. The layout of these tables is specified by the hardware specifications
and they may be used to regulate the segments that are accessible at various protec-
tion levels and facilitate the switch between these protection levels. Since these data
structures play a part in the protection mechanisms of the x86 architecture, they may
become a target for a malicious entity. Thus, monitoring them and their respective data
structures for integrity may become crucial in a security solution.

In practice, monitoring these registers and their respective data structures has limited
usage as OSs may (and often do) choose to effectively ignore this mechanism. That is, the
OS may choose to provide isolation and protection by leveraging the paging mechanism
and use the segmentation mechanism in a minimal way. For example, the Linux 2.6
kernel sets up all kernel and user segments such that the logical addresses are equivalent
with linear addresses. This means that both protection levels share the same segments
and this mechanism provides no protection at all. This leaves little for a malicious entity
to abuse in this respect. Though, in systems which rely on segmentation for protection
monitoring the integrity of these registers becomes crucial.

6.2.1.4 Virtual I/O

The VM must rely on the hypervisor for all input and output since the guest OS is
provided virtual I/O devices by the hypervisor so that the physical device may be shared
by multiple VMs or by the hypervisor itself. This can, of course, be leveraged by VMI
mechanisms to monitor network traffic or keystrokes.

Performing such I/O monitoring is a matter of tapping into the virtual I/O device
within the hypervisor and interpreting the data. When keystroke logging is the goal,
for example, this would be a matter of tapping into the appropriate component of the
hypervisor and logging the data stream to a file. Network traffic monitoring is another
interesting application of this mechanism.

A simple example of taking advantage of network traffic monitoring is to perform
network-based intrusion detection or firewall duties from the hypervisor. However, more
interesting is to leverage the fact that the mechanism is performing its duties from the
hypervisor. For example, Srivastava and Giffin [77] leverage this fact to present an
application-aware firewall which is isolated from the running guest. Such an approach
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requires some delivered information, but is an excellent example of tapping into a virtual
I/O device and combining this approach to come to a result that brings together the
primary advantages of both host-based (i. e., application-awareness) and network-based
(i. e., isolation) firewalls.

It is possible to take this one step further by combining the ability to tap into the
network stream with a simple virtual CPU state inspection of the CR3 register. This
register may be used to identify unique processes running in the VM as discussed in
Section 6.2.1.1. This allows us to create network activity profiles for unique processes and
would allow us to perform process-specific intrusion detection and firewall duties. That
is, if a process is tagged as acting suspicious it may be blocked on a process granularity.
This approach maintains isolation and relies completely on derived information and is
therefore robust against circumvention techniques that might try to hinder application-
aware solutions from correlating a network stream to an application correctly.

6.2.2 Virtualization Extensions

This section goes into depth considering how to best leverage several aspects of the vir-
tualization extensions provided by both Intel (VT-x) and AMD (SVM) for VMI. Unless
otherwise specified, these techniques are possible on Intel as well as AMD hardware
which provide similar x86 virtualization extensions.

6.2.2.1 Context Switch Trapping

The virtualization extensions allow one to directly trap to the hypervisor on a context
switch. This results in a fairly straightforward method for trapping context switches,
however this method relies on the guest OS’s usage of the TSS. It is possible for an OS
to use the TSS mechanism in a limited way and perform software context switches. For
example, the Linux 2.6 kernel makes limited use of the TSS, having a single TSS for
each CPU. This results in no hardware context switches.

Since the above technique is not useful for all guest OSs, we discuss another technique
that does not have the above restrictions and is also supported by both sets of CPU
extensions. This technique traps writes to the CR3 register. The CR3 register is the
control register which holds the offset of the current page directory as described in
Section 6.2.1.1. Since each process must have its own page directory in OSs that make
use of hardware-supported virtual memory, trapping writes to the CR3 register will
result in a trap to the hypervisor on each context switch.

In fact, many hypervisors that use shadow page tables must trap all context switches
(i. e., CR3 accesses) in order for the VM to run properly. In this case the work of
trapping is already done, one must simply incorporate their intended action.
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6.2.2.2 Virtual Machine Entry Trapping

As mentioned in Section 6.1.2.4, proof of concept malware does exist that demonstrates
the ability to move the running OS into a VM, thus allowing the malware to perform
introspection and take advantage of interposition [68]. In order to do this, a piece of
malware must take advantage of the hardware extensions for virtualization. One must
simply disallow any attempt to enter into a VM and react to this (e. g., logging, setting
an alert, etc). Both Intel and AMD provide the ability to trap the entry instruction, so
this can be done with relative ease.

6.2.2.3 System Interrupt Trapping

System interrupts are those interrupts which reside within the IDT at offsets from 0 to
31. Common system interrupts are page-fault exceptions and general protection faults.
For a complete list we refer the reader to the Intel Developer Manuals [35]. It is possible
to set a VM to trap to the hypervisor on any of these interrupts. That is, any action
which causes a system interrupt may be trapped by the hypervisor.

This can be exploited by security applications in some cases by manipulating the guest
from the hypervisor so that an event artificially causes a system interrupt which is then
trapped by the hypervisor. Such approaches are discussed in Section 6.2.3.

6.2.2.4 User-defined Interrupt Trapping

User-defined interrupts use the same mechanism as system interrupts, though they must
use an interrupt code within the range 32...255 (this also acts the offset into the IDT)
and are caused by using the int instruction in addition to the advanced programmable
interrupt controller (APIC). The APIC is responsible for timer interrupts and inter-
processor interrupts, for example. System calls may be implemented in this way and
thus may be trapped. The virtualization extensions provided by AMD allow native
trapping of user-defined interrupts in the same way that system defined interrupts are
trapped.

In order to trap these interrupts on Intel machines some extra steps must be taken.
For a full discussion on this, see Section 6.2.3.3.

6.2.3 System Interrupt-enabled Mechanisms

As mentioned in Section 6.2.2.3, it is possible to leverage the fact that the x86 virtu-
alization extensions allow us to cause the guest OS to trap to the hypervisor due to a
system interrupt. Often times we may want to cause the VM to exit due to an event
for which there exists no mechanism to cause a VMEXIT (i. e., trap to the hypervisor).
In this case, it may be possible to manipulate the VM state in such a way that the
target event will cause a system interrupt and set the hypervisor to trap this interrupt.
The challenge here is how to manipulate the VM state so that the target event causes a
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trappable interrupt and how to minimize false positives. In this context, false positives
are traps to the hypervisor that are due to our manipulation, but do not contribute to
VMI and natural interrupts or exceptions are interrupts or exceptions which would have
occurred regardless of our manipulation.

Many false positives will lead to significant performance overhead. It is therefore
necessary to carefully craft such a mechanism in order to reduce the number of false
positives. In addition, involving the hypervisor in natural interrupts when such inter-
vention is not necessary will also lead to unwanted performance overhead. Both of these
performance factors must be taken into account when considering such an approach.

The final challenge in such a mechanism is differentiating between natural interrupts
and those caused by our manipulation of the VM state. This step will vary with each
approach and is discussed in the appropriate subsections below.

6.2.3.1 Mitigating the Observer Effect

Changing the state of the VM leads to the possibility that an entity within the guest OS
can detect or even deter our mechanism by looking for these changes and possibly altering
this state. For this reason it is imperative to monitor the integrity of the corresponding
state from the hypervisor. In the simplest case this can be achieved by monitoring the
state at regular intervals. It may also be possible to use paging protection mechanisms
in a hypervisor that makes use of shadow page tables since the page tables which are
actually being used reside outside of the VM. Finally, in some cases it may be possible
to deter a malicious entity from detecting the mechanism at all by trapping access to
this state. For example, the x86 virtualization extensions allow us to trap accesses to
most system registers and MSRs.

6.2.3.2 Page-Fault Exception

A page fault is an exception that is produced by the hardware when an exception occurs
within the paging system of the architecture. We will concentrate on three specific
causes of page faults which are helpful for VMI:

1. A page is requested for which the page-present flag is not set. We will refer to this
as the Page Not Present (PNP) exception.

2. An attempt to write to a page for which the write flag is not set. We will refer to
this as the Page Illegal Write (PIW) exception.

3. An attempt to execute operations on a page for which the non-executable flag is
set. We will refer to this as the Page Illegal Execute (PIE) exception.

The PNP exception may be leveraged to indicate any type of access to a particular
page belonging to a process. That is, the hypervisor may unset the page-present flag for
a specific page whether the page is present or not and cause all page faults to trap to
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the hypervisor. The hypervisor must then intercept all page fault exceptions which were
caused due to a PNP exception and for which the causing page is the page in question.
The Ether system [17] uses such an approach to monitor system call activity. Rather
than unsetting the page-present flag associated with the page in which the system call
dispatcher is resident, it replaces the data in the MSR which holds the offset of the
system call dispatcher with an offset into a page which is always set to be not present.

The PIW exception may be leveraged to indicate attempts to overwrite portions of
memory. To make use of this the hypervisor must unset the write flags for the appropriate
pages and handle these exceptions. This is a straightforward approach and works well
when write protecting static data structures or code segments. In addition, the PIE
exception may be leveraged to indicate attempts to execute certain portions of memory.
These are straightforward methods as we are simply using the mechanism in the way
they were intended although we are doing so from outside of the guest OS. Litty et al.
[47, 46] make use of the PIE exception in yet another way. They use this mechanism to
perform task enumeration. That is, they set the pages of a process to non-executable to
determine whether the process is still running.

Changes made to force these interrupts are not visible to the guest OS in a system
which uses shadow page tables as the shadow page tables are resident outside of the VM.
This makes for a method which is robust against detection and manipulation attempts
from within the guest VM.

This approach also seems as though it could be leveraged to perform code execution
trapping. That is, trapping to the hypervisor when a portion of memory legitimately
containing code is executed. This may be done to monitor the entrance into a function,
for example. However, we caution the reader when using this approach for the following
reasons: Such a method for code execution trapping will cause a trap on each instruction
on the page causing many false positives; but more problematic, it forces the hypervisor
to emulate all these instructions. This could solved by unsetting the non-executable
flag after the first instruction is executed, though this leads us to two further problems.
First, the hypervisor needs to continuously poll the VM state to determine whether it
can reset the non-executable flag or we must set a time in which we are sure the function
has completed execution. The second problem is that in this time another process could
enter the same function without the hypervisor being made aware. Given these potential
problems, the paging mechanism is not the proper approach for code execution trapping.
For viable methods see Sections 6.2.3.5 and 6.2.3.4.

6.2.3.3 General Protection Exception

The general protection exception is produced for a wide variety of specific reasons all
having to do with privilege protection. For the purposes of VMI we concentrate on the
following five specific reasons:

1. An attempt to execute operation within a segment that is not executable. We will
refer to this as the Segment Illegal Execution (SIE) Exception.
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2. An attempt to write to a read-only data segment. We will refer to this as the
Segment Illegal Write (SIW) Exception.

3. An attempt to read from a execute-only code segment. We will refer to this as the
Segment Illegal Read (SIR) Exception.

4. Referencing an illegal, non-existent, or out-of-bounds entry within the IDT. We
will refer to this as the Illegal IDT Reference (IIR) Exception.

5. Loading the CS register with a null segment selector. We will refer to this as the
CS Null Segment Selector (CNSS) Exception.

Leveraging the first two exceptions, namely SIE and SIW, works almost identically to
the mechanism described in Section 6.2.3.2 with regard to the PIE and PIW exceptions.
The only difference is that here we are working within the segmentation mechanism of
the hardware rather than the paging mechanism. This leads to a difference in granularity
as the size of a segment is not static like the size of a page, though the VMI mechanism is
almost identical except that here we set the hypervisor to trap and interpret a different
exception.

The third cause for an exception is also due to the segmentation mechanism of the
hardware. The VMI mechanism to leverage SIR exceptions is identical to that for the
SIE and SIW exceptions, though here we have the ability to do something that the
paging mechanism does not allow, namely trap attempted read access to code segments.
This is useful for avoiding detection of VMI mechanisms that change code, as described
in Section 6.2.3.4.

The issue with any VMI mechanism that leverages the hardware segmentation mech-
anism is that segmentation may not be properly used by modern OSs that use paging,
as discussed in Section 6.2.1.3. Linux kernel 2.6, for example, uses this mechanism very
minimally. So while these mechanisms may be useful in the correct environment, they
rely on the guest OS’s usage of segmentation.

The fourth cause for a general protection exception is the IIR exception. Unlike the
above general protection exceptions, the IIR exception is independent of segmentation.
This exception is useful for trapping user specified interrupts on Intel architectures.
As explained in Section 6.2.2.4, the Intel virtualization extensions do not provide a
mechanism for trapping interrupts greater than 31 (i. e., user specified interrupts). In
order to induce a general protection exception, the hypervisor must alter the IDT entries
for the interrupts that it wishes to intercept. This can be done in a number of ways.
First, one can invalidate the IDT entry by unsetting the segment present flag in the call
gate. Additionally, one can set the Descriptor Privilege Level (DPL) for each IDT gate
descriptor to null. Finally, one can also reduce the size of the IDT by manipulating the
IDTR, such that the entry falls outside of the IDT. In any case, any subsequent access
to the IDT entry will result in a general protection exception which can be trapped by
the hypervisor. It must be said that by setting the DPL to null, only in instances in
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which the Current Privilege Level (CPL) is greater than 0 (a user process) will the event
be trapped.

Finally, the CNSS may be used in a very specific way to facilitate system call trapping
when the SYSENTER instruction is being used. Among other things, the SYSENTER in-
struction will set the CS register based on the contents of SYSENTER CS MSR register.
That is, saving the contents of the SYSENTER CS MSR in the hypervisor and setting it
to null will result in an CNSS exception any time the SYSENTER instruction is executed.
This exception can be trapped to the hypervisor and the instruction emulated, thus,
allowing one to trap all system calls if the system uses the SYSENTER mechanism.

6.2.3.4 Invalid Opcode Exception

The invalid opcode exception provides a mechanism that allows the kernel to handle
invalid opcodes should the CPU attempt to execute them. As with all the mechanisms
described in Section 6.2.3, this mechanism relies on the hypervisor being set to catch
and handle guest system exceptions.

This mechanism lends itself to performing code execution trapping. In order to do
this, one must simply replace the opcode at the position one wishes to trap with an
invalid opcode. Then, the hypervisor can distinguish this from natural invalid opcode
exceptions by referring to the opcode that was intended to be executed. This does,
however, require that the hypervisor emulate the replaced operation, which may be a
challenge.

This is straightforward, though if a malicious entity where to know where to look,
such a mechanism is easy to detect and even circumvent if further measures are not
taken. For this reason, such an approach must be combined with a mechanism to write
protect the appropriate area of memory in order to deter circumvention such as those
described in Sections 6.2.3.2 and 6.2.3.3.

This exception has additional usefulness that is closely related to the CNSS exception
discussed in Section 6.2.3.3. If the use of the SYSCALL instruction is deactivated in the
Extended Feature Enable Register (EFER)—this is a matter of unsetting the SCE flag
within the EFER—and the instruction is used, an invalid opcode exception is raised. As
with the CNSS exception, this may be used to facilitate system call trapping, except that
this method is useful if the system uses the SYSCALL instruction to perform system calls.
The EFER must be manipulated from the hypervisor, making the SYSCALL instruction
invalid. Then, the invalid opcode exception must be trapped to the hypervisor, the
SYSCALL instruction emulated, and control returned to the guest.

6.2.3.5 Debug Exception

The x86 architecture provides debugging support through the use of debug registers and
a Debug Exception. As part of this support the architecture allows one to define four
linear addresses as addresses whose execution cause a debug exception. This exception
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can then be set to trap to the hypervisor. This gives us the opportunity to set four
memory addresses whose execution will be trapped to the hypervisor. In addition,
accesses to these registers can be trapped so that any attempt to change these values
will be noticed.

This provides a good platform for performing code execution trapping, though it is
restricted to exactly four addresses. In addition, it may interfere with debuggers which
wish to make use of the hardware support within the guest. A simple solution is to
simply ignore access to the debug registers from the guest OS while such a mechanism
is active. We argue that VMI is generally performed on production systems where
extensive debugging is not required and since software debuggers are not hindered, this
is a feasible solution. In cases where these restrictions cause issues, Section 6.2.3.4
provides an alternative method for code execution trapping.

6.2.4 Countering Threats with Hardware Mechanisms

The mechanisms we described thus far are intended as a starting point for further
derivative-based VMI applications. Table 6.1 summarizes which of these mechanisms
can be used to counter which threat from Section 6.1.

6.3 Summary

Making use of derivative methods for VMI does not have to be a complex task and the
advantages have been made clear. We presented a toolbox of building blocks that may
be used to anchor view-generation in hardware. In addition to these building blocks, we
provided a clear discussion as to how and when each of these should be used and for
which threats they may be applicable.

We urge the reader to consider the advantages of derivative methods and to apply the
building blocks presented here when realizing VMI applications. Building a derivative
based VMI application is well worth the effort when possible.

54



C
ha
pt
er

6

6.3 Summary

Threat Security anchor
6.1.1 Interrupt hooks 6.2.1.2 IDTR and system call MSRs

6.2.2.3 System interrupt trapping
6.2.2.4 User-defined interrupt trapping
6.2.3.2 Page fault exception
6.2.3.3 General protection fault

6.1.2.1 Process hiding 6.2.2.1 Context switch trapping
6.2.1.1 Control register 3 (CR3)

6.1.2.2 Module hiding 6.2.2.4 User-defined interrupt trapping
6.2.3.2 Page fault exception
6.2.3.3 General protection fault
6.2.3.5 Debug exception

6.1.2.3 Network activity hiding 6.2.1.4 Virtual I/O

6.1.2.4 Virtual machine rootkits 6.2.2.2 Virtual machine entry trapping

6.1.3 Network-based attacks 6.2.1.4 Virtual I/O

6.1.4 Malicious processes 6.2.1.4 Virtual I/O
6.2.2.4 User-defined interrupt trapping
6.2.3.2 Page fault exception
6.2.3.3 General protection fault
6.2.3.4 Invalid opcode exception
6.2.3.5 Debug exception

Table 6.1: Linking threats to suitable hardware mechanisms
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Chapter 7
Derivative System Call Trapping

Having explored the various features of the x86 architecture in Chapter 6, we present
a proof-of-concept system for system call trapping using a derivative approach. In this
chapter, we describe the implementation of our prototype VMI framework, Nitro, for
system call tracing and monitoring. As Nitro works from within the hypervisor, it is
isolated from malicious activities within the VM and remains hidden from the guest OS.
To our knowledge, Nitro is the first VMI-based system that supports all three system
call mechanisms provided by the Intel x86 architecture and has been proven to work for
Windows, Linux, 32-bit, and 64-bit guests. Moreover, due to its derivative nature, this
framework is flexible enough to feasibly support any OS built upon the x86 architecture.
Capturing and disseminating data is done in real-time without hindering usability of
the guest, as our performance tests in Chapter 8 will show. Finally, Nitro is resistant
to attempts at evasion due to hardware rooting. We will discuss the foundations of this
approach, its implementation, and its properties throughout this chapter.

7.1 An Argument for System Calls

Most modern OSs have hardware-assisted protection mechanisms in place in order to
isolate processes from each other and from the kernel. In addition, the OS must offer
a controlled method for communication beyond this isolation. This method for com-
munication most often takes the form of system calls. The mechanism for system calls
is hardware-assisted and it allows an isolated process to request services from the ker-
nel. On its own, a process cannot directly interact with the rest of the system. System
calls are necessary to perform actions such as file operation, network communication,
inter-process communication, etc. As system calls facilitate communication between
the kernel and user space within an OS, they become very interesting from a security
perspective.

Hofmeyr et al. [34] argue that system calls have the nice property that they are
observable from the outside. That is, we do not have to necessarily understand what
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the process does internally to be able to collect the system calls. Each process may act
as a black box and the system calls are emitted, observable data and by observing this
we can reason about the normal behavior of a process.

In the following sections, we present a number of applications within the field of
security for which system calls are used very successfully. We present them to motivate
the fact that the information that system calls provide can be valuable in a variety of
security applications.

Before we discuss these applications, it is important to note that some OSs wrap their
system calls in system APIs. These system APIs allow for the underlying mechanism
to change while the interface that is exposed to the application programmer remains
constant and backward compatible. Some of the methods and applications discussed in
this section make use of these APIs instead of system calls directly. As their function is
the same we treat them as interchangeable.

7.1.1 Malware Detection

One interesting argument for using system calls for malware detection comes from the
field of computer immune systems, which base their approaches on phenomena observed
in natural immune systems. A prevalent theory in this field states that the natural
immune system recognizes threats by distinguishing between protein fragments that
belong to a normally functioning system and those that belong to invading cells [21].
These protein fragments that belong to a normally functioning system are referred to
as “self”. The challenge becomes finding such a measure of “self” for processes. Several
works suggest using system calls to this end [22, 34, 21]. Specifically, Forrest et al. [22]
define the normal behavior of processes through short observed sequences of system calls
that are then stored in a database. To detect abnormal behavior, this database is checked
for deviations from this normal behavior during subsequent execution of the process and
the result is a value that represents the percentage of mismatches with respect to all
sequences observed. As this method is quite rigid (i. e., the system simply looks for legal
sequences in the database), it was improved to include a measure of similarity between
an observed sequence and a sequence present in the database [34]. This measure of
similarity is in the form of a hamming distance between the two system call sequences.
That is, instead of simply recording a mismatch, the improved system is able to take
similarity to entries in the database into account. This is accomplished by finding the
minimum hamming distance between the currently observed sequence and all sequences
in the database. This minimum value is then taken for all observed sequences and the
resulting maximum is normalized over the size of the sequence.

Another approach that aims to model the normal behavior for a single process is
the work done by Kosoresow and Hofmeyr [42]. This approach works by building a
deterministic finite automaton (DFA) to model the transition of states through sequences
of system calls. That is, the states are divided into a start node, intermediate nodes,
and one or more termination node(s), while the transitions are represented by edges that
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correspond to a sequence of system calls. With such a model, one can execute a process
and follow the respective state transitions in the DFA. If one comes across a situation
for which there is no legal state transition in the model, a deviation from the normal
behavior has occurred. While very interesting, this approach suffers from the fact that
one must build a DFA manually for each process one might want to observe. This is a
difficult procedure especially for complex processes.

All the above approaches that are based in computer immune systems suffer from the
fact that this model for “self” must be built for each individual process. That is, these
approaches assume that a mechanism for detecting abnormalities must be tailored for
each individual process. In the field of natural immune systems, this may be the case
as our immune systems are tailored for our bodies, however individually tailoring such
a system for each process would lead to a tremendous amount of overhead that would
have to be readdressed for each process or for each new iteration of a process.

To move away from this, Xiao and Stibor make interesting use of probabilistic topic
models [92]. They probabilistically assign system calls to topics based on co-occurrence.
These topics are probabilistic groupings, however the authors show that their model
nicely groups system call into intuitive groups (e. g., file I/O, memory management,
process management, etc). In parallel, topic transition matrices are generated to model
each trace. These topic transition matrices are then the basis for classification.

The most common machine learning approaches make use of the frequency of system
calls in a trace. These approaches will either take into account the frequency of system
calls directly [64] or make use of n-grams [43, 85]. A n-gram is simply a sequence of
system calls of size n. Such approaches will work by splitting the system call trace
into such n-grams, sometimes overlapping them, then counting the frequency of each
n-gram. The resulting frequency distribution for each trace is then analyzed to learn
those distributions that are indicative of malicious behavior and those that are indicative
of benign behavior. This is generally achieved with the use of support vector machines
(SVMs). For an in-depth look at SVMs, please refer to Section 9.2.

Finally, a more straightforward machine learning approach makes use of k-nearest
neighbor classifiers [44]. A k-nearest neighbor classifier generally works by making use
of a vector space model. This model models known documents (i. e., system call traces)
with labels based on the occurrence and weight of words (i. e., system calls) in the
document. This is often represented in a matrix where the rows represent documents,
the columns represent words, and an entry represents the weight of the respective word
in the respective document. For each new, unknown trace, the system calls within it
are weighted and a similarity function is used to find the k most similar traces. The
classifier then looks at the labels of these k nearest neighbors to determine under which
label to classify the trace.

There are also further works that compare several machine learning methods for mal-
ware detection using system call traces [87]. Simply by looking at the wide range of
methods that have been used to classify malware based on system calls one can see that
system calls are very interesting from a malware detection perspective and will continue
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to be so.

7.1.2 Sandbox Environments

Related to malware detection, sandboxing environments remove the automation and
allow an intelligent analyst to manually analyze malware samples. A critical piece of
information in such an analysis is a system call trace of the process in question. This
information among other data points provide the analyst with the information he or
she need for a dynamic analysis. There exist several prevalent sandboxing environments
that incorporate system call or API monitoring to create their reports [90, 10, 2, 25, 4].
These environments generally trap system calls in the same manner, by hooking the
system call mechanism within the guest.

Another form of sandbox environments are high-interaction honeypots. Here the
application is not a focused analysis of a single piece of malware as is often the goal
in traditional sandbox environments, but rather a broad audit of an entire system. A
honeypot is “an information system resource whose value lies in unauthorized or illicit
use of that resource” [81]. That is, a honeypot is a system that is there to attract
malicious entities for the purpose of their study. Trapping system calls aids in the study
of the actions of these malicious entities [80].

7.1.3 Intrusion Prevention

While sandbox environments tend to passively monitor the activity of a process or sys-
tem, in part, through system calls, intrusion prevention systems (IPSs) actively restrict
certain actions based on some policy. Network-based IPSs are generally a more popu-
lar approach for intrusion prevention, however there are examples of in-guest IPSs that
restrict the use of system calls based on some policy [27, 23, 60]. The method for trap-
ping system calls is similar to the methods used in sandbox environments, the difference
comes in the form of the policy engines used in these IPSs. That is, such approaches
collect system calls in, generally, the same manner as sandbox environments, however
IPSs make use of the system calls directly by potentially blocking them.

7.2 System Call Mechanisms in the Intel x86
Architecture

The system call interface is fundamental for any OS and is supported by the Intel x86
architecture through one of three mechanisms. Which of these mechanisms is used is
left to the OS developers. Although the system call mechanisms were briefly described
in Section 6.1.1, we will revisit each mechanism with a bit more detail. Unless other-
wise stated, the information in the following sections is taken from the Intel Software
Developer Manuals [35].
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Figure 7.1: Relationship between the IDTR, the IDT, and the system call dispatcher

7.2.1 System Calls as an Interrupt

The x86 architecture handles interrupts through the IDT which contains gate descriptors
for each interrupt. The IDT itself is stored in system memory, but the location and size
of the IDT are stored in the IDTR. The gate descriptors within the IDT facilitate the
jump to the appropriate handler functions. That is, when an interrupt occurs, the
hardware consults the IDT via the IDTR to determine the location for the appropriate
handler and continues execution there.

The IDT may have as many as 256 entries, each of which is 8 bytes long. The exact
size of the IDT in bytes is stored in the IDTR along with the address at which the IDT
resides. Of these entries, the first 32 entries are reserved for system interrupts. These
system interrupts include division by zero exceptions, page faults, etc. Entries in the
IDT beyond the 32nd entry may be defined by the kernel and are invoked either by the
int instruction or through the Advanced Programmable Interrupt Controller (APIC).
Of these two sources, the int instruction is interesting from a system call perspective
and it accepts one argument. This argument determines an offset within the IDT. If an
interrupt is requested at an offset beyond the bounds set by the IDTR, the result is a
general protection fault.

This mechanism lends itself well to implementing system calls. To do this, a specific
user-defined interrupt, e. g. 0x80, is defined as the system call interface by storing the
location of the system call dispatcher in the IDT at position 0x80. Subsequently, a
system call is invoked through the use of the int instruction with parameter 0x80. This
relationship is depicted in Figure 7.1.
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7.2.2 Fast System Calls

As the sophistication of operating systems grew, it became clear that the interrupt-
based system call interface was often a performance bottleneck. This bottleneck results
from having to consult the IDT before being able to pass control to the system call
dispatcher. As system calls are a vital part of modern OSs and are frequently used, it
became clear that a faster system call mechanism was needed. To address this, hardware
manufacturers developed dedicated system call mechanisms. These mechanisms work
by making use of MSRs to jump directly to the system call dispatcher when a specific
instruction is called. Analogous, a corresponding return instruction restores control to
the user process. More precisely, these MSRs contain the location of the system call
dispatcher and a call to the proper instruction sets the Instruction Pointer (IP) based
on these MSR values. This relationship is depicted in Figure 7.2.

One such mechanism makes use of the SYSCALL instruction along with its correspond-
ing return instruction, SYSRET. As previously stated, this mechanism makes use of several
MSRs (namely, STAR MSR, CSTAR MSR, and LSTAR MSR). When the SYSCALL in-
struction is called, the IP is set based on the contents of the appropriate MSRs to handle
the system call. Additionally, this mechanism can effectively be turned on and off by
setting and unsetting the SCE flag in the Extended Feature Enable Register (EFER).

The second fast system call mechanism provided by the x86 architecture makes use
of the SYSENTER and SYSEXIT instructions. This mechanism works in a similar fash-
ion to the aforementioned mechanism, though different MSRs are used (i. e., SYSEN-
TER CS MSR, SYSENTER ESP MSR, and SYSENTER EIP MSR). In addition to the
IP being set, the value held within SYSENTER CS MSR is copied into the Code Seg-
ment (CS) register (this will become important in Section 7.3, when discussing the
implementation of Nitro).
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Figure 7.3: Control flow of a system call that traps to the hypervisor

7.3 Implementation

This section describes the steps we took in implementing our prototype. Nitro is based
upon the Linux Kernel Virtual Machine (KVM) [1]. KVM is split into two portions,
namely a user application that is built upon QEMU [3] and a set of Linux kernel modules.

The user application portion of KVM provides the QEMU monitor which is a shell-
like interface to the hypervisor. It provides general control over the VM. For example,
it is possible to pause and resume the VM as well as to read out CPU registers using
the monitor. We modified KVM by adding new commands to the monitor to control
Nitro’s features. That is, all Nitro commands are input via this monitor.

These commands are then sent to the kernel module portion of KVM through an I/O
control interface. The majority of Nitro is implemented in these kernel modules. Finally,
the output is realized by making use of netlink sockets [55]. That is, Nitro broadcasts
the system call traces via a netlink socket and any process may listen for this broadcast
and make use of Nitro’s output.

7.3.1 VMI Mechanisms for Trapping System Calls

As mentioned in Section 6.2.3, it is often the case, especially for security mechanisms,
that the hardware extensions do not support trapping the desired event. In these in-
stances, we must indirectly induce a trap to the hypervisor. Finding these indirect
methods for trapping desired events is often a challenge.

As it turns out, trapping to the hypervisor on the event of a system call is not sup-
ported in the Intel x86 architecture. In this case, we must find a way to indirectly
cause the trap as discussed in Section 6.2.3. We do this by forcing system interrupts
(e. g., page faults, general protection faults, etc) for which trapping is supported by the
Intel Virtualization Extensions (VT-x). Hence, we have effectively created a mechanism
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for trapping system calls even though the hardware extensions do not natively support
this. The resulting control flow is depicted in Figure 7.3. Since the three system call
mechanisms are quite different in their nature, a unique trapping mechanism must be
designed for each. These trapping mechanisms and their implementations are described
below.

7.3.1.1 Interrupt-based System Calls.

Intel’s VT-x extensions allow one to trap system interrupts (interrupts 0 to 31) to the
hypervisor, but they do not provide a mechanism for trapping user-defined interrupts
(interrupt 32 and above) which may be used for system calls.1 This means that we must
design a way to cause this user-defined interrupt to generate a system interrupt.

We can achieve this by creating a shadow IDT, that is, we copy out the guest’s IDT
into the hypervisor. We must then manipulate the IDTR and trap all write accesses to
it, thus disallowing any further manipulation. As the IDT size value stored in the IDTR
is added to the base address to get the offset of the last valid byte of the IDT, we can
set this size to 32 · 8 − 1 = 255. This leaves all system interrupts unaffected, however
all attempts at invoking a user-defined interrupt (i. e., interrupts greater than 31) will
result in a general protection fault as the bounds of the IDT will have been exceeded.
The advantage of this approach is that the IDT remains unaffected in memory, but is
effectively ignored for user-defined interrupts.

The next step is to trap all general protection faults to the hypervisor, which the vir-
tualization extensions support natively. However, we must still determine the difference
between general protection faults that we generated and those that occur naturally2.
This can be done by inspecting the current instruction and determining whether or not
it is the int instruction and whether the interrupt number is greater than 31.

If we identify the exception as being natural, we inject this exception into the guest
and allow it to continue. However, if we recognize the exception to be caused by a
user-defined interrupt, we look at the interrupt number to determine whether we have
trapped a system call. If this is the case, we collect data according to the rules specified
for Nitro’s data collection engine (see Section 7.3.3). In either case, the user-defined
interrupt must be emulated using the shadow IDT that we copied out of the guest and
hand control back to the guest OS.

7.3.1.2 SYSCALL-based System Calls.

System calls may also be implemented using the SYSCALL instruction and its ana-
logue counterpart SYSRET. Both of these rely on a set of MSRs, namely STAR MSR,
CSTAR MSR, and LSTAR MSR. Exactly which of these registers is used depends on

1In contrast, AMD’s SVM virtualization extensions do provide a mechanism for trapping user-defined
interrupts.

2We refer to exceptions that are not caused by our changes as natural exceptions.
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whether the guest OS is running in legacy, long, or compatibility mode. Additionally,
this mechanism can effectively be turned on and off by setting and unsetting the SCE
flag in the Extended Feature Enable Register (EFER). Making use of either SYSCALL or
SYSRET with the SCE flag not set results in an invalid opcode exception.

Forcing this mechanism to cause a system interrupt is then a matter of unsetting
the SCE flag and setting the hypervisor to trap all invalid opcode exceptions, which
is natively supported by the virtualization extensions. Once control has passed to the
hypervisor, we must once again differentiate between natural exceptions and those caused
by our introspection. This is achieved by looking at the violating instruction and if this
instruction is not either SYSCALL or SYSRET, we inject an invalid opcode exception into
the guest OS and return control to it. However, if the violating instruction is, in fact,
SYSCALL, Nitro collects the desired information, emulates this instruction, and returns
control back to the guest OS.

In addition to emulating the SYSCALL instruction, Nitro must be capable of handling
exceptions caused by the SYSRET instruction and emulating this instruction as well.
This is due to the fact that the changes made to the EFER affect the SYSRET instruction
in the same manner that they affect the SYSCALL instruction. Thus, use of the SYSRET

instruction will also cause an invalid opcode exception and must be handled accordingly.

7.3.1.3 SYSENTER-based System Calls.

Similar to SYSCALL and SYSRET, the SYSENTER and SYSEXIT pair of instructions also
rely on a set of MSRs, namely SYSENTER CS MSR, SYSENTER ESP MSR, and SYS-
ENTER EIP MSR. The values in each of these MSRs are copied into specific system
registers upon a call to SYSENTER. Specifically and most interesting for the development
of Nitro, the value of the SYSENTER CS MSR is copied into the CS register when
SYSENTER is executed and an attempt to load the CS register with a null value results in
a general protection exception. Hence, causing a system interrupt is a matter of saving
the current value of the SYSENTER CS MSR register in the hypervisor and loading it
with a null value. This will cause each SYSENTER operation to attempt to load a null
value into the CS register, thus causing a system interrupt that the hypervisor can trap.

Once the hypervisor has trapped a general protection exception, differentiating be-
tween natural and forced exceptions is once more a matter of checking the current
instruction at the time of the exception. If we come across a natural exception, as with
the previous system call mechanisms, we inject the exception into the guest OS and
allow it to continue. In the case that we come across general protection exception and
the current instruction is SYSENTER, we collect the relevant data, emulate the instruction
using the saved value of the SYSENTER CS MSR, and return control to the guest OS.

As with the SYSCALL/SYSRET-based system call mechanism, the change that we make
to the guest in order to induce a system interrupt also affects the SYSEXIT instruction.
Consequently, we must also emulate this instruction.
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7.3.2 Process Identification

It is always important to be able to determine which process produced a system call.
This requires that we collect information which is unique to a process each time a
system call is trapped. Nitro collects the value of the CR3 register along with the value
of the first valid entry in the corresponding top-level page directory. This allows us to
identify a process due to the fact that the value in the CR3 register (i. e., the address
of the top-level page directory) is unique for a single, current process as described in
Section 6.2.1.1.

However, we found that the CR3 value alone is, practically, not enough to uniquely
identify processes over time. What we experienced through testing is that a newly
created process may possess a top-level page directory that resides at the same location
than the top-level page directory for a previously existing process. In our testing, this
produced traces for which two subsequently occurring, individual processes were marked
with the same identifier as the CR3 register contained the same value for both processes.
In order to address this, we also consider the first valid entry in the corresponding top-
level page directory in order to create a truly unique identifier.

7.3.3 Collection of System Call Data

In our experience, different applications for system call traces depend on varying amounts
of information. In some cases a simple sequence of system call numbers without argu-
ments may suffice, while other scenarios may require detailed information including
register values, stack-based arguments, and return values from a small subset of system
calls. As we cannot foresee every guest OS type and possible application of system call
tracing, Nitro does not deliver a fixed set of data per system call. Instead, it allows the
user to define flexible rules to control the data collection during system call trapping in
a fine-grained manner. Nitro implements two modes of operation, namely system call
tracing and rules-based system call monitoring.

7.3.3.1 System Call Tracing

System call tracing represents the broad and shallow approach to information gathering.
A system call trace focuses on which system calls were called by what process and in
which order with limited focus on the data that was transfered. When performing
system call tracing, Nitro allows the user to define where the system call number is
stored (generally in the EAX register) and collects this information along with a process
identifier as described in Section 7.3.2. This information is often enough for certain
machine learning techniques used for detection of malware or malicious behavior in
processes [22, 42, 34]. The work of Rieck et al. also indicates that considering the
arguments for system calls in addition to the system call numbers does not significantly
improve the classification accuracy of malware classes [65].
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rule ::= add scmon rule <condition> <location> <action>
condition ::= <register> <value>

location ::= <register> <offset>
register ::= rax | rbx | rcx | rdx | rsp | rbp | rsi | rdi

value ::= [0,4294967295]
offset ::= [-2147483648,2147483647]

action ::= hex | int | uint | derefhex | derefint | derefuint | derefstr

Figure 7.4: Nitro rules in Backus-Naur Form.

7.3.3.2 Rules-based System Call Monitoring

On the other hand, system call monitoring represents the narrow and deep approach to
information gathering. When monitoring system calls, system call arguments or even
dereferenced memory variables pointed to by arguments may be of interest. Nitro allows
a user to define what information he or she is interested in upon any system call(s) he
or she defines. This is done is a rules-based manner. These rules are flexible enough
to allow one to monitor the contents of a register or even to dereference registers and
look into memory. This allows one to extract the arguments passed to the system call,
whether they are passed in registers or within the stack. The syntax of such a rule takes
the following format:

add scmon rule CONDITION REG CONDITION VAL ACTION REG OFFSET ACTION,

where CONDITION REG contains the name of the register that should be tested to de-
termine whether further information should be output, CONDITION VAL contains the
value the CONDITION REG should contain in order for further information to be output,
ACTION REG contains the name of the register that contains the base value we are inter-
ested in, OFFSET contains the offset (positive or negative) from the ACTION REG for the
data we are interested in, and ACTION defines the format the output should take, this
includes actions that result in printing or dereferencing the data as hexadecimal, integer,
unsigned integer, or string. We provide a description of the rules in Backus-Naur Form
in Figure 7.4. As an example, it is easy to specify a rule that dereferences and outputs
the string being written every time a user process makes use of the write system call
within a Linux guest. This rule would look as follows:

add scmon rule rax 4 rcx 0 derefstr

This rules-based method of requesting information makes Nitro very flexible and con-
tributes to its OS agnostic nature.
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1 Jun 20 17:58:20: sys_write: unsigned int fd, const char

2 __user *buf, size_t count

3 fd: unsigned int: 0x3 $\rightarrow$ (socket) $\rightarrow$ [...]: (SOCK_STREAM)

4 flags: ()

5 buf: const char __user*: 0x7FFF702FF320 $\rightarrow$

6 buffer content hex (of size 107):

7 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 30 da 55 73 65

8 72 2d 41 67 65 6e 74 3a 20 57 67 65 74 2f 31 2e 31 32

9 20 28 6c 69 6e 75 78 2d 67 6e 75 29 da 41 63 63 65 70

10 74 3a 20 2a 2f 2a da 48 6f 73 74 3a 20 67 6f 6f 67 6c

11 65 2e 64 65 da 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 4b

12 65 65 70 2d 41 6c 69 76 65 da da

13 buffer content string:

14 GET / HTTP/1.0

15 User-Agent: Wget/1.12 (linux-gnu)

16 Accept: */*

17 Host: google.de

18 Connection: Keep-Alive

19 count: size_t: 0x6B

Figure 7.5: This output represents a combination of Nitro and InSight [69, 70]. Nitro
facilitates the trapping of the system call and delivers the register values (e. g.,
the file descriptor number), while Insight is used to determine what these values
mean in context of the guest system (e. g., the file descriptor is attached to a
stream socket).

Keeping the design goals for Nitro in mind, we collect only information whose location
and format is defined by the hardware specifications or for which a rule is specified.
However, the flexible design of Nitro allows an easy incorporation of guest OS specific
knowledge in order to collect additional information about the calling process. We
have successfully combined Nitro with other projects such as InSight [69, 70] to include
information such as process and user IDs into the output. However, we keep these
projects separate in order to keep Nitro as simple and flexible as possible. This allows
Nitro to be applicable in a greater range of applications. When combined with InSight,
we are able to produce output as shown in Figure 7.5. This provides additional guest
OS specific information, such as the type of descriptor being written to, while allowing
Nitro to remain applicable of a wide range of guest OSs.

7.4 Properties

In this section we take another look at the properties that Nitro possesses. In doing
so we revisit the properties discussed in Chapters 5 and 3. In reviewing the outlined
properties below, one might notice that the binding property and the ‘inspection of
suspended VM’ properties are not explicitly covered.

The binding property is not explicitly discussed as it is encompassed by evasion-
resistance. That is, the binding property is the basis for hardware rooting which is nec-
essary for evasion-resistance. Hardware rooting takes advantage of the binding property
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in that the hardware anchor is subject to the binding property. The binding property
states that the function of the hardware anchor is bound to assumptions that will not
change at run-time. As we discuss the evasion-resistant nature of Nitro, we do not
explicitly discuss the binding property.

The ‘inspection of suspended VM’ property discussed in Chapter 3 is also not dis-
cussed. This is due to the fact that Nitro performs event-based monitoring which, by its
nature, cannot be performed on a suspended machine. Although derivative methods are
fundamentally capable of inspecting suspended machines, it becomes difficult to monitor
system calls on an inert machine. Therefore, this property is not further discussed in
conjunction with Nitro.

7.4.1 Isolation

While isolation is almost entirely afforded through virtualization, there are still some
steps Nitro must take to ensure complete isolation. This comes in the form of protecting
those portions of the guest state that Nitro manipulates. If we were not able to protect
those portions of the state against malicious entities who wished to revert our changes,
we would lose isolation. That is, these malicious entities would be able to “turn off”
Nitro from within the guest.

As presented in Section 7.3, Nitro manipulates the EFER, the SYSENTER CS MSR,
and the IDTR. Therefore, these registers must be protected such that their values cannot
simply be reverted. Luckily the virtualization extensions from Intel provide us with
mechanisms to trap write accesses to these registers. Using this mechanism we can
simply block writes in the simplest case, thereby maintaining isolation.

7.4.2 Guest OS Portability

Nitro is guest OS portable due to the fact that all three mechanisms described in Sec-
tion 7.3 make sole use of hardware knowledge. This allows the mechanisms to work for
any guest OS that is compatible with the Intel x86 architecture. The IDTR and IDT as
well as all the involved MSRs and their uses are specified by the hardware architecture
and must be used in the way specified. That is, any guest OS must use these hardware
mechanisms according to the specifications regardless of the guest OS.

In order to maintain guest OS portability in light of the fact that how information
is passed between kernel and user space is left to the OS designer, Nitro provides the
flexibility of the rules-based system described in Section 7.3.3. That is, the user can
control which data is collected by specifying rules at run-time. This allows Nitro to
be useful across all guest OSs by simply changing the rule set. In our experiments, we
collected system call traces from Windows 7 (64-bit), Windows XP (32-bit and 64-bit),
and Ubuntu Linux (32 and 64-bit) simply by changing the rule set each time.
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7.4.3 Evasion-resistance

We make the reasonable assumption that the hypervisor itself is secure. In addition,
any components that reside within the hypervisor are safe from attacks originating from
within a guest OS due to the hypervisor’s isolation property.

While we have the aforementioned assumption with regard to the hypervisor itself, this
alone is not enough. This is due to the fact that our VMI mechanisms make changes to
the state of the guest VM. These state changes are clearly not protected by the isolation
property as they take place within the guest OS itself. A malicious entity might simply
revert the changes we made to the system state to circumvent our security mechanisms.
For this reason we took special care to make sure that Nitro is evasion-resistant.

As stated in Section 5.3.3, evasion-resistance requires that the VMI mechanism is
rooted in hardware and that each involved piece of VM state is protected against ma-
nipulation. Since the VMI mechanisms for the fast system call mechanisms and the
interrupt-based mechanism differ slightly in this regard, they are discussed separately
in the following.

7.4.3.1 Protecting Fast System Call Trapping Mechanisms

In order to achieve an evasion-resistant VMI mechanism for fast system calls, it is rooted
in either the SYSENTER CS MSR (SYSENTER-based) or the EFER (SYSCALL-based) as
discussed in Section 5.3.3. In addition, the VMI mechanism may protect each of these
registers from manipulation, which is directly supported by the virtualization extensions
provided. This is enough to achieve evasion-resistance because Nitro’s manipulation of
the system call mechanisms are constrained to these registers. That is, due to the changes
we made to the system, all fast system calls are trapped to the hypervisor and there
is no way for a malicious entity to circumvent this without making changes to exactly
those parts of the system that Nitro protects. Hence, this approach is both rooted in
hardware and protects all involved pieces of VM state, resulting in an evasion-resistant
mechanism.

7.4.3.2 Protecting Interrupt-based System Call Trapping Mechanisms

Making the interrupt-based system call traps evasion-resistant is similar to the method
described for fast system calls with one additional step. The mechanism is rooted in the
IDTR and this register is protected against malicious manipulation by the hypervisor.
In addition, a shadow copy of the original IDT is created within the hypervisor at boot
time. This already is enough to achieve evasion-resistance as the changes to the guest
OS are limited to this register. In addition, only the shadow IDT is referred to for each
user-defined interrupt. That is, any changes to the IDT within the guest OS do not affect
the ability to trap user-defined interrupts. In order to hinder this, a malicious entity
would have to manipulate the IDTR directly or the shadow IDT within the hypervisor,
both of which are protected with the help of the virtualization extensions.
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7.4.4 Mitigating the Observer Effect

As stated in Section 5.4, mitigating the observer effect is an important aspect of VMI if
the goal is observation. As Nitro is a tool that would be well suited for observation, we
discuss steps that can be taken to mitigate the observer effect.

The most straightforward of such steps is to make sure that the hypervisor reports
the original values for all registers Nitro altered. The altered registers include the MSRs
involved with the fast system calls and the IDTR. Luckily, these are registers for which
the virtualization extensions support trapping reads and writes. So, this step requires
trapping reads to these registers and returning the masqueraded (i. e., original) values
rather than the real (i. e., manipulated) values.

In addition to read accesses, we must consider write accesses to these registers. Simply
ignoring writes could easily result in detection. However, one could save all written
values in the hypervisor and return these values whenever a read access occurs, all the
while using the unchanged real value for system calls. This might fool naive methods
of detection, however a clever entity might try to observe changes in behavior based on
these writes and detect the system through such means. For example, a crass method
for detection might be to write an invalid value into such a register and observe how the
system reacts. If the system does not crash and the value of the register continues to
reflect the invalid input, one can assume that the hypervisor is involved.

Additionally, one could attempt to accept all writes to these registers so long as we
are still able to trap the particular system call. This has different implications for each
affected register. First, we consider the EFER. In this case, we set the single SCE flag
(i. e., bit) within the EFER for our system call trapping, so a change to other flags does
not concern our implementation. If an entity within the guest were to manipulate the
SCE flag, we could continue to keep the real flag set to 0 and trap all uses of the SYSCALL
and SYSRET instructions. In the hypervisor, we can then use the masqueraded value of
the SCE flag to determine whether we should carry out a system call or inject an invalid
opcode exception. Next, we consider the implications this has for the SYSENTER CS MSR

register. This is quite straightforward in that we can keep the real value set to 0 and
simply use the masqueraded value in the hypervisor each time a system call is trapped.
Finally, writes to the IDTR can be handled in a similar fashion. We maintain the
real value unchanged, but use the masqueraded value for checking the size of the IDT
when system calls are handled in the hypervisor. However, we must still consider the
possibility that an entity changes the location of the IDT or values within the IDT itself.

In our implementation, the shadow IDT is used for interrupt-based system calls. How-
ever, if an entity within the guest changes the location of the IDT, we cannot be sure
that the IDT in the new location is identical to the original IDT (i. e., the shadow IDT).
In this case, we would need to overwrite our shadow IDT with the guest’s IDT in the
new location. This covers the case that an entity makes use of the IDTR to detect the
presence of Nitro, however detection is still possible in that an entity makes a change
to the IDT itself and observes the effects. In this case, one could forgo the shadow IDT
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and refer to the IDT within the guest OS each time a user-defined interrupt is invoked.
While this would incur additional performance overhead, it would lead to the possibility
of a malicious entity making changes to the IDT that take effect, however all user-defined
interrupts will still be trapped.

7.4.5 Performance

In most VMI-based mechanisms, performance overhead becomes a concern. For this
reason, it is important to keep unnecessary traps to the hypervisor at an absolute mini-
mum. In all the mechanisms described in Section 7.3, we make use of a system interrupt
to facilitate the trap to the hypervisor due to the fact that system calls are not natively
trappable.

For our implementation, we looked at the individual system call mechanisms and
determined all system interrupts that each system call mechanism could be made to
produce and how to induce them. We then inspected all feasible solutions and considered
them in terms of their impact on performance. For example, all three system call
mechanisms can be made to produce a page-fault, however we passed on this for two
reasons. First, page faults occur often (relative to other system interrupts) in regular
system activity. This means that each page fault would result in a costly trap to the
hypervisor to distinguish between forced and natural page faults, most of which would
be natural. Second, this would essentially nullify any performance improvement that
comes from using Extended Page Tables or Nested Page Tables.3 In general, we strove
for a system interrupt that occurs infrequently during normal operation and one whose
use would not counteract performance enhancements in other parts of the system.

For a detailed performance evaluation see Chapter 8.

7.5 Remaining Attack Vectors

We have argued in Section 7.4.3, that, given the registers in question are protected,
Nitro is resistant to any evasion attempts. Specifically, we mean that there is nothing a
malicious entity can do such that communication through one of the three system call
mechanisms we describe in Section 7.2 will not be trapped to the hypervisor. There
may, however, remain other mechanisms by which a user space entity can communicate
with the kernel or vice versa. The simplest of such mechanisms may be facilitated by
the fact that the kernel can, by its right, read from and write to anywhere in memory.
That is, the user space entity could simply write to or read from a predetermined part
of its address space and the kernel could reciprocate. Such communication cannot be
detected or trapped with Nitro.

3These are hardware extensions implemented by Intel and AMD, respectively, to counter the perfor-
mance degradation caused by using shadow page tables.
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There have been further suggestions for obfuscating system calls or making use of other
mechanisms for system calls, for example, by embedding one system call in another [79] or
by using other system interrupts to facilitate system calls [49]. In the case of embedding
one system call within another, Nitro will still trap this communication to the hypervisor
and deliver all requested information. Nitro makes no effort to interpret the system calls,
but rather to deliver the information and in such a situation the communication will be
trapped and delivered due to the fact that, regardless of the obfuscation, system calls
are still being used.

In the case of making use of other system interrupts to facilitate system calls, this
communication will not be trapped by Nitro as it is designed to trap system call inter-
rupts. Such communication could, however, be trapped using a method similar to that
of Nitro. In fact, it would be more straightforward in that system interrupts are natively
trappable both on Intel and AMD hardware. However, such communication could take
place without Nitro being aware.

7.6 Summary

We have shown that Nitro is a powerful and flexible tool for system call tracing and
monitoring. It supports all three system call mechanisms provided by Intel’s x86 archi-
tecture for both 32-bit and 64-bit environments. In fact, we have successfully collected
system call traces with Nitro for Windows, Linux, 32-bit, and 64-bit guests and we are
confident that it will perform equally well for a variety of additional guest OSs. Further,
all of the VMI mechanisms presented have been shown to be evasion-resistant. That is,
these mechanisms cannot be manipulated in a way which allows a malicious entity to
circumvent system call tracing or monitoring. Its flexible and secure nature allows Nitro
to be used effectively in a variety of applications, such as machine learning approaches
to malware detection, honeypot monitoring, as well as sandboxing environments. In the
next chapter, we go on to strengthen the argument for Nitro by presenting a thorough
set of performance tests which include a comparison to a similar system, Ether [17].
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Chapter 8
System Call Trapping Evaluation

In this chapter, we present our general performance testing results for all guest OSs tested
with Nitro, which include: Windows 7 (64-bit), Windows XP SP2 (32-bit), Ubuntu
Linux 9.04 Server (32-bit), and Ubuntu Linux 9.04 Server (64-bit). We tested such a
large variety of guest OSs to demonstrate the power and flexibility of Nitro. The tested
OSs range from client to server OSs as well 32-bit to 64-bit OSs. Additionally, we show
that Nitro works with commercially popular OSs as well.

These tests were performed by running benchmarks on the guest OSs once with Ni-
tro disabled, then once with Nitro enabled and comparing these results to compute
the performance degradation incurred on each platform. While the results themselves
are of interest, we focus primarily on the amount of degradation observed because the
degradation is a strong indicator for the overhead incurred by our system call tracing.

Throughout these tests, we were not only careful to test as many guest OSs as possible,
but also to test each system call mechanism. That is, we present tests that measure the
performance of our mechanism for SYSENTER-based, SYSCALL-based, and interrupt-based
system calls. Not all OSs support each of these mechanisms, however we make sure to
present at least one test for each mechanism.

The following subsections present our results. All scores and times presented are a
mean over three scores or runs.

8.1 Windows XP

These tests were performed on an Intel Core 2 Duo processor at 2.4 GHz with 2 GB
of RAM. In testing the Windows XP guest OS we made use of two commercial bench-
marking products, namely PCMark05 from Futuremark and PerformanceTest from Pass-
Mark.1 These tools perform various CPU, memory, disk drive, and graphics tests. Each

1Available from http://www.futuremark.com/products/pcmark05/ and http://www.passmark.

com/products/pt.htm, respectively.
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8 System Call Trapping Evaluation

Benchmark Tracing disabled Tracing enabled Degradation

HTML Render [pg/s] 2.826 2.034 28.04%
File Decryption [MB/s] 64.697 64.654 0.07%
HDD [MB/s] 46.545 9.726 79.10%
Text Edit [pg/s] 84.743 40.032 52.76%
Image Decompression [MPix/s] 33.364 33.103 0.78%
File Compression [MB/s] 2.744 2.741 0.10%
File Encryption [MB/s] 15.853 15.826 0.17%
Virus Scan [MB/s] 314.118 155.718 50.43%
Mem. Latency [MemAcc/s] 6.231 3.782 39.30%
PerformanceTest Overall [score] 628.700 540.260 14.07%

Table 8.1: Windows XP SP2 (32-bit) performance results with SYSENTER-based system
calls on KVM/Nitro.

make heavy use of system calls as is evidenced by the output of Nitro.

The standard deviation of all tests were negligible, except for the “HDD” and “Virus
Scan” tests where we observed standard deviations of 6.3 and 61.0, respectively. We
hypothesize that this is due to the fact that these are both disk I/O intensive tests. In
any case, we present these results for the sake of completeness, however, due to their
high deviation from the mean, we do not draw any conclusions from these values.

It is interesting to note that across the set of tests the degradation varies greatly
from benchmark to benchmark, however the benchmarks with the lowest degradation
(< 10%) all perform some sort of compression, decompression, encryption, or decryption.
Such functions are highly arithmetic and perform relatively few system calls since these
arithmetic operations do not require OS support. We believe that this is the reason
for the variation in degradation across the benchmarks. While the PCMark05 tests (the
first nine benchmarks in Table 8.1) are great for identifying to which degree an operation
is affected by overhead in the system call mechanism, we feel that the results delivered
by PerformanceTest give a better overall impression of the performance degradation in
the guest OS as a whole.

8.2 Windows 7

These tests were performed on a an Intel i7 processor at 3.4 GHz with 8 GB of RAM
using the PerformanceTest benchmarking suite. We forgo the use of PCMark05 as it
is not fully supported by the 64-bit environment that Windows 7 provides. As can be
seen in Table 8.2, the PerformanceTest benchmarking suite gives a nice overview of the
performance and the degradation incurred through the use of Nitro.
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8.3 Ubuntu Linux

Benchmark Tracing disabled Tracing enabled Degradation

CPU [score] 1747.6 1585.1 9.30%
Graphics [score] 708.9 407.1 42.57%
Memory [score] 1443 1238.7 14.16%
Disk [score] 608.5 346.2 43.10%
Overall [score] 1159.0 872.9 24.68%

Table 8.2: Windows 7 (64-bit) performance results with SYSCALL-based system calls on
KVM/Nitro.

Apache Compile Results

Linux Guest OS Tracing disabled Tracing enabled Degradation

32-bit Interrupt-based 75.2s 92.2s 22.65%
32-bit SYSENTER-based 72.8s 95.3s 30.89%
64-bit SYSCALL-based 65.9s 81.7s 23.92%

Table 8.3: Ubuntu Linux 9.04 Server performance results on KVM/Nitro.

As was the case for Windows XP, we see that the tests that are CPU/memory intensive
(“CPU” and “Memory” benchmarks) incur lesser degradation than operations that need
OS support (“Graphics” and “Disk” benchmarks). This is, again, due to the fact that
the CPU/memory intensive operations are, by their nature, not system call intensive.
We draw the readers attention to the “Overall” score degradation as this gives the best
indication of overall system performance. While the degradation is greater than that
of the Windows XP guest it is still very much in an acceptable range and is still very
functional from a user perspective.

8.3 Ubuntu Linux

For testing all Linux guest OSs we created a script that makes use of the “time” command
in Linux. Using this utility we measured the compile time of the Apache web server 2.2.22
on an Intel i7 processor at 3.4 GHz with 8 GB of RAM. The time utility makes use of
the hardware clock and we verified beforehand that the hardware clock within the VM
is consistent with the host system’s hardware clock. We used this as a benchmark as it
is resource intensive enough to show performance degradation and makes extensive use
of system calls as is evidenced by the output of Nitro.

Presented in Table 8.3 are the test results when performed on a Ubuntu Linux 9.04
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Server (32-bit) guest OS. We manipulated the virtual hardware in order to be able to
report results for interrupt-based and SYSENTER-based system call mechanisms. That
is, by default, Ubuntu 9.04 will attempt to make use of a fast system call mechanism.
However, when these mechanisms are not present, the kernel is capable of falling back to
the interrupt-based method for system calls. We simply manipulated the hardware such
that the guest would act as though the fast system call mechanisms were not present.

The testing process we used for a 64-bit Linux guest OS is identical to the processes we
used for the 32-bit Linux guest with the obvious exception that we use Ubuntu Linux 9.04
Server (64-bit). One noteworthy difference between the 32-bit and 64-bit version of this
operating system is that the 64-bit version makes use of the SYSCALL-based system call
mechanism. These results are also presented in Table 8.3. Comparing the degradation
of this guest to its 32-bit counterpart reveals that the degradation for all three tests are
comparable.

Considering the results further, we notice that the guest OS making use of the
interrupt-based system call mechanism incurs less degradation than the guest OSs mak-
ing use of the SYSENTER- and SYSCALL-based system call mechanisms. This is interesting
as the interrupt-based mechanism is far more complex than the fast system call mech-
anisms and the emulation in the hypervisor is accordingly more complex and therefore
takes more time. Based on this alone, one would expect that the guest making use of the
interrupt-based mechanism would incur a greater degradation. However, one must keep
in mind that the trapping mechanisms for the fast system calls presented in Section 7.3.1
require that the entrance instruction as well as the return instruction be trapped to the
hypervisor. This leads to two traps per system call when the guest makes use of the fast
system call mechanisms. So, while the interrupt-based mechanism is more complex and
likely does incur a greater overhead when compared one-to-one, this is offset by the fact
that the fast system call trapping requires two traps per system call as opposed to one.

8.4 Comparison

We choose to compare our system to the Ether system [17] because Ether is the only
other system to our knowledge that supports some forms of system call tracing using
VMI without having to install drivers or modules in the guest OS (some others exist,
though they base their system call trapping on Ether’s approach [53, 78, 91]). Both in
function and performance, Nitro surpasses Ether with regard to system call tracing and
monitoring. In this section we discuss these differences in further detail.

8.4.1 Functional Differences

The largest functional difference between Ether and Nitro is the hypervisor that they
are built upon. Ether builds upon the Xen hypervisor, while Nitro builds upon KVM.
Nitro and Ether’s system call tracing mechanism are similar in respect to the output
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8.4 Comparison

Xen/Ether (SYSENTER) KVM/Nitro (SYSENTER)

Benchmark
Tracing

dis-
abled

Tracing
enabled

Degra-
dation

Tracing
dis-

abled

Tracing
enabled

Degra-
dation

HTML Render [pg/s] 3.277 0.598 81.74% 2.826 2.034 28.04%
File Decryption [MB/s] 65.561 64.561 1.53% 64.697 64.654 0.07%
HDD [MB/s] 45.198 7.215 84.04% 46.545 9.726 79.10%
Text Edit [pg/s] 89.066 17.246 80.64% 84.743 40.032 52.76%
Image Decompression [MPix/s] 33.856 32.951 2.67% 33.364 33.103 0.78%
File Compression [MB/s] 2.737 2.677 2.19% 2.744 2.741 0.10%
File Encryption [MB/s] 15.821 15.515 1.94% 15.853 15.826 0.17%
Virus Scan [MB/s] 333.988 85.307 74.46% 314.118 155.718 50.43%
Mem. Latency [MemAcc/s] 6.735 3.580 46.84% 6.231 3.782 39.30%
PerformanceTest [score] 586.500 383.020 34.69% 628.700 540.260 14.07%

Table 8.4: Windows XP SP2 (32-bit) performance comparison between KVM/Nitro and
Xen/Ether.

they provide, though Ether’s output is guest OS specific. That is, the output is Windows
specific. Despite this, we tried Ether on further guest OSs in order to determine whether
the underlying mechanism may be used for other guest OSs.

We tested both systems for functionality on Windows XP SP2 (32-bit), Ubuntu Linux
9.04 Server (32-bit), and Ubuntu Linux 9.04 Server (64-bit). Nitro proved functional
on all tested platforms, while Ether proved 100% functional only on Windows XP SP2.
While we expected Ether to be functional on Ubuntu Linux 9.04 Server (32-bit) because
this OS uses the same system call mechanism as Windows XP SP2, the guest OS became
very unstable and was not usable from a user’s perspective when system call tracing was
enabled. Finally, Ether was unable to provide any system call information for Ubuntu
Linux 9.04 Server (64-bit) although the guest OS continued to run without issue. We
believe that this is due to the fact that Ether fails to consider the SYSCALL/SYSRET
mechanism for system calls completely. We see this as a major detractor as this limits
the number of guest OSs for which system call tracing or monitoring will work. In
addition, this opens up opportunities to evade Ether.

8.4.2 Performance Comparison

We performed all presented tests on an Intel Core 2 Duo processor at 2.4 GHz with 2 GB
of RAM. In addition, we used the same Windows XP SP2 (32-bit) image for all tests to
ensure the consistency of the guest OS. Finally, we used the recommended Xen 3.1.0 as
hypervisor for Ether. It is also important to note that we chose the specific benchmarks
out of the PCMark05 suite due to the fact that these are the same benchmarks that
Ether’s authors used when testing their system originally. We felt it was important to
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Figure 8.1: Performance degradation of Xen/Ether and KVM/Nitro when tracing a Win-
dows XP SP2 guest OS (ref. Table 8.4).

include the same set of tests in the interest of equity.

Nitro and Ether are based on two different hypervisors, namely KVM and Xen. As
our intentions were not to compare the performance between KVM and Xen but to
compare the efficiency of the different implementations for system call tracing, we look
at the relative performance degradation between the unmodified version of KVM and
Nitro and compare this to the relative performance degradation between the unmodified
version of Xen and Ether. This way we can measure the performance overhead incurred
by each VMI implementation and present a fair comparison of Nitro and Ether.

As Ether only worked correctly for a Windows XP SP2 guest OS, we were only able to
compare the performance of Ether and Nitro on this guest. These results are presented
in Table 8.4 and Figure 8.1. Again, we do not draw any conclusions from the ‘HDD’ and
‘Virus Scan’ results due to their high observed standard deviation (this high standard
deviation was observed for Xen/Ether as well as KVM/Nitro), however the results are
present in Table 8.4 for the curious reader. Despite this, we see that Nitro outperforms
Ether both on the absolute scores and the amount of degradation in all tests performed.
In the benchmarks that focus on arithmetic operations (i. e., use relatively fewer system
calls), for example compression and encryption tests, Nitro outperforms Ether only
nominally. However in the case of HTML rendering, text editing, and memory latency,
Ether’s degradation is between 5 and 54 percentage points greater than that of Nitro. As
mentioned in Section 8.1, while the PCMark05 benchmarks nicely reveal which specific
operations incur the greatest degradation, the PerformanceTest benchmark is a better
indicator of the overall degradation of the system. We see that with this benchmark
Ether’s degradation is over 20 percentage points more than that of Nitro.

We hypothesize that Ether’s greater degradation is primarily due to the fact that
Ether forces a page fault interrupt to perform system call tracing. This adds additional
overhead to a part of the hypervisor which is already responsible for incurring a large
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8.5 Summary

performance overhead. Additionally, this design decision effectively counteracts any
benefits one might have from using Ether with a hypervisor which makes use of Extended
Page Tables.

8.5 Summary

In this chapter we have supported our performance claims with tests. We presented tests
across several mainstream client and server OSs and demonstrated that Nitro performs
well with all of them. We strengthened this claim by comparing the performance of
Nitro with that of Ether [17], another system that performs VMI-based system call
trapping, though not in a fully derivative manner. Through this comparison we showed
that Nitro’s purely derivative approach to system call tracing outperformed Ether in all
tests.
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Chapter 9
Detecting Malware Using System Calls

Detecting malware is an ever present challenge in the field of security. Traditionally,
malware detection makes use of signature-based methods. That is, known malware
samples are analyzed to create a repository of signatures which are then matched against
a static object to determine whether the particular object is infected with malware.
While this approach is straightforward, it has two fundamental issues. The first stems
from the static nature of the analysis. A static analysis denotes that the analysis is
performed on an inert object, that is, an object that is not being executed or in any
other way active. Malware authors take advantage of this fact by obfuscating the inert
object in such a way that it no longer matches any of the the signatures in the repository.
However, when executed, the actions of the active process prove malicious. This may
be achieved by simple packing and unpacking of the malicious portions of the object or
by more advanced polymorphism techniques.

The second issue with such an approach is a result of its reliance on signatures. These
signatures must be generated prior to a successful match, which makes such an approach
disadvantageous in situations where no prior sample existed for signature generation.
That is, novel malware that makes use of, so called, “0-day” exploits (exploits which
have not yet been seen in the wild) are impossible to detect with a signature-based
method. To address these issues, dynamic machine learning-based analysis has often
been considered in various forms [65, 41, 64, 92, 72].

A dynamic analysis means the behavior of the malware is analyzed rather than the
inert object. This evades traditional code obfuscation as the behavior remains malicious
and it is this behavior that is analyzed. Obfuscating behavior becomes much more diffi-
cult as the malicious act must be carried out in some form. That is, one can attempt to
conceal their intentions, but once the malicious act is carried out, this behavior is ide-
ally observable and can be acted upon. Furthermore, machine learning techniques lend
themselves well to malware detection as such techniques make an attempt to generalize
and learn the features of malware that differentiate them from benign software. This
can then also be applied to novel malware which has yet to be seen in the past.
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9 Detecting Malware Using System Calls

While such approaches show much promise they are not immune to short-comings of
their own. While obfuscating behavior is more difficult than obfuscating code, it is not
impossible. Depending on how the behavior of a process is modeled, dynamic analysis
is generally vulnerable to a class of attacks called mimicry attacks [83, 84]. This class
of attack attempts to “act benign” while secretly carrying out some malicious action.
Additionally, machine learning techniques often require the behavior to be modeled
in full before classification can take place, making online classification impossible. In
addition, the large time complexity combined with the massive amount of data that
needs to be classified often makes a practical solution difficult.

In this chapter, we model process behavior though system call traces collected by
Nitro and present a practical machine learning-based method for malware detection.
Specifically, we make use of a support vector machine (SVM). Through proper election
of a string kernel function and a novel approach to applying the SVM over a sliding
window, we address the issues often associated with dynamic machine learning-based
approaches and present a technique which we show to be both accurate and practical.
With this method, we use system call traces to classify processes in an online manner
and are able to achieve an accuracy of 99%. Finally, we argue that due to the flexible
nature of our approach along with our choice of kernel function this method raises the
bar against mimicry attacks.

9.1 Method

As mentioned in Section 7.1, we choose to focus on system calls due to their significance
as the communication channel between kernel and user space. Kolter and Maloof propose
modeling process behavior with byte code traces [41]. While this approach is promising
as they show and the behavior is modeled very thoroughly through byte code traces,
it requires the collection and processing of a lot of data. Furthermore, a lot of this
data may be extraneous as the model is a very low-level representation of the process
behavior.

In an attempt to reduce the amount of extraneous information, we concentrate on
what it is that malicious code will try to achieve. A process in complete isolation cannot
perform any malicious action on the rest of the system. Hence, in order for a process
to act maliciously it must interact in some manner with the rest of the system and if
the isolation mechanism in place is sound, this interaction must take place through the
interface provided by the OS (i. e., system calls).

As a result of the above observation, system call traces or API call traces are often
used to model process behavior [65, 64, 92]. API call traces are similar in nature to
system call traces, though the APIs are implemented at a level above system calls and
generally lack hardware assistance in their implementation. It is reasonable to assume
that if an approach is successful for either system call traces or API call traces, it will
also be successful for the other. We tested our approach on both types of traces, though
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9.2 Classification
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Figure 9.1: Visualization of the maximization problem used to determine the optimal hy-
perplane for a support vector machine.

we focus on the system call traces provided by Nitro to model the behavior of a process.
Specifically, we will model the behavior of a process with a sequence of system call
numbers. System call numbers simply represent a specific OS services and are assigned
by the OS. It is also important to note that we make use of Nitro’s tracing feature (i. e.,
we forgo the use of system call arguments). While this information may be useful for
certain approaches, we show that our approach is successful without arguments. This
also significantly reduces the collection overhead.

9.2 Classification

For the classification of the system call traces, we make use of support vector machines
(SVMs) [71]. SVMs are a maximal margin hyperplane classifiers. That is, given a
training set X = {(xm, ym)}Mm=1, where xm is a training vector and ym is the associated
class +1 or −1, the SVM identifies the hyperplane for which the separation between
the most relevant training vectors (i. e., the support vectors) and the hyperplane is
maximized, then classifies new vectors based on their relation to this hyperplane. The
hyperplane is represented by a weight vector w ∈ RD and b ∈ R and is formally defined
for some C > 0 in the following optimization problem:

minimize
w,ξ,b

‖w‖2

2
+
C

M

M∑
m=1

ξm

subject to ym(〈w,xm〉+ b) ≥ 1− ξm,m = 1, · · · ,M
(9.1)

Here the notation 〈w,xm〉 denotes the dot product of the vectors w and xm. This
problem states that we must find w, b, and a slack variable, ξ such that 〈w,x〉+b ≥ +1−ξ
if x is in the “+1” class, 〈w,x〉 + b ≤ −1 + ξ if x is in the “−1” class, the margin (i.e.

2
‖w‖) is maximized, and the mean of the slack variables (ξi) is minimized. The slack
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variables prevent the SVM from over fitting the model by allowing the left-hand side of
the inequality to be slightly less than +1 even if x belongs to the “+1” class or slightly
greater than −1 even if x belongs to the “−1” class. A visualization of this is depicted
in Figure 9.1.

By introducing a Lagrangian with multipliers αm ≥ 0, the training phase determines
which training vectors will become support vectors. Essentially the training phase will
choose a training vector xm if the corresponding αm > 0, that is, if the training vector
lies directly on the +1 or −1 hyperplane.

Finally, the classification occurs by comparing the test vector to each support vector
and measuring the similarity between each support vector and the test vector. The
decision function f is formally defined as:

f(x) = sgn(g(x)) (9.2)

where

g(x) =
M∑
m=1

ymαm〈x,xm〉+ b (9.3)

Here the dot product plays the role of the kernel function, which measures the simi-
larity between the two vectors. For simple geometric classification, a dot product may
suffice as a measure of similarity. However, for detecting malware through system call
traces, a more complex kernel function is necessary. This kernel function must be care-
fully chosen for a given domain and is discussed in further detail in Section 9.3.

9.2.1 Probability Estimates

As shown in the previous section, SVMs predict a class without producing a probability
associated with this prediction. That is, the output of the SVM is binary, indicating the
predicted class as is seen in (9.2). However, it is often beneficial to work with a posterior
probability P (y = 1|g(x)) based on g(x) defined in (9.3). Such a posterior probability is
especially helpful when the output is to be combined with other factors to reach a final
decision.

This probability must be estimated and several methods for this estimation have been
proposed. We make use of a method proposed by Platt [58]. Platt’s method estimates
the posterior probability by using the following sigmoid function:

P (y = 1|g(x)) =
1

1 + eAg(x)+B
(9.4)

where A and B are found by minimizing the negative log likelihood of the training data.
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9.3 Kernel Function

In looking for a kernel function we begin by examining the nature of the input itself.
The input consists of a string (i. e., sequence) of system call numbers. For the language
processing domain, string kernels were introduced to classify texts or strings [48]. In
essence, our input is very similar, though instead of classifying strings over the roman
alphabet, for example, we are interested in classifying strings over the alphabet of all
system calls. That is, we define our alphabet, Σ, as all possible system calls and a string
is a sequence s ∈ Σ∗ of letters (i. e., system calls). Based on this similarity, we choose a
string kernel for our method.

Specifically, we choose to use the string subsequence kernel (SSK) [48]. This kernel
measures the similarity between inputs by considering the number of common subse-
quences. A subsequence allows for letters between elements of the subsequence, though
the kernel penalizes the similarity as this number of interior letters increases. For exam-
ple, the string ABC would clearly match on the string ABC, but it would also match
on the string AaaaBbbbCccc, though with a lower similarity measure due to the interior
aaa and bbb. This property of the kernel is especially attractive as a sequence of system
calls may contain interior system calls that might be irrelevant to the malicious nature
of the sequence.

The SSK is formally defined as:

k(s, t) =
∑
u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λl(i)+l(j) (9.5)

where n is the size of the subsequence and λ ∈ (0, 1) is the decay factor used to weight the
contribution of the match based on the number of interior letters. The notation u = s[i]
denotes that u is a subsequence of s for which there exist indices i = (i1, . . . , i|u|), with
1 ≤ i1 < · · · < i|u| ≤ |s|, such that uj = sij , for j = 1, . . . , |u|. Finally, l(i) represents
the length of the subsequence including interior letters.

Previous approaches make use of polynomial kernels or other methods that do not fully
consider the sequence of the system calls [64, 72, 65]. That is, in the most trivial case,
the number of times that system call occurs in the trace is taken into account without
considering the order of the system calls. This is most likely due to the fact that string
kernels incur a massive time overhead when used with large amounts of data. However,
if one can mitigate the increased time overhead, an approach that considers sequential
data has the potential to produce very high accuracy rates. Intuitively, considering
sequential data is logical. If one where to manually analyze a system call trace, one
would consider the order of the system calls in addition to which system call is being
executed. In an effort to baseline the time overhead, we began training the SSK with
our raw data and broke the test off after two months of running with no result in sight.
So with practical analysis as a goal, clearly this time overhead must be addressed.
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9 Detecting Malware Using System Calls

9.4 Practical Application

We address the practical application of the SSK with the observation that if we are able
to classify a process by updating an interim classification value and making a decision
before the process has finished, we inherently address online classification while reducing
the time overhead by not having to analyze the entire system call trace.

To prepare the training data, we iterate over each individual system call trace and
extract contiguous sub-traces of size S starting at random points within the traces.
We iterate over all the training traces several times in order to get several sub-traces
from each original trace. These size S sub-traces become our training set. We do this
for the sake of practicality because training the SSK with circa 2000 traces, some of
which may contain hundreds of thousands of system calls, takes months even on modern
hardware. In an effort to make use of the strength of this kernel in a practical manner,
we took random size S samples from the original training traces. The clear concern is
that some of these sub-traces may not be indicative of the class they belong to because
they represent a relatively small fraction of the entire trace. However, with enough sub-
traces we will statistically collect some that are indicative of the class they belong to.
The beauty of a SVM is that it will decide which of the sub-traces to use as support
vectors (hopefully those indicative of the training class) and which to disregard. With
enough random sub-traces, the SVM will be able to decide which of these it should
retain in the form of support vectors. This training set is then used to train the SVM.

The classification, then, works by sliding a window of size S over the system call
trace that is to be classified. This sliding window moves forward by S/2 elements in the
trace for each iteration. Then, for each iteration, probability estimates are taken using
Platt’s method [58] as described in Section 9.2.1 and factored into a cumulative moving
average for each class. If we let pi = P (y = 1|xi) represent the probability estimate as
approximated by (9.4) for an iteration i, we represent the cumulative moving average
after iteration i as:

Ui =
p1 + · · ·+ pi

i
(9.6)

In addition to calculating the cumulative moving average, we also experimented with
a simple moving average of the probability estimates. This is a similar method, though
instead of considering all previous window iterations, a simple moving average only
considers the last y window iterations in the average (where y may be arbitrarily set).
Formally,

Si =
pi−y + · · ·+ pi

y
(9.7)

where i ≥ y.

We continue our classification by defining two thresholds T1 ∈ [0.5, 1] and T−1 ∈
[0.5, 1]. These thresholds get compared to Ui and 1 − Ui, respectively and if either
threshold is exceeded, the classification ends by predicting the class represented by the
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exceeded threshold. Formally, the decision function is represented as follows:

Di =


1 if Ui > T1,

−1 if 1− Ui > T−1,

Di+1 else

(9.8)

Clearly, Ui > 0.5∧(1−Ui) > 0.5 can never be true if Ui ∈ [0, 1], therefore if T1 ∈ [0.5, 1]
and T−1 ∈ [0.5, 1], only one single case of the decision function will ever be true for a
given iteration. For practicality, if the cumulative moving average never exceeds either
threshold and there are no more system calls in the trace, the decision function simply
predicts 1 if Ui > 0.5 or it predicts −1 otherwise.

9.5 Summary

This chapter proposes a novel method for practical, online malware detection using
machine learning methods. We make use of a SVM in combination with the SSK.
This string kernel was originally proposed for text classification, but has properties
which make it attractive for the malware detection domain. We address the large time
overhead generally associated with such an approach by considering the moving average
of probability estimates over a sliding window that is slid over system call traces. This
moving average is then compared to a threshold to predict a class. Using a machine
learning approach sets our method apart from the more traditional signature-based
methods in that such methods have been shown to work for novel malware, that is,
malware which has yet to be seen.

In the following chapter, we present an evaluation of our approach. Our experimen-
tation will show that this method is both accurate and considerably reduces the time
overhead associated with using the SSK for this domain.
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Chapter 10
Malware Detection Evaluation

In this chapter we present the results of our experiments when testing Nitro and our
SVM-based method for malware detection on real-world data. Additionally, we take
special care to discuss the proper setup and preparation of the data to be trained on
and tested.

10.1 Data Collection

We ran this experiment on two sets of sample traces. Both sets of samples include both
malicious and benign samples that were run on the Windows XP operating system (OS).
We chose Windows XP as it is a popular commercial OS and numerous malware samples
are available for this platform.

The first set of system call traces was collected using Nitro. This dataset includes
1943 system call traces of malicious samples taken from VX Heavens 1 and 285 system
call traces of benign samples taken from a default Windows XP installation and selected
installations of well-known, trusted applications.

The second set of traces works on a level slightly above system calls. Windows XP
wraps its system calls in APIs that it provides to programmers through system libraries.
While these traces are technically at a level slightly above the system calls themselves,
they serve the same purpose and demonstrate that our method works at both levels.
This dataset is collected by hooking these API functions and was first used by Xiao and
Stibor [92]. It consists of 2176 API call traces of malicious samples and 161 API call
traces of benign samples.

We chose to introduce the second independent data set for two reasons. First, the
second data set makes use of API call traces rather than system call traces directly.
This gives us a chance to observe the accuracy of our approach for system calls as well
as API calls. The second and perhaps more important reason for including a second

1http://www.vxheavens.com
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data set is to confirm that our method also works on an independent data set that was
not collected by us. This strengthens the credibility of our approach as it allows us to
present results based on data that others have previously used in similar experiments.
In fact, we directly compare the results of our method with that of Xiao and Stibor in
Section 10.4.

10.1.1 Imbalanced Data

One may notice that there are significantly fewer benign traces than malicious traces in
both data sets. This can lead to misleading results if experiments are not conducted
correctly. The first step in addressing imbalanced data is to use a technique called cross
validation. This technique ensures that all data is used for both training and testing,
but in a manner such that in a single iteration the training data and testing data remain
completely independent. Allowing a classifier to train on data, then testing on that same
data will result in biased results. It is not difficult to create a classifier that is able to
classify data that it has seen before in a training phase. The simplest of such an approach
is a signature-based approach. However, we want to show that our approach also works
for previously unseen malware. To address this, cross validation involves partitioning
the data and training on one labeled partition then classifying the remaining partitions
without a label. Once this is complete, the process is repeated with a new partition as
the training set. This ensures that the classifier is always receiving data it has never
seen before during the testing phase. Specifically, how we set this up in our evaluation
is described in detail in Section 10.2

The second precaution that one must take to avoid misleading results is to consider
both the ratio of false positives to total negatives (the false positive rate) and the ratio of
true positives to total positives (recall) in addition to the precision and accuracy of one’s
approach. When training classifiers with data sets in which the classes are significantly
imbalanced (as is the case in our data set), there is a risk that the classifier “learns” this
imbalance and bases its classification, in part, on the distribution of the labels in the
training set. This is logical, if one is unsure how to classify something, the best guess
might be to rely on the distribution of previously observed data points. However, this
can lead to misleading results. For example, consider a testing set in which the number
of positives (P ) is 99 and the number of negatives (N) is 1. Assume that the classifier
classifies all 100 data points as P . We might conclude that our classifier classified the
testing data with an accuracy of 99% (accuracy = TP+TN

P+N
, where TP = number of

true positives and TN = number of true negatives). However, this is misleading as the
classifier classified none of the elements in the N class correctly. In this case, a false
positive rate of 100% reveals this fact (false positive rate = FP

N
). This illustrates the fact

that in addition to accuracy and precision, one should take care to consider the false
positive rate and the recall to identify misleading results. Looking at these measures
in addition to accuracy and precision will give a clearer picture of the success of one’s
approach.
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Training Set B

Testing Set A

against

Testing Set B

Training Set A

against

Malicious Samples
size = m

Malicious Testing Traces A
size = m/2

trace length = variable

Malicious Testing Traces B
size = m/2

trace length = variable

Malicious Training Traces A
size = 2000

trace length = 100

Malicious Training Traces B
size = 2000

trace length = 100

Benign Samples
size = n

Benign Testing Traces A
size = n/2

trace length = variable

Benign Testing Traces B
size = n/2

trace length = variable

Benign Training Traces A
size = 2000

trace length = 100

Benign Training Traces B
size = 2000

trace length = 100

Figure 10.1: Splitting the sample sets for a two-fold cross validation.

10.2 Setup

We begin by preparing the training set. Since the training and testing sets must be
prepared differently as described in Section 9.4 and we need to set up a cross validation,
this requires a few extra steps. We begin by splitting both the set of malicious traces
and benign traces in half. These sets can be directly used in testing as this step shifts
its sliding window over the entire trace. However, to produce the training set, we
iterate over each testing set and extract random contiguous subsequence of size S. In
our experiments, S = 100 and we iterate 2000 times. This results in four testing sets of
traces (two malicious and two benign), each with training set of 2000 random contiguous
subsequences created from it. We then combine the sets, such that a single malicious
testing set is combined with a single benign testing set as well as the respective training
sets. With the training set prepared, we can now perform a standard two-fold cross
validation in which the traces used for the training set are completely independent of the
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traces used for the testing set. The creation of these sets is depicted in Figure 10.1.
With the data collected and prepared, we make use of LIBSVM [13] along with a

provided string kernel extension to perform both training and classification as described
in Section 9.4. Since the SSK kernel is not implemented in LIBSVM or the string kernel
extension, we incorporated the SSK implementation proposed by Herbrich [33]. These
implementations had to be further modified such that they accept an input over an
integer alphabet as opposed to a roman letter alphabet used in text classification. It
is also important to note that LIBSVM calculates probability estimates by making use
of an improved algorithm for minimizing the negative log likelihood proposed by Lin et
al.[45].

With these tools and the data prepared, we set up the experiment as described in
Section 9.4. We also found that it was necessary to factor several values into the moving
average before checking either threshold. This allows the moving average to factor in
some data before a decision is made. For this reason we always factor the probability
estimates for the first 10 iterations in our moving average before we begin considering
the thresholds.

10.3 Results

For each experiment, P represents the number of positive (malicious) samples and N
represents the number of negative (benign) samples. Then, as each experiment runs, we
collect the number of correctly and incorrectly classified results as true positive (TP ),
true negative (TN), false positive (FP ), and false negative (FN). With this information
we calculate the classification measures presented in Table 10.1 and Table 10.2 and
discussed below. Finally, we also present the number of average iterations (the average
number of times the SVM classifier had to be called until either threshold was met) and
the moving average type (CMA = cumulative moving average, SMA = simple moving
average) for each experiment.

We began by considering the threshold values. These values are quite important as
they most directly affect average number of iterations it takes to make a decision. As
the thresholds rise, so does the average number of iterations in general. However, if a
threshold is too low the number of false positives and/or negatives rises. In addition,
we noticed that our SVM was much more sensitive to malicious samples than it was
to benign samples. That is, the average of the malicious probability estimates rose
much more quickly to 1 for malicious samples than the average of the benign probability
estimates for benign samples. This observation led us to set the benign threshold higher
than the malicious threshold.

We next considered the variable n. As mentioned in Section 9.3, n is the size of the
subsequence that the kernel function looks for in the traces being compared. What we
observed is that as we increased n from the initial value of 3, the classification measures
for both datasets became worse. This may seem somewhat counterintuitive. However,
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Test Average
Num. n λ T−1 T1 Avg. TP FP TN FN Iterations

1 3 0.5 0.5 0.75 CMA 1929 11 274 14 13.2608
2 4 0.5 0.5 0.75 CMA 1910 15 270 33 29.4753
3 5 0.5 0.5 0.75 CMA 1903 20 265 40 19.7244
4 3 0.25 0.5 0.75 CMA 1702 17 268 241 209.4165
5 3 0.75 0.5 0.75 CMA 1902 14 271 41 120.6194
6 3 0.4 0.5 0.75 CMA 1919 12 273 24 14.1831
7 3 0.6 0.5 0.75 CMA 1929 14 271 14 22.4475
8 3 0.5 0.5 0.5 CMA 1941 35 250 2 10.8406
9 3 0.5 0.5 0.75 SMA 1869 7 278 74 11.3321
10 3 0.5 1 0.9 SMA 1906 48 237 37 722.3012

Test FP Rate Recall Precision Accuracy F-Measure
Num. FP

N
TP
P

TP
TP+FP

TP+TN
P+N

2
1

Precision
+ 1

Recall

1 0.0386 0.9928 0.9943 0.9888 0.9936
2 0.0526 0.9830 0.9922 0.9785 0.9876
3 0.0702 0.9794 0.9896 0.9731 0.9845
4 0.0596 0.8760 0.9901 0.8842 0.9295
5 0.0491 0.9789 0.9927 0.9753 0.9857
6 0.0421 0.9876 0.9938 0.9838 0.9907
7 0.0491 0.9928 0.9928 0.9874 0.9928
8 0.1228 0.9990 0.9823 0.9834 0.9906
9 0.0246 0.9619 0.9963 0.9636 0.9788
10 0.1684 0.9810 0.9754 0.9618 0.9782

Table 10.1: Experimental results for system call trace dataset (P = 1943, N = 285) The
top table displays the set-up parameters and raw results while the bottom table
represents the classification measures.
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Test Average
Num. n λ T−1 T1 Avg. TP FP TN FN Iterations

1 3 0.6 0.5 0.75 CMA 2029 19 142 147 37.2174
2 3 0.5 0.5 0.75 CMA 1971 19 142 205 31.3479
3 3 0.4 0.5 0.75 CMA 1699 15 146 477 32.8015
4 4 0.5 0.5 0.75 CMA 1660 20 141 516 29.1656
5 5 0.5 0.5 0.75 CMA 1697 18 143 479 32.2657
6 3 0.5 0.5 0.75 SMA 1456 16 145 720 14.1694
7 3 0.5 0.7 0.9 SMA 1961 21 140 215 51.3697

Test FP Rate Recall Precision Accuracy F-Measure
Num. FP

N
TP
P

TP
TP+FP

TP+TN
P+N

2
1

Precision
+ 1

Recall

1 0.1180 0.9324 0.9907 0.9290 0.9607
2 0.1180 0.9057 0.9905 0.9042 0.9462
3 0.0932 0.7808 0.9912 0.7895 0.8735
4 0.1242 0.7629 0.9881 0.7706 0.8610
5 0.1118 0.7799 0.9895 0.7873 0.8723
6 0.0993 0.6691 0.9891 0.6851 0.7982
7 0.1304 0.9012 0.9894 0.8990 0.9432

Table 10.2: Experiment results for API call trace dataset (P = 2176, N = 161) The top
table displays the set-up parameters and raw results while the bottom table
represents the classification measures.

n is very dependent on S (the size of the window). Since the SSK function does not
compute distance between matched subsequences it must look for exact subsequence
matches and as n approaches S the probability that two size n subsequences exist in
two separate traces of relatively small size decreases. This may become clear through a
simplified example. Let us assume that we are matching substrings of size 3 (i. e., n = 3)
in two strings of size 3 (i. e., S = 3) and our kernel function simply returns the number
of matches. If we consider the two stings to be matched to be “aab” and “aac”, our
kernel function returns 0 (i. e., no match). However, if we set n = 2, our kernel function
returns 1, indicating some level of similarity, for the same input.

We then began to experiment with various values for λ. λ ∈ (0, 1) is the decay factor
used to weight the contribution of the match based on the number of interior letters.
That is, as λ approaches 1, interior letters are increasingly penalized. We were surprised
by the drastic increase in the average number of iterations it took for a decision to
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be reached as λ moved away from 0.5. This can most dramatically be seen for values
λ = 0.25 and λ = 0.75 in Table 10.1. We found that these values caused the probability
estimates to remain closer to 0.5, this caused the decision function to take longer when
the probability estimates where favoring the malicious (i. e., “+1”) class, as this threshold
is set to 0.75. We concluded that a value close to 0.5 was best for both datasets.

Finally, we considered using simple moving averages as opposed to cumulative moving
averages to make a classification. We found that using a cumulative moving average
performed slightly better than a simple moving average. We reasoned that because the
average number of iterations is so low when using the cumulative moving average, the
success of two methods would not differ greatly if all other factors remained the same.
One would expect to see a greater difference in the performance of the two methods
if the average number of iterations is much higher. This is supported by the API call
dataset in which the average number of iterations is higher and the success of the two
methods differ more greatly. In both cases, however, the experiments that made use of
a cumulative moving average performed better.

After having experimentally optimized the various variables, we see that n = 3, λ =
0.5, T−1 = 0.5, T1 = 0.75, and using a cumulative moving average produces the best
results for the system call datasets. We show that these values contribute to a 99.28%
recall, a 99.43% precision, a 98.88% accuracy, and a 99.36% F-measure, with only a
3.86% false positive rate. We performed more thorough testing on the system call data
set as it is the data we collected and it is the system call traces that our system focuses on
rather than API call traces. We tested our method on the second dataset (i. e., the API
call dataset) to strengthen our claim that our approach performs well. For this dataset,
we produced the best results with n = 3, λ = 0.6, T−1 = 0.5, T1 = 0.75. With these
inputs, our approach produced a 93.24% recall, a 99.07% precision, a 92.90% accuracy,
and a 96.07% F-measure, with a 11.80% false positive rate.

10.4 Comparison

In this section, we compare the results of our approach with those of other approaches.
To our knowledge there are no other approaches that make use of string kernels with
SVMs, however we compare our approach with SVM-based approaches, an approach
that makes use of a k-nearest neighbor (kNN) classifier, and an approach that makes
use of probabilistic topic models.

10.4.1 SVM-based Approaches

We compare our approach to two SVM-based approaches that make use of differing
kernels.
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Author Approach FP Rate Recall Accuracy

Pfoh SVM+SSK (syscalls) 0.0386 0.9928 0.9888 (1)
Pfoh SVM+SSK (API) 0.1180 0.9324 0.9290 (2)
Rieck et al. [64] SVM+Poly � � 0.88 (3)
Rieck et al. [64] SVM+Poly (extended) � � 0.76 (4)
Wang et al. [85] SVM+GRBF 0.0222 0.995 � (5)
Liao and Vemuri [44] kNN (total) 0.0 0.917 � (6)
Liao and Vemuri [44] kNN (novel) 0.0 0.75 � (7)
Xiao and Stibor [92] STT 0.4286 0.9955 0.9721 (8)
Xiao and Stibor [92] STT+SVM 0.3748 0.9997 0.9790 (9)

Table 10.3: A comparison of results from various machine learning approaches to malware
detection using system call traces. The � symbol indicates that the information
is not available.

10.4.1.1 Polynomial Kernel Function

The first approach we will compare our results with is the work of Rieck et al. [64].
This approach models the system trace by counting the frequency of each system call.
The frequency of a system call becomes the weight of that particular system call and
this information is stored in a separate vector for each trace. These vectors can then
be introduced as arguments to a kernel function. In this case, Rieck et al. make use of
polynomial kernel:

k(x,y) = (〈x,y〉+ 1)d (10.1)

where d is the dimension of the vector.
For their testing, they made use of a corpus of 10,072 malware samples divided into

14 malware families. Of interest is that the authors classified the malware into the 14
different classes rather than classifying a process as either malicious or benign. This level
of granularity is helpful especially when trying to determine whether a specific malware
sample is similar to a family of malware that is already known or whether it represents a
potentially new family of malware. However, such an approach also requires a classifier
for each family which can become very cumbersome as the number of malware families
grows. Despite this, the authors also published the overall accuracy which allows us to
nicely compare our results with theirs.

The results of this approach can be seen in Table 10.3, lines 3 and 4. Line 3 represents a
round of testing the authors did using normal cross validation as is the case in our testing,
while Line 4 represents testing that took place with an extended dataset that included
malware that belonged to none of the malware families along with benign processes. We
see that, comparatively, our approach is more accurate. This is not surprising as the
approach used by Rieck et al. does not consider any sequential information at all.
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10.4.1.2 Gaussian Radial Basis Function

The approach published by Wang et al. [85] also makes use of SVMs although they make
use of n-grams. That is, this approach measures the occurrence of n-grams rather than
individual system calls. The strength of an approach that makes use of n-grams is that
some sequential data is preserved. This is due to the fact that an n-gram is a sequence
of system calls and within one n-gram the sequential information is preserved. A single
system call trace is then examined and the presence of n-grams is noted. That is, each
n-gram is represented by a position in a vector and the value at each position is 1 if the
respective n-gram exists in the trace and is 0 otherwise. Such a vector is built for each
trace and delivered to a Gaussian Radial Basis Function (GRBF):

k(x,y) = e−γ‖x−y‖
2

(10.2)

where γ is “optimized through experiments and comparisons” [85].
The authors made use of 722 benign executables and 1589 worms in their experimen-

tation and one can see by looking at Line 5 of Table 10.3, that their approach is quite
successful. In fact, it seemingly outperforms our approach by a small margin. However,
one must be very careful to notice that the authors only classify benign executables
and worms. That is, this approach only considers one family of malware. This has two
ramifications. First, it is useless when classifying other classes of potentially harmful
malware. Second, while the metrics presented in Table 10.3 may be close to those of
our approach, one cannot conclude that it is a better approach when applied to all mal-
ware families. This is due to the fact that as one restricts a class, its members share
more similarities making it easier for a classifier to correctly classify an unknown. For
example, a classifier that is tasked with classifying humans into classes, males and fe-
males, might have a more difficult time than a classifier who is tasked with classifying
humans into classes, brunette males and females (non-brunette males have effectively
been removed from our world). This is due to the fact that if the observed human is
not brunette, the classifier can already classify it as a female based on this information
alone.

As opposed to the approach from Rieck et al. [64], Wang et al. [85] make use of n-grams
to preserve some sequential information, however with their approach they loose quite
of a bit of frequency information as they simply consider the existence of an n-gram
rather than the number of occurrences. Additionally, they loose potentially valuable
information in that they only run each executable for 10 seconds. This makes such an
approach very susceptible to mimicry attacks. This class of attacks is further elaborated
in Section 10.6.

10.4.2 k-nearest Neighbor Classifier

Liao and Vermuri [44] present an approach that makes use a k-nearest neighbor (kNN)
classifier. This approach is described in Section 7.1.1, however we will briefly recall for
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the readers benefit. A kNN classifier makes use of frequencies by storing the frequency
of a single system call on a per trace basis. That is, to train such a classifier each trace is
processed and the frequency with which each system call is used is stored per trace. In
order to classify an unknown trace, the classifier computes the k most similar traces from
the training set and classifies the unknown trace based on the labels associated with the
k most similar traces. In this instance the authors make use of the cosine similarity:

s(X,Yj) =

n∑
i=1

xiyj,i

‖X‖‖Yj‖
(10.3)

where X is the unknown trace, Yj is the jth training trace, n is the number of system
calls, xi is the frequency of the ith system call in X, and yj,i is the frequency of the ith

system call in Yj.
For their experimentation, the authors made use of 5285 benign traces and 24 ma-

licious traces. When training they used 16 of the 24 malicious traces. This leads to a
situation in which the results in Line 6 of Table 10.3 include the same 16 of 24 traces
when testing as when training. Clearly, the classifier classified these 16 traces 100%
correctly. Therefore, the results on Line 7 of Table 10.3 represent results that are a
better measure of the approach. Despite this, our approach achieves a higher recall than
both approaches and the 0% false positive rate for each test can be attributed to the
fact that there are far more benign traces than malicious traces.

10.4.3 Probabilistic Topic Model

Finally, Xiao and Stibor present an interesting approach that makes use of the supervised
topic transition (STT) model described in Section 7.1.1. This approach assigns system
calls to topics. That is, the algorithm groups the system calls based on co-occurrence.
The model is then built by modeling the the topic transitions rather than the system
call transitions that one might expect.

This approach makes use of an algorithm that iteratively alternates between a Gibbs
sampling approach and a gradient descent approach to update the topic assignment
and the topic transition model in parallel to train the algorithm. The classification,
then, takes place by generating a topic transition model for the unknown trace and
probabilistically predicting a label.

In addition to a pure STT approach, the authors also considered a classifier that
makes use of a SVM. In this instance, the same training method is used, however the
topic transitions are fed into a SVM. This SVM makes use of a RBF kernel similar to
the kernel described in Section 10.4.1.2.

In their experimentation, the authors made use of 2880 malicious traces and 168
benign traces and tested several methods. The two most successful are described here
and the results are depicted in Table 10.3. Line 8 represents the pure STT approach
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while Line 9 represents the approach in which the authors combined their STT model
with a SVM classifier. While this approach performs slightly better than our approach
when considering the recall, the fact that they report a 37% and 43% false positive rate
favors our approach in this regard.

10.5 Online Classification

As mentioned in Section 9.4, our method inherently lends itself to online classification
due to the fact that it considers additional system calls as they are produced by the
process. However, we must also consider the time overhead. The issue with classifying
an entire system call trace using the SSK is that a single trace may be hundreds of
thousands of system calls long and examining two traces of this length for matching
subsequences will clearly lead to a large time overhead. We solve this problem by
keeping the lengths (S) of the traces that we input into the SVM relatively small (100
system calls).

By setting S to a relatively small value we make using the SSK feasible. However,
in order for our classification to be accurate, we need to iterate over some number of
windows before a final decision can be made. That is, we must still consider the number
of iterations that it takes our method to make a decision. As is shown in Table 10.1,
the average number of iterations for the experiment with the highest accuracy is 13.26,
while in Table 10.2 the average number of iterations for the experiment with the highest
accuracy is 37.22. That is, our method of classification can make a decision after only
considering a relatively small number of system calls, which significantly reduces the
time overhead and allows for online classification.

One may criticize the point that our approach does not consider the entire trace,
however all such approaches must address this practical problem somehow. The problem
is that one may have to wait an indefinite amount of time for a process to finish. For
example, a permanently resident process will only end execution once the system is
shut down. That is, practically, one will always have to set a maximum trace length to
address this and other approaches do this arbitrarily [85] while our approach makes use
of the given thresholds to determine when to stop.

Finally, our approach lends itself to online classification due to the fact that the
classification can be completely decoupled from the collection. In this case, the only
overhead on the monitored system is the collection overhead which remains minimal.
The performance degradation when using Nitro to collect all system calls across the
entire system is 14%, leaving the user with a very usable system.

101



10 Malware Detection Evaluation

10.6 Mitigating Mimicry Attacks

Mimicry attacks [83, 84] are a class of attacks in which either an adversary drowns
the individual steps necessary for delivering the malicious payload in “benign steps” or
an adversary “acts benign” for a certain amount of time before delivering a malicious
payload.

While this class of attacks is certainly a concern for any system that models program
behavior through system call traces, the use of the SSK significantly raises the bar against
this type of attack. As mentioned in Section 9.3, the SSK matches on subsequences,
where the definition of a subsequence allows for interior system calls. In a simple case, if
we consider the system call sequence “12,19,39” to be indicative of malicious behavior, a
mimicry attack might try to fool the security mechanism by introducing interior “benign”
system calls. For example, the attacker might augment the malicious program such that
the system call trace was as follows: “12,17,13,19,32,39”. This may be enough to fool
signature-based or simple “bag of words” approaches to malware detection, but the
beauty of the SSK is that it, by design, will still match on these traces.

On the other hand, if an adversary decides to “act benign” for a time before delivering
a payload, our approach may miss the payload if either threshold has been met. The
solution for this is simply to raise the threshold. Since the collection can be completely
decoupled from the classification as mentioned in Section 10.5 and Nitro introduces a
mere 14% performance degradation when collecting all system calls across the entire
system, this raising of the threshold only puts strain on our classification and not neces-
sarily on the monitored system. In the most extreme case, one could raise the threshold
for the benign class to 1.0. This will result in a system that continuously scans a trace
and will only exit if a malicious classification is made. Such an approach would also be
applicable in detecting injected code (e. g., shellcode). Due to the fact that any process
will be scanned until the threshold for malicious activity is reached, any benign process
that is injected with malicious code will also be potentially detected. In order for such
an approach to be successful one would most likely have to consider the simple moving
average of the probability estimates as described in Section 9.4. We performed such a
test on our system call data and were able to produce 96% accuracy as can be seen in
Table 10.1.

10.7 Summary

Our experimentation shows that this method is both accurate and considerably reduces
the time overhead associated with using the SSK for this domain. We test our method
on two separate datasets, collected by differing methods from different levels within the
OS architecture. The fact that our method shows promising results for both datasets
makes us confident that this method is applicable for other platforms which make use
of system calls or API calls as well. Additionally, we compared our approach with other
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machine learning-based approaches and could show that our approach performs very
well in comparison.

Using a machine learning approach sets our method apart from the more traditional
signature-based methods in that such methods have been shown to work for novel mal-
ware, that is, malware which has yet to be seen. This is supported in our experimentation
in that we use a two-fold cross validation. Finally, we argue that our approach raises the
bar against mimicry attacks through the use of the SSK and our threshold mechanism.
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Chapter 11
Conclusion

Virtual machine introspection is a technique that lends itself well to security applications
and as the ubiquity and adoption of virtualization technology continues to increase, we
will see VMI become a standard tool for security researchers and engineers. In addition
to traditional applications for VMI, such as malware analysis [12, 17, 56, 57, 63, 61],
forensics [12, 56, 61, 20, 32, 53], and intrusion detection or prevention systems [39, 46,
12, 56, 53], the growth and advancement of cloud computing hold promising applications
for VMI [6, 50, 15]. Although VMI research has grown since Garfinkel et al. introduced
Livewire [26], it is only recently that researchers are beginning to look beyond simply
placing in-guest solutions into the hypervisor. We are beginning to see approaches that
are really represent “out of the box” thinking, such as systems for automatic semantic
gap bridging [69, 70, 18], injecting code into the guest [31, 73] or moving code out
of the guest [76] at runtime, and instruction trace reconstruction [82] in addition to
pure derivation approaches such as Nitro. We have made a case that VMI is moving
in a strong direction academically as well as in industry and there are still very many
interesting research directions within this field. One of these directions is derivative VMI
methods.

We began by taking a closer look at VMI and the process involved. This began by
introducing the notion of states and views, in which a state is the representation of the
guest system state in its raw form and a view is a concise representation of that state.
The challenge is generating a view from the state which is a challenge that all VMI
approaches share and is commonly referred to as the semantic gap [14]. The semantic
gap represents the disconnect between data and its meaning. That is, the hypervisor
sees the data in its raw binary state and there is a step required to move from this raw
state to an understandable view of the state. So, the process of bridging the semantic
gap results in a view and once this view has been generated, a VMI component can work
on it.

As stated, this view generation (i. e., bridging the semantic gap) is a hurdle that all
VMI methods must address. What becomes interesting is how they generate a view. To
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address this, we present three patterns for view generation namely, out-of-band delivery,
in-band delivery, and derivative. Both delivery-based methods rely on semantic informa-
tion about the software that is delivered either before introspection takes place or during
introspection, respectively. On the other hand, derivative methods make use of hardware
knowledge to derive information about the guest OS. This method has the drawback that
not all information about the guest can be derived from the hardware, however it also
has two very interesting advantages. First, such approaches are completely guest OS
agnostic. That is, as the approach relies on knowledge of the hardware, the software
that is running is irrelevant to the method used to generate a view. Therefore, this
approach will work for all guest OSs. Second, when using a derivative approach one can
be sure that any assumptions about the hardware that are true will remain true for the
remainder of the run time of the system. In contrast, when one relies on knowledge of
the software, as is the case in delivery methods, one can not be sure that the assumptions
made will hold true for the entirety of the introspection. That is, one might assume that
a data structure lies at a particular offset, however this might change at run-time either
for malicious or benign (e. g. as the result of an update) reasons. In either case, the
VMI component may not even realize that such a change has taken place and continue
to act as though the data structure in question has not moved. Such a scenario can never
happen when using derived information as the hardware specifications will not change
at run-time. Having identified derivative VMI methods as an interesting approach, we
introduced related work in Chapter 4 and demonstrated that very little work has been
done to explore pure derivative VMI methods.

We followed this by looking at feasible goals for VMI and to that end, we consid-
ered transparency. Transparency can be divided into two types: VMM transparency
and VMI transparency. Garfinkel et al. take the position that VMM transparency is
infeasible [24]. Taking their thesis as a basis, we extended this argument to include VMI
transparency. That is, we argued that it is infeasible to construct a VMI mechanism
that is completely transparent to a dedicated adversary. To make this argument, we
generalized the thesis of Garfinkel et al. to state that it is infeasible to make two inde-
pendent hardware platforms indistinguishable, regardless of whether one or both of those
platforms is a virtual hardware platform or not. That is, the same points that one can
used to argue that an Intel x86 hardware platform will be distinguishable from a KVM
virtual hardware platform can be used to argue that an Intel x86 hardware platform
will be distinguishable from an AMD x86 hardware platform or that a KVM virtual
hardware platform will be distinguishable from a KVM virtual hardware platform that
includes Nitro.

Once we accept that full transparency is not possible, we must look for alternative,
feasible goals. To this end, we looked at the primary motivations for transparency
and discovered that there are two: avoiding observation and protection against evasion.
With regard to avoiding observation, we argued that there is little one can to completely
eliminate the observer effect, though we can try to make detection very difficult and
VMI is already a giant step in this direction. With regard to protecting one’s VMI
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mechanism against evasion techniques, we argued that transparency is not even necessary
and rather defined two properties that protect against evasion attempts, namely: evasion
evidence and evasion resistance. Both use the notion of hardware rooting as described in
Section 5.3.1 to describe properties in which evasion attempts are detected and blocked,
respectively.

Ar this point, we began by looking at the Intel x86 architecture in a general manner
to identify portions of the hardware that might lend itself to derivative VMI methods.
We split our discoveries into three categories: mechanisms that make use of the virtual-
ization extensions, inspection of VM state, and system interrupt-enabled mechanisms.
Mechanisms that make use of the virtualization extensions are most straight forward as
these are well documented. However, these mechanisms may not have been designed
with VMI in mind so a mechanism designed for another purpose may have to be abused
to be applicable for VMI. An example of such an approach is the work done by Vogl
et al. [82] in which the authors used the performance monitoring counters, which were
initially intended to monitor the performance of a system, to perform instruction trac-
ing. The next category, i. e., inspection of VM state, is a passive method of VMI that
requires one understand the purpose of the state from a hardware perspective. That is, if
one is aware of the function of a register, for example, one can derive information about
the state of the system. In this case, the exercise becomes identifying those portions
of the state that will allow one to derive useful information. Some such examples were
presented in Section 6.2.1. The final category, namely system interrupt-enabled mecha-
nisms, represents mechanisms for which there is no direct method for trapping a desired
event. In such a case, one must investigate to see if there is an opportunity to induce a
system interrupt which can be trapped to the hypervisor. For example, one must find a
way to manipulate the system such that every time the event one is interested in occurs
a general protection fault takes place. Since the hardware extensions allow us to trap a
general protection fault, we have effectively found a mechanism for trapping the event
we are interested in.

With the various methods for derivative VMI outlined, we introduced a proof-of-
concept system, Nitro. Nitro performs system call tracing and monitoring in a fully
derivative manner. In Chapter 7, we began by making a case for the usefulness of
tracing and monitoring system calls. We argued that, as system calls are the method
of communication between processes and the kernel, trapping and analyzing them can
be helpful in a variety of security applications. We then presented the implementation
details of Nitro and showed that it is capable of trapping system calls independent of
the system call mechanism that the guest OS chooses to leverage. This was followed
by a discussion of the properties held by our system. We showed that Nitro is fully
guest OS agnostic and portable, that it is evasion-resistant, and that, while no VMI
method can achieve complete transparency, it remains stealthy enough to be applicable
in efforts where the observer effect should be mitigated. To strengthen the argument for
Nitro’s contribution even further, we presented a number of performance testing results
in Chapter 8 to show that the collection overhead incurred is very slight. We tested
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Nitro in Windows XP (32-bit), Windows 7 (64-bit), 32-bit Linux, and 64-bit Linux
environments all with great success. Finally, we compared our system to a system that
similarly performs system call tracing, though not in a fully derivative manner, namely
Ether [17]. We were able to show that Nitro outperforms Ether in all tests performed
and in some cases by quite a margin.

As Nitro is capable of collecting system call traces, the next logical step is to show
that one can use these system call traces to accomplish something useful from a security
perspective. To this end, we introduced a SVM-based system for classifying processes
based on the system call traces produced by Nitro. This approach makes use of a string
kernel usually used in the natural language processing domain and attempts to mitigate
the usually high performance overhead associated with such approaches. We achieved
this by keeping the input into the SVM relatively small and running a sliding window
over the system call trace. This addressed the performance overhead in addition to
allowing an online classification. We followed this up with an evaluation with real-world
data collected by Nitro and found that we could achieve an accuracy of 99%. In order to
further strengthen our claim we also tested our method on a dataset collected by Xiao
and Stibor [92] as well and were able to achieve an accuracy of 93% using our method. As
a further step, we compared the results of our testing with the results of other published
approaches that perform malware detection using system call traces. We compared our
approach with several SVM-based approaches, a k-nearest neighbor approach, and an
approach that makes use of probabilistic topic models and performed among the best of
the approaches. While we were able to present the highest accuracy, some approaches
presented marginally better recall and false positive rates. We concluded the evaluation
of our method with a discussion about mimicry attacks. Mimicry attacks are a class of
attacks in which an adversary tries to drown out malicious actions with benign actions.
The strength of our approach against such attacks is a result of the string kernel we use.
As with natural language processing in which the “meaning” of a text may be buried
under inconsequential content, so too the malicious nature of a system call trace may
be buried under benign (i. e., inconsequential) content. Since the string kernel we use
attempts to address this for natural language processing, it is also applicable against
mimicry attacks.

11.1 Looking Forward

As there is little other work specifically looking at derivative methods for VMI, there
remains a good amount to be considered in this field. In Chapter 6, we outlined many
possible mechanisms in the x86 architecture that would lend themselves to a derivative
approach. This might be used as a starting point for finding further applications of the
derivative method for the x86 architecture. Undoubtedly, this is not an exhaustive com-
pilation of possibilities and there are very likely many potential derivative applications
for the x86 architecture yet to be explored.
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As derivative approaches are tailored to a specific hardware architecture, there are
many other hardware architectures one might want to consider in the future. Specifically,
as embedded devices become increasingly popular looking to their hardware architectures
becomes interesting. As of this writing, ARM has just released a new processor in their
popular line of embedded processors with full hardware virtualization support [7]. Such
architectures are especially interesting from a security and virtualization perspective in
addition to what can be done from a derivative VMI perspective.

Finally, approaches that combine both derivative and delivery methods in a clever
manner can be very powerful when crafted correctly. While there has been relatively
more work done in this area when compared to strictly derivative methods, combined
methods have the potential to integrate the power of both methods.

11.2 Final Words

This work began as a keen interest in virtualization and its impact on IT security. This
lead to an exploration of the field as a whole which resulted in the discovery of Garfinkel
and Rosenblum’s foundational work in VMI [26]. With this work and several others in
hand, we continued our exploration and realized a need to be able to classify the various
methods and approaches. It is out of this need that we developed and published the
patterns for VMI presented in this thesis. As simple as they may seem, this was quite
a profound step as it lead to our discovery of the derivative approach to VMI. This
lead us to the question that would fundamentally drive our research for the next several
years, “What information can one derive about a guest system, given that one has no
knowledge about the software that is running?”. We found this to be a compelling
question and began by looking at the x86 architecture, pouring over Intel’s architecture
manuals. This culminated in our framework, Nitro, which lead to a, slightly tangential,
continuation of our research with a look a system calls from a security perspective. To
this end, we presented our SSK SVM-based approach for malware detection using system
call traces. This has been a lively, interesting, and informational passage which has lead
to several important discoveries.
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