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Abstract. Internet has emerged as a powerful technology for collecting labeled
data from a large number of users around the world at very low cost. Conse-
quently, each instance is often associated with a handful oflabels, precluding any
assessment of an individual user’s quality. We present a probabilistic model for
regression when there are multiple yet some unreliable observers providing con-
tinuous responses. Our approach simultaneously learns theregression function
and the expertise of each observer that allow us to predict the ground truth and
observers’ responses on the new data. Experimental resultson both synthetic and
real-world data sets indicate that the proposed method has clear advantages over
“taking the average” baseline and some state-of-art models.

1 Introduction

With the recent advent of social web services, the data can now be shared and pro-
cessed by a large number of users. As a consequence, researchers are faced with data
sets that are labeled by multiple users. For example, Wikipedia provides a feedback tool
to engage readers in the assessment of article quality basedon four criteria, i.e. “trust-
worthy”, “objective”, “complete” and “well-written”. TheAmazon Mechanical Turk
is an online system that allows the requesters to hire users from all over the world to
perform crowdsourcing tasks. Galaxy Zoo is a website where visitors label astronomi-
cal images. While providing large amounts of cheap labeled data in a short time, these
platforms usually have little quality control over users. Thus, the response of each user
can vary widely, and in some cases may even be adversarial. A natural question to ask
is how to integrate opinions from multiple users for obtaining an objective opinion. The
commonly used “majority vote” and “take the average” heuristics completely ignore
the individual expertise and may fail in the settings with non-Gaussian or adversarial
noise. This casts a challenge oflearning from multiple sources for the machine learning
and data mining researchers [2].

Despite these web applications, one can find this problem in wide range of domains.
Recently,sensor networks have been deployed for the scientific monitoring of remote
and hostile environments. For example, researchers deployed a16-node sensor network
on a tree to study its elevation under different weather fronts [9]. Each node samples
climate data at regular time intervals and the statistics are collected. Using sensor data
in this manner presents many novel challenges, such as fusing noisy readings from sev-
eral sensors, detecting faulty and aging sensors. Importantly, it is necessary to use the



trends and correlations observed in previous data to predict the value of environmental
parameters into the future, or to predict the reading of a sensor that is temporarily un-
available (e.g. due to network outages). However, these tasks may have to be performed
with only limited knowledge of the location, reliability, and accuracy of each sensor.

In this work, the labeler (including user, annotator and sensor) mentioned above is
referred to as theobserver. Given aninstance, the label (e.g. annotation, reading) pro-
vided by an observer is called theresponse. Unlike the conventional supervised learn-
ing scenario, in our setting each instance is associated with a set of responses, yet the
ground truth is unknown as some responses may be subjective or come from unreliable
observers. We concentrate on the regression problem with continuous responses from
multiple observers. Specifically, our method provides a principled way to answer the
following questions:

1. How to learn a regression function to predict the ground truth precluding the prior
knowledge of observers?

2. How to estimate the expertise of each observer without knowing the ground truth?

2 Related Work and Novel Contributions

There is a number of studies dealing with the setting involving multiple labelers, yet
most of them focus on the classification problem. Early work such as [3,4,8] focus on
estimating the error rates of observers. In the machine learning community, the prob-
lem of estimating the ground truth from multiple noisy labels is addressed in [7]. In-
stead of estimating the ground truth and learning the classifier separately, recent interest
has shifted towards on learning classifiers directly from such data. Authors of [2] pro-
vide a general theory of selecting the most informative samples from each source for
model training. Later, a probabilistic framework is presented by [5,6] to address the
classification, regression and ordinal regression problemwith multiple annotators. The
framework is based on a simple assumption that the expertiseof each annotator does not
depend on the given data. This assumption is infringed in [10,13] and later is extended
to the active learning scenario [12]. There are some other related work that focus on
different settings [1,11].

The above studies paid little attention to the regression problem under multiple ob-
servers, which is the main core of this paper. Moreover, our work differs from the related
work in various aspects. First, we employ a less-parametricmethod, i.e. theGaussian
process (GP), to model the observers and the regression function. This allows us to
associate the observer’s expertise with both ground truth and input instance. Moreover,
our model is presented in an extensible probabilistic framework. The missing data and
prior knowledge can be straightforwardly incorporated into the model.

The rest of this paper is organized as follows. Section 3 formulates the problem
and introduces a probabilistic framework. The framework consists of two parts. The
regression model is introduced in Section 3.2. A linear and anon-linear observer model
is proposed in Section 3.3 and Section 3.4, respectively. Section 4 reports the exper-
imental results on both synthetic and real-world data sets.Conclusions are drawn in
Section 5.



3 Probabilistic Formulation

Denote theinstance space X ⊆ R
L and theresponse space Y ⊆ R

D and theground
truth space Z ⊆ R

D. GivenN instancesx1, . . . ,xN wherexn ∈ X , denote theob-
jective ground truth for xn aszn ∈ Z. In our setting, the ground truth is unknown.
Instead, we have multiple responsesyn,1, . . . ,yn,M ∈ Y for xn provided byM dif-
ferent observers. For compactness, theN × L matrix of instancexn,l is represented as
X := [x1, . . . ,xN ]

⊤. TheN×M×D tensor of observers’ responsesyn,m,d is denoted
by Y := [y1,1, . . . ,y1,M ; . . . ;yN,1, . . . ,yN,M ]. TheN × D matrix of ground truth
zn,d is denoted byZ := [z1, . . . , zN ]⊤.

Given the training dataX andY, our goal is threefold. First, it is of interest to get
an estimate of the unknown ground truthZ. The second goal is to learn a regression
function f : X → Z which generalizes well on unseen instances. Finally, for each
observer we want to model itsexpertise as a function of the input instance and the
ground truth, i.e.g : X × Z → Y.

3.1 Probabilistic Framework

To formulate this problem from the probabilistic perspective, we consider the training
dataX andY as random variables. The ground truthZ is unknown and hence is a latent
variable. In general, the observed responseY depends both on the unknown ground
truth and the instance. That is, observers may exhibit varying levels of expertise on
different instances. On Wikipedia the assumption is particularly true for the novice
readers, whereas the rating from an expert reader is consistent across different types
of articles. Figure 1 illustrates the conditional dependence betweenX,Y andZ with a
graphical model. As a consequence, the joint conditional distribution can be expressed
as

p(Y,Z,X) = p(Z |X)p(Y |Z,X)p(X)

∝
N∏

n=1

D∏

d=1

p(zn,d |xn)

M∏

m=1

p(yn,m,d |xn, zn,d), (1)

where the termp(X) is dropped as we are more interested in the other two conditional
distributions. There are two underlying assumptions in this model. First, each dimen-
sion of the ground truth is independent, but is not identically distributed. Second, all
observers respond independently.

Note that the first term in (1) indicates the probabilistic dependence between the
ground truth and the input instance, whereas the second termcharacterizes the ob-
servers’ expertise. Previous work have explored differentparametric methods to model
these two conditional distributions [10,13,5,12,6]. A distinguishing factor in this pa-
per is that, we employ the Gaussian process as the backbone toconstruct the model.
Specifically, the generative process ofY can be interpreted as follows

zn,d = fd(xn) + ǫn, (2)

yn,m,d = gm,d(xn, zn,d) + ξm,d, (3)
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Fig. 1. Graphical model of instancesX, unknown ground truthZ and responsesY from M

different observers. Only the shaded variables are observed.

whereǫ andξ is independent identically distributed Gaussian noise, respectively. Note
that the choice of{fd} and{gm,d} characterizes the regression function and the ob-
servers, respectively. In particular, an ideal observer would havegm,d(zn,d) = zn,d on
everyd. Therefore, our goal can be understood as searching{fd} and{gm,d} given
the training data. Intuitively, if two instances are close to each other inX , then their
corresponding ground truth should be close inZ through the mapping of{fd}, which
in turn restricts the searching space of{gm,d} whenY is known.

3.2 Regression Model

We first concentrate on Eq. (2) and represent functions{fd} by the Gaussian process
with some non-linear kernel. Specifically, the conditionaldistribution of the ground
truth given the training instances is assumed to be

p(Z |X) =

D∏

d=1

N (z:,d |0,Kd) , (4)

where thedth dimension of the ground truth is denoted asz:,d. We introduce aN ×N
kernel matrixKd that depends onX, where each element is given by the value of a
composite covariance functionkd : X × X → R0+, made up of several contributions
as follows

kd(xi,xj) := κ2
1,d exp

(
−
κ2
2,d

2
‖xi − xj‖

2

)
+κ2

3,d+κ2
4,dx

⊤

i xj +κ2
5,dδ(xi,xj). (5)

The noise termǫ in Eq. (2) is folded into the Kronecker delta functionδ(xi,xj). The
covariance function involves an exponential of a quadraticterm, with the addition of a
constant bias, a linear and a noise terms. For each dimension, the parameters need to be
learned from the data areκ1,d, . . . , κ5,d. Samples from this prior are plotted for various
values of the parameters in Fig. 2.

3.3 Linear Observer Model

To model the observer’s expertise, we now concentrate on (3)and assume that{gm,d}
is a linear mapping fromZ to Y, which does not depend on the instance at all. De-
notey:,m,d the dth dimension response of all training instances provided by the mth
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Fig. 2. Samples drawn from a Gaussian process prior defined by the covariance function Eq. (5).
The title above each plot denotes the value of(κ1,d, κ2,d, κ3,d, κ4,d, κ5,d). The samples are ob-
tained using a discretization of thex-axis of1000 equally spaced points.

observer. The second conditional distribution in (1) is assumed to be

p(Y |Z,X) = p(Y |Z) =
M∏

m=1

D∏

d=1

N
(
y:,m,d

∣∣wm,dz:,d + µm,d1, σ
2
m,dI

)
, (6)

where1 is an all-ones vector with lengthN andI is aN × N identity matrix. Each
observer is characterized by3×D parameters, i.e.wm,d, µm,d, σm,d ∈ R.

Parameter Estimation Now we can combine Eq. (6) with Eq. (4) and estimate the
set of all parameters, i.e.Θ := {{κ1,d, . . . , κ5,d}, {wm,d}, {µm,d}, {σm,d}}, by max-
imizing the likelihood functionp(Y |X,Θ). In the linear observer model, the latent
variableZ can be marginalized out, which yields

p(Y |X,Θ) =

M∏

m=1

D∏

d=1

N
(
µm,d1, w

2
m,dKd + σ2

m,dI
)
.

The maximum likelihood estimator ofµm,d is given byµ̃m,d = 1

N

∑N

n=1
yn,m,d. We

hereinafter use the short-handy:,m,d := y:,m,d − µ̃m,d1. As a consequence, the log-
likelihood function is given by

F LOB := log p(Y |X,Θ) =

M∑

m=1

D∑

d=1

log p(y:,m,d |X,Θ)

=

M∑

m=1

D∑

d=1

−
N

2
log(2π)−

1

2
log |C| −

1

2
tr
(
y⊤

:,m,dC
−1y:,m,d

)
,

(7)



whereC := w2
m,dKd + σ2

m,dI. To find the parameters by maximizing Eq. (7), we take
the partial derivatives ofF LOB with respect to the parameters and obtain

∂F LOB

∂wm,d

= wm,dtr
(
BC−1Kd

)
, (8)

∂F LOB

∂σm,d

= σm,dtr
(
BC−1

)
, (9)

∂F LOB

∂κi,d

=

M∑

m=1

1

2
w2

m,dtr

(
BC−1 ∂Kd

∂κi,d

)
, (10)

whereB := C−1y:,m,dy
⊤

:,m,d − I and ∂Kd

∂κi,d
is a matrix of element-wise partial deriva-

tives of Eq. (5) with respect toκ1,d, . . . , κ5,d. As there exists no closed-form solution,
we resort to L-BFGS quasi-Newton method to maximizeF LOB. Essentially, in each it-
eration the gradients are computed by Eqs. (8) to (10) and theparameters are updated
accordingly.

Estimate of Ground Truth Note that the ground truthZ is marginalized out from
Eq. (7) and still remains unknown. To estimate the ground truth of all training instances,
we need to find the posterior ofZ, i.e.p(Z |Y,X) = p(Y |Z,X)p(Z |X)/p(Y |X).
By using the property of Gaussian distribution, one can showthat the posterior ofz:,d
followsN (u,V), where

u = V

(
M∑

m=1

wm,d

σ2
m,d

y:,m,d

)
, V =

(
M∑

m=1

w2
m,d

σ2
m,d

I+K−1

d

)−1

. (11)

The above computation is repeatedD times on every dimension to obtain the estimate
of ground truthZ̃.

Prediction on New Instance Given a new instancex∗, we are interested in predicting
the ground truthz∗ by using the learned regression function. This can be derived from
the joint distribution

[
z̃:,d
z∗,d

]
∼ N

(
0,

[
Kd k⊤

∗

k∗ kd(x∗,x∗)

])
, (12)

wherek∗ := [kd(x∗,x1), . . . , kd(x∗,xN )]. It turns out thatp(z∗,f |X, z̃:,d,x∗) follows
a Gaussian distribution. Hence, the best estimate for the ground truth is

z̃∗,d = k∗K
−1

d z̃:,d, (13)

and the uncertainty is captured in its variance

var(z̃∗,d) = kd(x∗,x∗)− k∗K
−1

d k⊤

∗ . (14)



As a consequence, the response from an observer can be also predicted by

ỹ∗,m,d = (1 + w̃m,d)z̃∗,d + µ̃m,d, (15)

with variancẽσm,d.

Priors on Parameters Note thatwm,d is an important indicator of the observer’s ex-
pertise. On the one hand, a genuine observer would havewm,d close to1, whereas an
adversarial observer giveswm,d close to−1. On the other hand, we encouragewm,d

to be a small value unless supported by the data. Without any knowledge on observers,
we can only expect thatwm,d takes value either around1 or −1, which inspires the
following penalty function

penalty(wm,d) :=





η(wm,d − 1)2 if wm,d > 1;
0 if −1 ≤ wm,d ≤ 1;
η(wm,d + 1)2 if wm,d < −1,

(16)

whereη controls the value of penalty as shown in Fig. 3 (see “general”). Whenwm,d

takes value between[−1, 1], there is no penalty and the gradient is given by Eq. (8)
directly. When|wm,d| > 1 we penalizewm,d and keep it from being too large. This
allows our model to search a reasonable solution forwm,d without over-fitting on the
training data.

In the case that observers are highly reliable, the learnedwm,d should be close to
1 andµm,d, σm,d close to0. One can add a Laplacian prior for observers’ parameters,
which leads to anL1 regularization. The penalty term induced by the Laplacian prior

for wm,d is −(1
2
logλ +

√
2

λ
|wm,d − 1|), where a smaller value ofλ suggests that the

observer is more reliable. The maximization ofF LOB can be carried out by computing
the sub-gradient ofwm,d, µm,d andσm,d, respectively.
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Fig. 3. Penalty functions ofwm,d induced by different prior models. The “general” penalty func-
tion corresponds to Eq. (16). Similar penalty functions canbe added toµm,d andσm,d as well.

The relationship between observers can be incorporated into the model as well. For
example, the demographic information of users or the geographic location of sensors



can be represented as aM × M proximity matrixP. In particular, we expect two ob-
servers have similar parameters if they are highly correlated in P. AssumingP is a
positive definite matrix, we can set the prior distribution of w:,d set asN (w:,d |1,P).
As a consequence, we add a penalty term−

∑D

d=1
tr(w⊤

:,dPw:,d) to Eq. (6). The gra-
dient ofwm,d is computed by Eq. (8) with an additional term−2Pm,:w:,d. Figure 3
illustrates different penalty functions ofwm,d.

Missing Responses The model can be extended to handle the training data with miss-
ing responses. First of all, we partition the responsesY = (Yo,Yu), whereYo rep-
resents the observed part andYu is the missing part of the responses. Consequently,
the latent variables in our model consists ofZ andYu. Theexpectation maximization
(EM) algorithm can be developed for estimating the model parameters. In the E-step,
we fix the model parameterΘ and compute the sufficient statistics ofZ̃ by Eq. (11) and
then updatẽYu by its prediction using Eq. (15). In the M-step, we use L-BFGSto max-
imize log p(Ỹ, Z̃ |X,Θ) and updateΘ. The two steps are repeated until the likelihood
reaches a local maximum.

3.4 Non-Linear Observer Model

The assumptions behind the linear observer model may not be appropriate in some
scenarios. For instance, if the thermistor is being used to measure the temperature of
the environment, due to the self-heating effect the electrical heating may introduce a
significant error, which is known as a nonlinear function of the actual environment tem-
perature. Moreover, the observers’ responses may depend onthe input instance. With
these considerations in mind, we propose a more sophisticated model which assumes
that{gm,d} is a nonlinear mapping fromX × Z to Y. By representing{gm,d} as the
Gaussian process, the second conditional distribution in (1) has the form of

p(Y |Z,X) =

M∏

m=1

D∏

d=1

N (y:,m,d |0,Sm,d) , (17)

whereY is connected withX andZ by aN × N kernel matrixSm,d. The (i, j)th

element inSm,d is given by

sm,d ({zi,xi}, {zj,xj}) := φ2
m,1,d exp

[
−
φ2
m,2,d

2
(zi,d − zj,d)

2

]
+ φ2

m,3,d

+ φ2
m,4,dzi,dzj,d + φ2

m,5,dδ(zi,d, zj,d)

+ φ2
m,6,d exp

[
−
1

2

L∑

l=1

η2m,l,d(xi,l − xj,l)
2

]
, (18)

wherexi,l is thelth dimension of the instancexi. This covariance function has a similar
form as Eq. (5), but with the addition of anautomatic relevance determination kernel
onX. By incorporating a separate parameterηm,l,d for each input dimensionl, we can



optimize these parameters to infer the relative importanceof different dimensions of an
instance from the data. One can see that, asηm,l,d becomes small, the responseyn,m,d

becomes relatively insensitive toxn,l. This allows us to detect the dimensions ofX that
substantially affect the observer’s response.

Parameter Estimation The observer model in Eq. (17) can be combined with Eq. (4)
to form our new model,

p(Y |X,Θ) =

∫
p(Y |Z,X,Θ)p(Z |X,Θ)dZ,

whereΘ := {{κ1,d, . . . , κ5,d}, {φm,1,d, . . . , φm,6,d}, {ηm,l,d}} is the set of model pa-
rameters to be inferred from the data. Unfortunately, such marginalization ofZ in-
tractable as the latent variablez appears nonlinear in the kernel matrix. Instead, we
seek amaximum a posterior (MAP) solution by maximizing

log p(Z,Θ |Y,X) = log p(Y |Z,X,Θ) + log p(Z |X,Θ) + constant, (19)

with respect toZ andΘ. Substituting Eq. (17) and Eq. (4) into Eq. (19) gives

FNLOB := log p(Z,Θ |Y,X) = −
1

2

D∑

d=1

M∑

m=1

(
ln |Sm,d|+ tr(S−1

m,dy:,m,dy
⊤

:,m,d)
)

−
1

2

D∑

d=1

(
ln |Kd|+ tr(K−1

d z:,dz
⊤

:,d)
)
+ constant. (20)

The partial derivative ofFNLOBwith respect to the latent variable is given by

∂FNLOB

∂z:,d
= tr

((
S−1

m,dy
⊤

:,m,dy:,m,dS
−1

m,d − S−1

m,d

) ∂Sm,d

∂z:,d

)
−K−1

d z:,d. (21)

The gradients with respect to the parameters of kernel matrix can be likewise derived as
in the linear observer model. Finally, these gradients are used in the L-BFGS algorithm
for maximizingFNLOB.

When the algorithm converges, the estimate of ground truth is directly given by the
stationary point ofFNLOB. Predicting the response of a new instance can be carried out
in the same way as in Eq. (11). Moreover, the estimation of themth observer’s response
is given by

ỹ∗,m,d = s∗S
−1

m,dỹ:,m,d,

wheres∗ := [sm,d(z̃∗, z̃1,x∗,x1), . . . , sm,d(z̃∗, z̃N ,x∗,xN )].

Initialization Note that seeking the MAP solution ofZ andΘ simultaneously may
lead to a bad local optimum. Specifically, the model may stuckin a solution where
{fd} is too trivial (e.g. close to a constant) and{gm,d} is too complicated (e.g. highly
non-linear), which contradicts our intuition. To mitigatethis problem, we first fit the



training data with the linear observer model. The idea is to find an initial approximation
of {fd} by restricting{gm,d} as linear. Then, we takẽZ estimated by the linear observer
model as the initialization of the ground truth, and train the nonlinear observer model
to further refine{fd} and{gm,d}.

4 Experimental Results

To evaluate the performance of our algorithm on predicting the ground truth and the ob-
servers’ responses, we set up two experiments1. First, the effectiveness of our models
is demonstrated on the synthetic data. The second experiment is conducted on the real-
world data. In both experiments, the ground truth is known and observers’ responses
are simulated by mapping the ground truth with some random nonlinear functions. As
a consequence, the performance can be evaluated straightforwardly. Two metrics are
considered here, i.e. the mean absolute normalized error (MANE) and the Pearson cor-
relation coefficient (PCC). In MANE, we first rescale the actual value and its predicted
value into[0, 1] respectively, and then measure the mean absolute error. MANE value
close to0 and PCC value close to1 indicate that the algorithm performs well. In partic-
ular, the expected MANE of a random predictor is0.5.

The proposed linear observer model (LOB) and nonlinear observer model (NLOB)
are compared with several baselines. We first referSVRandGPRas the Support Vector
Regression and Gaussian Process Regression trained with the ground truth, respectively.
Then we combine responses from multiple observers by takingthe average and then
using it for training, which we denote asSVR-AVGandGPR-AVG, respectively. For
a fair comparison, the covariance function ofx in GPRandGPR-AVGhas the same
composite form as in Eq. (5). In addition to these non-parametric methods,Raykar
refers to the model in which bothp(Z |X) and p(Y |Z) are Gaussian in the spirit
of [6].

4.1 Synthetic Examples

To create one-dimensional synthetic data (i.e.L := 1 andD := 1), we setf(x) :=
sin(6x) sin(x

2
). The training instancesX are generated by randomly sampling30 points

in [0, 2π] from the uniform distribution. The test instances are obtained using a dis-
cretization of[0, 2π] with equal space of0.05, which results in126 points. Four simu-
lated observers are obtained by setting the corresponding{gm} as a random nonlinear
monotonic function. For a training instancex, themth observer provides its response by
gm(f(x)) plus some Gaussian noise. An illustration of our synthetic data is depicted in
Fig. 4(a). Figure 4(b, c, d, e) shows the results given by the baselines and our method.
Not surprisingly, taking the average of observers’ responses is not an effective solu-
tion. In contrast, ourLOBandNLOBmodels outperform baseline methods significantly,
which yield lower MANE and higher PCC. Moreover, the observers’ functions learned
by NLOBare very close to those predefined{gm} in Fig. 4(a).

1 For reproducing the experimental results, our MATLAB implementation is available at
http://home.in.tum.de/ ˜ xiaoh .

http://home.in.tum.de/~xiaoh
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Fig. 4. (a) Synthetic data generated for the experiment. Responses from observers are represented
by markers with different colors. The right panel illustrates randomly generated{gm} used for
simulating four observers. Shaded area represents the pointwise variance. Note that the4th ob-
server isadversarial, as his response tends to be theopposite of the ground truth.(b, c, d) Pre-
dicted ground truth on the test set by applyingSVR-AVG, GPR-AVGandLOB, respectively.(e)
Predicted ground truth and learned observer functions given byNLOB.

4.2 On Real-World Data

We download four real-world data sets from UCI Machine Learning Repository, namely
AUTO, COMMUNITY , CONCRETEandWINE. On each data set, we randomly select500
instances and generate20 observers in the same manner as in Section 4.1. The number
of adversarial observers is fixed to6. The experiment is conducted with10-fold cross-



validation. The prediction result of the ground truth and observers’ responses is summa-
rized in Table 1. It is notable that the proposedLOBandNLOBsignificantly outperform
SVR/GPR-AVGandRaykar on inferring the ground truth. In general, additional im-
provements are observed whenNLOBis used. Comparing it with theSVR/GPRcolumn,
one can see that the regression function learned byNLOBis almost as good as the one
trained using the ground truth. We remark that the promisingperformance ofNLOBis
achieved by merely learning from a set of observers without any prior knowledge of
their expertise and the ground truth. Furthermore,LOBandNLOBalso show encourag-
ing performance on predicting responses of observers, which can be proved useful in
many applications such as the recommendation system.

Table 1. Prediction of the ground truth and observers’ responses. Ineach cell, the upper value
is MANE, while PCC is at the bottom. For the ground truth and the average baselines we only
report the best performance, where a superscriptS denotes that the performance is achieved by
SVRor SVR-AVG; for GPRandGPR-AVGwe use the superscriptG. The best model on each data
set is highlighted by bold font. Note that onlyLOBandNLOBcan predict observers’ responses.

Data set
Ground truth Observers’ responses

SVR/GPR SVR/GPR-AVG Raykar LOB NLOB LOB NLOB

AUTO
0.19 ± 0.05G 0.21 ± 0.07G 0.25 ± 0.08 0.26 ± 0.05 0.20± 0.04 0.26 ± 0.04 0.25± 0.09

0.84 ± 0.07G 0.63 ± 0.43G 0.50 ± 0.22 0.84± 0.05 0.82 ± 0.08 0.75± 0.05 0.70 ± 0.11

COMMUNITY
0.15 ± 0.03G 0.27 ± 0.08S 0.22 ± 0.10 0.17 ± 0.03 0.16± 0.03 0.26 ± 0.04 0.25± 0.09

0.80 ± 0.08G 0.44 ± 0.38S 0.70 ± 0.13 0.76 ± 0.04 0.77± 0.04 0.62± 0.09 0.55 ± 0.15

CONCRETE
0.15 ± 0.02G 0.22 ± 0.08G 0.20 ± 0.08 0.18 ± 0.07 0.17± 0.06 0.26 ± 0.04 0.15± 0.06

0.76 ± 0.08G 0.60 ± 0.46G 0.66 ± 0.21 0.78 ± 0.11 0.79± 0.09 0.66 ± 0.18 0.72± 0.15

WINE
0.20 ± 0.06G 0.30 ± 0.05S 0.29 ± 0.06 0.27 ± 0.09 0.25± 0.07 0.32 ± 0.07 0.24± 0.07

0.67 ± 0.12G 0.52 ± 0.30G 0.38 ± 0.19 0.58 ± 0.20 0.61± 0.17 0.47 ± 0.18 0.48± 0.15

5 Conclusion

This paper investigates the regression problem under multiple observers providing re-
sponses that are not absolutely accurate. The problem involves learning a regression
function and observers’ expertise from such data without any prior information of the
observers. Based on the Gaussian process, we propose a probabilistic framework and
develop two models. Our approach provides an estimate of theground truth and also
predicts the responses of each observer given new instances. Experiments show that the
proposed method outperforms several baselines and leads toa performance close to the
model trained with the ground truth.

There are many opportunities for future research. One possible direction is to ex-
tend our model withmultiple kernel learning. The idea is to let the algorithm pick or
composite different covariance functions instead of fixingthe combination in advance.
As a consequence, the algorithm may learn complex fits for theobservers by selecting
multiple kernels in a data-dependent way. Moreover, it would be highly beneficial to de-
signactive sampling methods for selecting which instance and whose response should
be learned next.
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