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Abstract. Internet has emerged as a powerful technology for collgdtibeled
data from a large number of users around the world at very lost. Conse-
quently, each instance is often associated with a handfabels, precluding any
assessment of an individual user’s quality. We present bafitstic model for
regression when there are multiple yet some unreliablerebseproviding con-
tinuous responses. Our approach simultaneously learnsegnession function
and the expertise of each observer that allow us to predécgtbund truth and
observers’ responses on the new data. Experimental resuitsth synthetic and
real-world data sets indicate that the proposed methodleasadvantages over
“taking the average” baseline and some state-of-art models

1 Introduction

With the recent advent of social web services, the data canbreoshared and pro-
cessed by a large number of users. As a consequence, regsaach faced with data
sets that are labeled by multiple users. For example, Wiképgrovides a feedback tool
to engage readers in the assessment of article quality loaskedir criteria, i.e. “trust-
worthy”, “objective”, “complete” and “well-written”. TheAmazon Mechanical Turk
is an online system that allows the requesters to hire usens &ll over the world to
perform crowdsourcing tasks. Galaxy Zoo is a website whisitovs label astronomi-
cal images. While providing large amounts of cheap labesgd th a short time, these
platforms usually have little quality control over userbus, the response of each user
can vary widely, and in some cases may even be adversariatukah question to ask
is how to integrate opinions from multiple users for obtagan objective opinion. The
commonly used “majority vote” and “take the average” hdigsscompletely ignore
the individual expertise and may fail in the settings wits®aussian or adversarial
noise. This casts a challengel edirning from multiple sources for the machine learning
and data mining researchers [2].

Despite these web applications, one can find this problenide range of domains.
Recently,sensor networks have been deployed for the scientific monitoring of remote
and hostile environments. For example, researchers degpi6-node sensor network
on a tree to study its elevation under different weathertf¢®]. Each node samples
climate data at regular time intervals and the statistiescatlected. Using sensor data
in this manner presents many novel challenges, such agfasisy readings from sev-
eral sensors, detecting faulty and aging sensors. Impbytéris necessary to use the



trends and correlations observed in previous data to préfwio/alue of environmental

parameters into the future, or to predict the reading of a@ethat is temporarily un-

available (e.g. due to network outages). However, the&s gy have to be performed
with only limited knowledge of the location, reliabilitynd accuracy of each sensor.

In this work, the labeler (including user, annotator andssghmentioned above is
referred to as thebserver. Given aninstance, the label (e.g. annotation, reading) pro-
vided by an observer is called thesponse. Unlike the conventional supervised learn-
ing scenario, in our setting each instance is associatddandéet of responses, yet the
ground truth is unknown as some responses may be subjective or come fraainalne
observers. We concentrate on the regression problem wittincmus responses from
multiple observers. Specifically, our method provides agpled way to answer the
following questions:

1. How to learn a regression function to predict the grounthtprecluding the prior
knowledge of observers?
2. How to estimate the expertise of each observer withouviampthe ground truth?

2 Redated Work and Novel Contributions

There is a number of studies dealing with the setting invgjuinultiple labelers, yet
most of them focus on the classification problem. Early warthsas[[3,4.8] focus on
estimating the error rates of observers. In the machinailegucommunity, the prob-
lem of estimating the ground truth from multiple noisy lab&l addressed in[7]. In-
stead of estimating the ground truth and learning the dlasseparately, recent interest
has shifted towards on learning classifiers directly frohstata. Authors of [2] pro-
vide a general theory of selecting the most informative damfsrom each source for
model training. Later, a probabilistic framework is presehby [5.6] to address the
classification, regression and ordinal regression probl@gmmultiple annotators. The
framework is based on a simple assumption that the expeftessch annotator does not
depend on the given data. This assumption is infringed iffLRlGand later is extended
to the active learning scenario [12]. There are some otHategt work that focus on
different settings[IL,11].

The above studies paid little attention to the regressioblpm under multiple ob-
servers, which is the main core of this paper. Moreover, arkwliffers from the related
work in various aspects. First, we employ a less-parametethod, i.e. th&aussian
process (GP), to model the observers and the regression functiois. altows us to
associate the observer’s expertise with both ground tnuthirgout instance. Moreover,
our model is presented in an extensible probabilistic freaork. The missing data and
prior knowledge can be straightforwardly incorporated itite model.

The rest of this paper is organized as follows. Sedtion 3 ttares the problem
and introduces a probabilistic framework. The frameworksists of two parts. The
regression model is introduced in Secfliod 3.2. A linear andralinear observer model
is proposed in Sectidn 3.3 and Sectiod 3.4, respectivel;tjcﬁlﬂ reports the exper-
imental results on both synthetic and real-world data s@tsiclusions are drawn in
Sectiorl b.



3 Probabilistic Formulation

Denote thenstance space X C R’ and theresponse space ) C R” and theground
truth space Z C RP. Given N instances, ..., xy wherex, € X, denote theob-
jective ground truth for x,, asz,, € Z. In our setting, the ground truth is unknown.
Instead, we have multiple responsgs:,...,y».nm € Y for x,, provided by} dif-
ferent observers. For compactness, e L matrix of instancer,, ; is represented as

X = [x1,... ,xN]T. TheN x M x D tensor of observers’ responsgs,, q is denoted
byY = [y11,.--»¥Y1.M;---;¥N1,-- -, YN, M) The N x D matrix of ground truth
Zn,q IS denoted byZ = [z, .. ., zN]T

Given the training datX andY, our goal is threefold. First, it is of interest to get
an estimate of the unknown ground trith The second goal is to learn a regression
function f : X — Z which generalizes well on unseen instances. Finally, fechea
observer we want to model iexpertise as a function of the input instance and the
groundtruth,i.eg: X x Z — .

3.1 Probabilistic Framework

To formulate this problem from the probabilistic perspeetiwe consider the training
dataX andY as random variables. The ground tr@lis unknown and hence is a latent
variable. In general, the observed respol¥selepends both on the unknown ground
truth and the instance. That is, observers may exhibit agrigvels of expertise on
different instances. On Wikipedia the assumption is paldity true for the novice
readers, whereas the rating from an expert reader is censtross different types
of articles. FigurE]l illustrates the conditional depermenetweerX, Y andZ with a
graphical model. As a consequence, the joint conditiorstidution can be expressed
as

p(Y,Z,X) =p(Z| X)p(Y | Z, X)p(X)
N D M
o8 H H p(zn,d | Xn) H p(yn,m,d | Xn, Zn,d)a (1)
n=1d=1 m=1

where the termp(X) is dropped as we are more interested in the other two conditio
distributions. There are two underlying assumptions is thodel. First, each dimen-
sion of the ground truth is independent, but is not idenljcdistributed. Second, all

observers respond independently.

Note that the first term ir{1) indicates the probabilistipeledence between the
ground truth and the input instance, whereas the second dbaracterizes the ob-
servers’ expertise. Previous work have explored diffepanémetric methods to model
these two conditional distributions [L0)J18,5/12,6]. Atoliguishing factor in this pa-
per is that, we employ the Gaussian process as the backbaoastruct the model.
Specifically, the generative processYfcan be interpreted as follows

Zn,d = fd(xn) + €n, (2)
Yn,m,d = gm,d(xna Zn,d) + gm,da (3)



N

Fig. 1. Graphical model of instanceX, unknown ground truttZ and response¥ from M
different observers. Only the shaded variables are obderve

wheree and¢ is independent identically distributed Gaussian noisspeetively. Note
that the choice of f;} and{g,, «} characterizes the regression function and the ob-
servers, respectively. In particular, an ideal observaridbavey,, q(zn,d) = #n,q ON
everyd. Therefore, our goal can be understood as searching and {g.,.4} given

the training data. Intuitively, if two instances are closestaich other inY’, then their
corresponding ground truth should be closegithrough the mapping of f4}, which

in turn restricts the searching space{9f, 4} whenY is known.

3.2 Regression Model

We first concentrate on Ed] (2) and represent functiofag by the Gaussian process
with some non-linear kernel. Specifically, the conditiodatribution of the ground
truth given the training instances is assumed to be

D
p(Z|X) = [[ N (2.4]0,Ka), (4)

d=1

where thei™® dimension of the ground truth is denotedzag. We introduce av x N
kernel matrixK, that depends oiX, where each element is given by the value of a
composite covariance functidny : X x X — Ry, made up of several contributions
as follows

2

k2.4
Kalxio 1) = e g exp (‘%HXZ— - xjn?) g T a0 ). (5)

The noise ternz in Eq. &) is folded into the Kronecker delta functidfx;, x;). The
covariance function involves an exponential of a quadtatim, with the addition of a
constant bias, a linear and a noise terms. For each dimetiseoparameters need to be
learned from the data arq 4, . . . , k5 4. Samples from this prior are plotted for various
values of the parameters in FHg. 2.

3.3 Linear Observer Model

To model the observer’s expertise, we now concentratgloar@assume thdty,, 4}
is a linear mapping frong to ), which does not depend on the instance at all. De-
notey. ., « the d*® dimension response of all training instances provided leynth*
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Fig. 2. Samples drawn from a Gaussian process prior defined by tlagiange function Eq[ks).
The title above each plot denotes the valuéraf 4, 2,4, 53,4, 4,4, K5,4). The samples are ob-
tained using a discretization of theaxis of 1000 equally spaced points.

observer. The second conditional distributionih (1) isiassd to be

M D

p(Y | Z, X) = p(Y | Z) = H H N (y:,m,d | Wi, dZ:,d + fm,d1, UrznydI) ) (6)
m=1d=1

wherel is an all-ones vector with lengtly andI is a N x N identity matrix. Each
observer is characterized Byx D parameters, i.@uy, q, ftm,d, Om,d € R.

Parameter Estimation Now we can combine Eq|:|(6) with Ecﬂ (4) and estimate the
set of all parameters, i.©@ = {{k1,4,...,k5,a}s {Wm,a}, {ttm.d}> {Om,a}}, by max-
imizing the likelihood functionp(Y | X, ©). In the linear observer model, the latent
variableZ can be marginalized out, which yields

M D

p(Y|X,0) = H H N (um,dl,wfnyde + ofnydl) )
m=1d=1

The maximum likelihood estimator ¢f,, 4 is given byji,, 4 = & E —1 Yn,m,a- We
hereinafter use the short-hagd,, ; == y.m.a — fim,al. AS @ consequence, the log-
likelihood function is given by

M D
FO%:=1logp(Y|X,0) = > > logp(y:ma|X,0)

m=1d=1
M

27) —
m=1d

X (7)
Og |C| - —tI‘ ( m,dC_ly:,m,d) )
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whereC = w?, aKd+ o2 L Tofind the parameters by maximizing Ela (7), we take
the partial derlvatlves oFLOB with respect to the parameters and obtain

3FLOB

= Wy qtr (BCT'K 8
Py = r( d) (8)
3FLOB

= g gtr (BC™! 9
80’m,d Om,d I‘( )7 ( )
o8 Mg, 0Ky

— Z tr ( BC™! 10
8!@7(1 1 me’d : < Bm d) ’ ( )

whereB .= C~'y, dy m.a—Tlandg 6Kd is a matrix of element-wise partial deriva-
tives of Eq. IZB) Wlth respect t@; 4, . . /-;5 4- As there exists no closed-form solution,
we resort to L-BFGS quasi-Newton method to maximiz€B, Essentially, in each it-
eration the gradients are computed by EES. (SEb (10) anddhmmeters are updated
accordingly.

Estimate of Ground Truth Note that the ground truti is marginalized out from
Eq. ﬁ) and still remains unknown. To estimate the grounthtofiall training instances,
we need to find the posterior &, i.e.p(Z|Y,X) = p(Y |Z,X)p(Z | X)/p(Y | X).
By using the property of Gaussian distribution, one can stiavthe posterior of. 4
follows NV (u, V), where

Mo M2 -1
j : m,d — z : m,d —

m=1 O-mwd

The above computation is repeatBdimes on every dimension to obtain the estimate
of ground truthZ.

Prediction on New Instance Given a new instance,, we are interested in predicting
the ground truttz, by using the learned regression function. This can be dafigem

the joint distribution
Z. 4 K; k/
LW] ~N (0, [k* kd(x*,x*)D : (12)

wherek, = [kq¢(X«,X1), ..., ka(x., xn)]. Itturns out thap(z.. s | X, z. 4, x. ) follows
a Gaussian distribution. Hence, the best estimate for twengttruth is

Z*d—k Kd Zd, (13)
and the uncertainty is captured in its variance

var(Zi,q) = ka(%i, %) — kK 'k (14)



As a consequence, the response from an observer can be ediécigd by
,g*,m,d = (1 + wm,d)z*,d + ﬁm,da (15)

with variances,, 4.

Priorson Parameters Note thatw,, 4 is an important indicator of the observer's ex-
pertise. On the one hand, a genuine observer would hgyg close tol, whereas an
adversarial observer gives,, ; close to—1. On the other hand, we encouragg, 4

to be a small value unless supported by the data. Without aoyledge on observers,
we can only expect thab,, 4 takes value either aroundor —1, which inspires the
following penalty function

N(wm.a —1)? if W, q > 1;
penalty{w,, ¢) =4 0 if =1 <wpq<1,; (16)
N(Wm,a + 1)2 if wy,q < —1,

wheren controls the value of penalty as shown in Fﬁb 3 (see “getjeMthen w,, 4
takes value betweep-1, 1], there is no penalty and the gradient is given by EQ. (8)
directly. When|w,, 4| > 1 we penalizew,, 4 and keep it from being too large. This
allows our model to search a reasonable solutiondgr, without over-fitting on the
training data.

In the case that observers are highly reliable, the leamgd should be close to
1 and g, 4, om, 4 close to0. One can add a Laplacian prior for observers’ parameters,
which leads to ar.; regularization. The penalty term induced by the Laplaciaorp

for wy, 4 is —(% log A + \/%wm,d — 1]), where a smaller value of suggests that the

observer is more reliable. The maximization/of°® can be carried out by computing
the sub-gradient oby, 4, tm. ¢ ando,, 4, respectively.
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Fig. 3. Penalty functions ofv,,, ¢ induced by different prior models. The “general” penaltydu
tion corresponds to Ed._(16). Similar penalty functions baradded tq:,, 4 ando,,q as well.

The relationship between observers can be incorporatedhinatmodel as well. For
example, the demographic information of users or the ggdgcdocation of sensors



can be represented as\a x M proximity matrix P. In particular, we expect two ob-
servers have similar parameters if they are highly cordlan P. AssumingP is a
positive definite matrix, we can set the prior distributidnve , set as\V'(w. 4|1, P).
As a consequence, we add a penalty teﬂﬁ:d Ltr(w] aPw. .a) to Eq. [$) The gra-
dient of w,, 4 is computed by Eq[k8) with an additional ter2P,,, W . F|gure[13
illustrates different penalty functions af,, 4.

Missing Responses The model can be extended to handle the training data with-mis
ing responses. First of all, we partition the responges: (Y°,Y*), whereY® rep-
resents the observed part ald is the missing part of the responses. Consequently,
the latent variables in our model consistszbndY“. The expectation maximization
(EM) algorithm can be developed for estimating the modeapeaters. In the E-step,
we fix the model parameté and compute the sufficient statisticsbby Eq. ) and
then updaté&’™ by its prediction using Eq|.__(.’l.5). In the M-step, we use L-BRG8ax-
imizelogp(Y,Z| X, ®) and updat®. The two steps are repeated until the likelihood
reaches a local maximum.

3.4 Non-Linear Observer Model

The assumptions behind the linear observer model may noppejriate in some
scenarios. For instance, if the thermistor is being usedeasure the temperature of
the environment, due to the self-heating effect the eleithieating may introduce a
significant error, which is known as a nonlinear functiontaf &ctual environment tem-
perature. Moreover, the observers’ responses may depetitednput instance. With
these considerations in mind, we propose a more sophisticabdel which assumes
that{gm 4} is a nonlinear mapping frot’ x Z to ). By representind g, 4} as the
Gaussian process, the second conditional distributidi)ihds the form of

p(Y|Z,X) = HHNymdm Sind) (17)
m=1d=1
whereY is connected witiX andZ by a N x N kernel matrixS,, 4. The (i,7)th
elementinS,, 4 is given by

2
¢m,2,d

sm.a ({2i, i}, {25,%;}) = @2, 1 aexp |- (25,0 — 2,0)° | + B2

+ Oh aazidZid + G s a0 (Zids Zj.a)
L

1
+ ¢7211,6,d exp [—5 Z’Y?n,l,d(xi,l - xj,l)gl , (18)

=1

wherez; ; is thel*® dimension of the instance . This covariance function has a similar
form as Eq. [ZB) but with the addition of automatic relevance determination kernel
on X. By incorporating a separate paramejgr;  for each input dimensioh we can



optimize these parameters to infer the relative importaficéferent dimensions of an
instance from the data. One can see that;,as, becomes small, the responge,, 4
becomes relatively insensitive g, ;. This allows us to detect the dimensionsthat
substantially affect the observer’s response.

Parameter Estimation The observer model in Ed]]l?) can be combined with q. (4)
to form our new model,

p(Y|X,0)= /p(Y|Z,X,(~))p(Z|X, ©)dZ

where® = {{k1,d,---,k5.d}, {Pm1,ds-- -+ Pm.6,d}> {Mm,1.4} } IS the set of model pa-
rameters to be inferred from the data. Unfortunately, sueingmalization ofZ in-
tractable as the latent variabieappears nonlinear in the kernel matrix. Instead, we
seek amaximuma posterior (MAP) solution by maximizing

logp(Z,0|Y,X) =logp(Y |Z,X,0) +logp(Z | X, O) + constant,  (19)

with respect td&Z and®. Substituting quﬂ?) and Etﬂ (4) into EE](lQ) gives

FNSOB.— log p(Z,0 | Y, X)

D M
530> (WSmal + (S5 ¥ )

d=1m=1

MU [\D|}—‘

(In |Kq4| + tr(K;1Z;,dzId)) + constant. (20)

| =
Q.
Il

1
The partial derivative of N“©Bwith respect to the latent variable is given by

8FNLOB
az:,d

I8m, _
((S 1dy ,m, dY:m, dS Smld) de) — KdIZ;yd. (21)

The gradients with respect to the parameters of kernel rzdn be likewise derived as
in the linear observer model. Finally, these gradients aeelin the L-BFGS algorithm
for maximizing FN-OB

When the algorithm converges, the estimate of ground teudlirectly given by the
stationary point o"N-OB Predicting the response of a new instance can be carried out
in the same way as in Etﬂll). Moreover, the estimation oftHeobserver’s response
is given by

y*,m,d = S*S;;dy:,m,da

wheres,. = [$m,d(Zx, Z1, X, X1 )y - « - s Sm.d(Zs, ZN, Xs, XN )]

Initialization Note that seeking the MAP solution & and ® simultaneously may
lead to a bad local optimum. Specifically, the model may staci solution where
{fa4} is too trivial (e.g. close to a constant) afigl,, .} is too complicated (e.g. highly
non-linear), which contradicts our intuition. To mitigatés problem, we first fit the



training data with the linear observer model. The idea it &n initial approximation
of { f4} by restricting{¢...4} as linear. Then, we také estimated by the linear observer
model as the initialization of the ground truth, and traia ttonlinear observer model
to further refine{ f4} and{g., a4}

4 Experimental Results

To evaluate the performance of our algorithm on predictigground truth and the ob-
servers’ responses, we set up two experinﬁblﬁsst, the effectiveness of our models
is demonstrated on the synthetic data. The second expdrisnenducted on the real-
world data. In both experiments, the ground truth is knowd abservers’ responses
are simulated by mapping the ground truth with some randomfimesar functions. As
a consequence, the performance can be evaluated straigtfily. Two metrics are
considered here, i.e. the mean absolute normalized errAN@) and the Pearson cor-
relation coefficient (PCC). In MANE, we first rescale the attalue and its predicted
value into[0, 1] respectively, and then measure the mean absolute error.BMsNIe
close to0 and PCC value close toindicate that the algorithm performs well. In partic-
ular, the expected MANE of a random predictofis.

The proposed linear observer modeOB) and nonlinear observer mod@I(OB
are compared with several baselines. We first iBféRandGPRas the Support Vector
Regression and Gaussian Process Regression trained /ghotind truth, respectively.
Then we combine responses from multiple observers by takiagaiverage and then
using it for training, which we denote &V/R-AVGand GPR-AVG respectively. For
a fair comparison, the covariance functionsofn GPRand GPR-AVGhas the same
composite form as in Eq[](5). In addition to these non-pateémmethodsRaykar
refers to the model in which both(Z | X) andp(Y | Z) are Gaussian in the spirit
of [6].

4.1 Synthetic Examples

To create one-dimensional synthetic data (Le= 1 andD = 1), we setf(z) :=
sin(6x) sin(35). The training instanceX are generated by randomly samplBtgpoints

in [0, 27] from the uniform distribution. The test instances are ofgtdiusing a dis-
cretization of[0, 2] with equal space d#.05, which results inl26 points. Four simu-
lated observers are obtained by setting the correspor{ding as a random nonlinear
monotonic function. For a training instanegthem™ observer provides its response by
gm(f(x)) plus some Gaussian noise. An illustration of our synthaitads depicted in
Fig.. FiguréM}(b, c, d, e) shows the results given by #eelines and our method.
Not surprisingly, taking the average of observers’ resperis not an effective solu-
tion. In contrast, out OBandNLOBmodels outperform baseline methods significantly,
which yield lower MANE and higher PCC. Moreover, the obsesi&unctions learned
by NLOBare very close to those predefingg, } in Fig.[4(a).

! For reproducing the experimental results, our MATLAB implntation is available at
http://home.in.tum.de/ ~xiaoh |
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Fig. 4. (a) Synthetic data generated for the experiment. Responsesbservers are represented
by markers with different colors. The right panel illusastandomly generated,, } used for
simulating four observers. Shaded area represents thengsgnvariance. Note that th&" ob-
server isadversarial, as his response tends to be tpposite of the ground truth(b, c, d) Pre-
dicted ground truth on the test set by applyBgR-AVG GPR-AVGandLOB respectively(e)
Predicted ground truth and learned observer functionsgiyeNLOB

4.2 On Real-World Data

We download four real-world data sets from UCI Machine LazagiiRepository, namely
AUTO, COMMUNITY, CONCRETEandwINE. On each data set, we randomly selgi
instances and gener&t@ observers in the same manner as in Sedtidn 4.1. The number
of adversarial observers is fixed @0 The experiment is conducted witl-fold cross-



validation. The prediction result of the ground truth andeters’ responses is summa-
rized in Tabld L. It is notable that the proposgaBandNLOBsignificantly outperform
SVR/GPR-AVGandRaykar on inferring the ground truth. In general, additional im-
provements are observed whghOBis used. Comparing it with th8VR/GPRcolumn,
one can see that the regression function learned by Bis almost as good as the one
trained using the ground truth. We remark that the promipgormance oNLOBis
achieved by merely learning from a set of observers withoytg@ior knowledge of
their expertise and the ground truth. Furtherma@BandNLOBalso show encourag-
ing performance on predicting responses of observers,hwtaa be proved useful in
many applications such as the recommendation system.

Table 1. Prediction of the ground truth and observers’ responsesadh cell, the upper value
is MANE, while PCC is at the bottom. For the ground truth ane élrerage baselines we only
report the best performance, where a superscrifgnotes that the performance is achieved by
SVRor SVR-AVG for GPRandGPR-AVGwe use the superscrifit The best model on each data
set is highlighted by bold font. Note that orilfpBandNLOBcan predict observers’ responses.

Ground truth Observers’ responses
SVRIGPR SVR/GPR-AVG  Raykar LOB NLOB LOB NLOB
0.19 & 0.05% 0.21 £ 0.07% 0.25 & 0.08 0.26 & 0.05 0.20 & 0.04[0.26 & 0.04 0.25 =+ 0.09
0.84 + 0.07% 0.63 4 0.43% 0.50 £ 0.22 0.84 + 0.05 0.82 + 0.08 |0.75 & 0.05 0.70 + 0.11
0.15 4+ 0.03% 0.27 £0.08% 0.22+0.10 0.17 & 0.03 0.16 & 0.03|0.26 = 0.04 0.25 =+ 0.09
0.80 4 0.08% 0.44 +0.38% 0.70 4+ 0.13 0.76 & 0.04 0.77 & 0.04/0.62 & 0.09 0.55 + 0.15
0.15 & 0.02% 0.22 + 0.08% 0.20 &+ 0.08 0.18 & 0.07 0.17 & 0.06( 0.26 = 0.04 0.15 -+ 0.06
0.76 + 0.08% 0.60 4 0.46° 0.66 £ 0.21 0.78 +0.11 0.79 + 0.09|0.66 4 0.18 0.72+0.15
0.20 £ 0.06% 0.30 & 0.05° 0.29 £ 0.06 0.27 + 0.09 0.25 & 0.07|0.32 & 0.07 0.24 + 0.07
0.67 +0.12% 0.52 4+ 0.30¢ 0.38 4+ 0.19 0.58 4+ 0.20 0.61 + 0.17|0.47 + 0.18 0.48 + 0.15

‘ Data set ‘

AUTO

COMMUNITY

CONCRETE

WINE

5 Conclusion

This paper investigates the regression problem under preibbservers providing re-
sponses that are not absolutely accurate. The problemvesdtarning a regression
function and observers’ expertise from such data withoytparor information of the
observers. Based on the Gaussian process, we propose &ifistibdramework and
develop two models. Our approach provides an estimate ofrtend truth and also
predicts the responses of each observer given new instdbgasriments show that the
proposed method outperforms several baselines and leagsstdormance close to the
model trained with the ground truth.

There are many opportunities for future research. One lplesgirection is to ex-
tend our model withmultiple kernel learning. The idea is to let the algorithm pick or
composite different covariance functions instead of fiximg combination in advance.
As a consequence, the algorithm may learn complex fits fooliservers by selecting
multiple kernels in a data-dependent way. Moreover, it wdod highly beneficial to de-
signactive sampling methods for selecting which instance and whose responsgdsho
be learned next.
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