
? Final version available at http://www.aaai.org/Conferences/AAAI/aaai13.php 1

Lazy Gaussian Process Committee for Real-Time Online Regression

Han Xiao and Claudia Eckert
Institute of Informatics, Technische Universität München

Garching, D-85748, Germany
{xiaoh, claudia.eckert}@in.tum.de

Abstract

A significant problem of Gaussian process (GP) is its unfa-
vorable scaling with a large amount of data. To overcome this
issue, we present a novel GP approximation scheme for on-
line regression. Our model is based on a combination of mul-
tiple GPs with random hyperparameters. The model is trained
by incrementally allocating new examples to a selected sub-
set of GPs. The selection is carried out efficiently by optimiz-
ing a submodular function. Experiments on real-world data
sets showed that our method outperforms existing online GP
regression methods in both accuracy and efficiency. The ap-
plicability of the proposed method is demonstrated by the
mouse-trajectory prediction in an Internet banking scenario.

Introduction
Gaussian process (GP) is a promising Bayesian method
for non-linear regression and classification (Rasmussen and
Williams 2006). It has been demonstrated to be applicable to
a wide variety of real-world statistical learning problems. An
important advantage of GP over other non-Bayesian models
is the explicit probabilistic formulation of the model, allow-
ing one to assess the uncertainty of predictions. In addition,
since GP has a simple parameterization and the hyperparam-
eters can be adjusted by maximizing the marginal likelihood,
it is easy to implement and flexible to use.

Nevertheless, GP is not always the method of choice es-
pecially for large date sets. GP has inherently dense repre-
sentations in the sense that all training data is required for
the prediction. The training procedure requires computation,
storage and inversion of the full covariance matrix, which
can be time-consuming. Furthermore, the Bayesian posterior
update to incorporate data is also computationally cumber-
some. These drawbacks prevent GP from applications with
large amounts of training data that require fast computation,
such as learning motor dynamics in real-time.

Much research in recent years has focused on reducing
the computational requirements of GP on large data sets.
Many of these methods are based on a small set of train-
ing inputs, which summarizes the bulk of information pro-
vided by all training data (Smola and Bartlett 2001; Seeger,
Williams, and Lawrence 2003; Snelson and Ghahramani

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2006; Quiñonero-Candela and Rasmussen 2005). Other
methods make structural assumptions about the covariance
matrix so that a GP can be decomposed into a number of
smaller GPs (Tresp 2000; Nguyen-tuong and Peters 2008;
Chen and Ren 2009).

In this paper we present a novel approximation method
called lazy Gaussian process committee (LGPC) for learn-
ing from a continuous data stream. As its name suggests,
LGPC is based on a combination of multiple GPs, which
is closely related to several previous work (Tresp 2000;
Nguyen-tuong and Peters 2008; Chen and Ren 2009). Un-
like previous work, our model is updated in a “lazy” fashion
in the sense that new training examples are directly allocated
to a subset of GPs without adapting their hyperparameters.
The problem of selecting a near-optimal subset is formulated
as submodular optimization, allowing the training procedure
to be carried out efficiently. Experiments showed that LGPC
has comparable accuracy to the standard GP regression and
outperforms several GP online alternatives. The simplicity
and the efficiency of LGPC make it more appealing in real-
time online applications.

We applied LGPC to mouse-trajectory prediction in an In-
ternet banking scenario. The intention was to predict user’s
hand movements in real-time, so as to offer support to se-
curity applications, such as recognizing identity theft or an
abnormal funds transfer. Thus, the model’s learning and
prediction should be sufficiently fast. In the field of psy-
chology and cognitive science, there has been abundant ev-
idence that a motor dynamic of the hand can reveal the
time course of mental process (Abrams and Balota 1991;
Song and Nakayama 2008). Moreover, several studies have
showed that computer mouse-trajectory can afford valuable
information about the temporal dynamics of a variety of psy-
chological process (Spivey, Grosjean, and Knoblich 2005;
Freeman et al. 2010; Freeman and Ambady 2009). For
instance, unintentional stress might manifest less smooth,
more complex and fluctuating trajectories (Dale, Kehoe, and
Spivey 2007). An online learning technique is necessary as
it allows the adaption to changes in the trajectories. The ef-
fectiveness of the online mouse-trajectory learning confirms
the applicability of our method.

? Final version available at http://www.aaai.org/Conferences/AAAI/aaai13.php 2

Related Work
This section briefly reviews Gaussian process and previous
attempts on reducing its computational complexity. The un-
derlying problems that motivate this work are highlighted.

GP Regression
The problem of regression aims to find a function estima-
tion from the given data, which is usually formulated as fol-
lows: given a training set D := {(xn, yn)}Nn=1 of N pairs
of input vectors xn and noisy scalar outputs yn, the goal is
to learn a function f transforming an input into the output
given by yn = f(xn) + εn, where εn ∼ N (0, σ2) and σ2

is the variance of the noise. A Gaussian process is a collec-
tion of random variables, any finite number of which have
consistent joint Gaussian distribution. Gaussian process re-
gression (GPR) is a Bayesian approach which assumes a GP
prior over functions. As a result the observed outputs behave
according to

p(y |x1, . . . ,xN) = N (0,K),

where y := [y1, . . . , yN]> is a vector of output values, and
K is an N ×N covariance matrix; the entries are given by a
covariance function, i.e. Kij := k(xi,xj). In this work, we
consider a frequently used covariance function given by

k(xi,xj) := κ2 exp

(
−1

2
(xi − xj)

>W(xi − xj)

)
+σ2δij ,

where κ denotes the signal variance and W are the widths
of the Gaussian kernel. The last term represents an additive
Gaussian noise, i.e. δij := 1 if i = j, otherwise δij := 0.

In the setting of probabilistic regression, the goal is to find
a predictive distribution of the output y∗ at a test point x∗.
Under GPR, the predictive distribution of y∗ conditional on
the training set D is also Gaussian

p(y∗ | D,x∗) = N
(
k>∗K−1y, k∗ − k>∗K−1k∗

)
, (1)

where k∗ := [k(x∗,x1), . . . , k(x∗,xN)]> and k∗ :=
k(x∗,x∗). One can observe that the training data is explic-
itly required at the test time in order to construct the predic-
tive distribution, which makes GP a non-parametric method.
The hyperparameters are [κ2, σ2, {W}]>, where {W} de-
notes parameters in the width matrix W. The optimal hy-
perparameters for a particular data set can be derived by
maximizing the marginal likelihood function using a gra-
dient based optimizer. For a more detailed background on
GP, readers are referred to the textbook (Rasmussen and
Williams 2006).

It should be noted that in each iteration the computation
of the likelihood and the derivatives involves inversion of a
matrix of size N × N , which requires time O(N3). Once
the inversion is done, inference on a new test point requires
O(N) for the predictive mean and O(N2) for the predictive
variance. Thus, a simple implementation of GPR can handle
problems with at most a few thousands training examples,
which prevents it from real-time applications dealing with
large amounts of data.

GP Approximations

The sparse representation of data has been studied exhaus-
tively (Kimeldorf and Wahba 1971). It has been shown that
the bulk of information provided by all training inputs can
be summarized by a small set of inputs, which is often
known as inducing inputs or support vectors. By assuming
additional dependency about the training data given the in-
ducing inputs, various sparse GP approximations were de-
rived, such as the subset of regressors (Smola and Bartlett
2001), projected latent variables (Seeger, Williams, and
Lawrence 2003) and sparse GP with pseudo-inputs (Snel-
son and Ghahramani 2006). A unifying view of these sparse
GP methods was presented in (Quiñonero-Candela and Ras-
mussen 2005).

It should be noted that the selection of inducing inputs
does leave an imprint on the final solution. Loosely speak-
ing, the selection can be carried out either in a passive (e.g.
random) or active fashion. An extensive range of proposals
were suggested to find a near-optimal choice for inducing
inputs, such as posterior maximization (Smola and Bartlett
2001), maximum information gain (Seeger, Williams, and
Lawrence 2003), matching pursuit (Keerthi and Chu 2006)
and pseudo-input via continuous optimization (Snelson and
Ghahramani 2006). In particular, sparse online GP (Csató
and Opper 2002) was developed by combining the idea of
a sparse representation with an online algorithm, allowing
the inducing inputs (basis vectors) to be constructed in a se-
quential fashion.

An alternative approach for speeding up GPR is Bayesian
committee machine (BCM) introduced by (Tresp 2000).
Loosely speaking, the original training data is partitioned
into parts, where each part is maintained by a GP. The com-
putational cost is thus significantly reduced due to much
smaller number of training examples within each GP. BCM
provides a principled approach to combining Bayesian esti-
mators trained on different data sets for the prediction. In-
spired by this idea, some other work have been focused on
combining multiple GPs for regression (Nguyen-tuong and
Peters 2008; Chen and Ren 2009).

In the online setting, a straightforward application of the
approaches mentioned above is impeded by two obstacles.
First, it is inefficient to optimize hyperparameters every time
a new training example is presented. Second, adding new
training examples to the model may cause non-smooth fluc-
tuations in the marginal likelihood function and its gradi-
ents, meaning that a smooth convergence is not guaran-
teed (Seeger, Williams, and Lawrence 2003). Although sev-
eral heuristics can be adapted to alleviate this problem, there
is no reliable way of learning hyperparameters. Moreover,
as training examples are presented sequentially rather than
in batch, selecting inducing inputs from a data stream in a
far-sighted fashion becomes extremely challenging. Further-
more, the inducing inputs selection and the hyperparameters
estimation are somewhat undermined by each other (Snel-
son and Ghahramani 2006), which may adversely affect the
quality and the efficiency of online regression.

? Final version available at http://www.aaai.org/Conferences/AAAI/aaai13.php 3

LGPC for Online Regression
The basic idea of our approach is straightforward. Instead of
training a single GP using all the training data, we partition
the data and allocate it to a committee consisted of Q inde-
pendent GPs with different hyperparameters. That is, each
GP maintains a subset of the training data, which is denoted
as D1, . . . ,DQ respectively, where Dq := {(xt, yt)}Tt=1 and
T is the maximum number of training examples of each GP.
Intuitively, each GP in the committee corresponds to an in-
terpretation of the relationship between input and output.
For predicting the output y∗ of a query point x∗, the out-
puts from all GPs are combined together. Assuming that any
partition Di is conditionally independent with all other par-
titions {Dj , . . .},∀j 6= i given the outputs at test points,
which is reasonable when the number of test points is large,
we have p(y1, . . . ,yQ | D) ≈

∏Q
q=1 p(yq | Dq), the predic-

tive distribution can be approximated as

p̂(y∗ | D,x∗) ∝ c
∏Q
q=1 p(y∗ | Dq,x∗)

[p(y∗)]
Q−1 , (2)

where c is a normalization constant. The denominator of
Eq. (2) serves as a prior distribution of y∗. For a single
point, it is considered as zero-mean Gaussian with unit vari-
ance. For a set of query points, the prior is considered as
N (0,Σ∗), where Σ∗ is the sample covariance matrix.

This section describes LGPC in three parts, namely the
allocation of new training examples, the incremental update
and the predictions of query points. Note that all hyperpa-
rameters of LGPC are constants during online learning.

Allocation of New Training Examples
Denote all GPs in the committee asQ := {1, . . . , Q}. Given
a new training example (xN+1, yN+1), we select a subset
A ⊆ Q and allocate the new example to their data collection,
respectively. DenoteD〈N〉q as the training examples allocated
to the qth GP at time N , the update rule is formalized as

D〈N+1 | A〉
q :=

{
D〈N〉q ∪ {(xN+1, yN+1)} if q ∈ A;

D〈N〉q otherwise.

On the one hand, ifA contains only one element, meaning
that only one GP is updated each time, then the information
provided by the new training example may not be well uti-
lized. On the other hand, if we let A := Q, then all GPs
must update their corresponding Gram matrix to include the
new training example (no matter whether such inclusion will
contribute to the prediction of the committee or not), which
can degrade the efficiency and the quality of the prediction.
Thus, we need an active selection policy to choose at most S
GPs from the committee, such that their data inclusion can
yield the maximal improvement for prediction.

Clearly it can make sense to select which GPs are taken
into A by optimizing some criterion. The idea here is to
maximize the likelihood of LGPC on a small subset of train-
ing examples. To see this we introduce a reference set R,
in which both inputs XR and outputs yR are observed. The
reference set can be constructed, for instance, by subsam-
pling all previous training data {D〈N〉q }Qq=1 with the addition

of the current training example (xN+1, yN+1). Note that the
terms in the numerator and the denomination of Eq. (2) are
all Gaussian distributions over y∗. Thus, the predictive distri-
bution for yR at time N can be approximated by a Gaussian
distribution with mean and covariance as follows

E〈N〉p̂ (yR) = C〈N〉p̂ (yR)
∑
q∈Q

(
C(yR | D〈N〉q ,XR)−1

E(yR | D〈N〉q ,XR)
)

(3)

C〈N〉p̂ (yR) =
(
− (Q− 1)Σ−1RR+∑

q∈Q
C(yR | D〈N〉q ,XR)−1

)−1
, (4)

where ΣRR is the covariance matrix evaluated at XR.
The predictive mean and covariance of each GP, i.e.
E(yR | D〈N〉q ,XR) and C(yR | D〈N〉q ,XR), can be obtained
from Eq. (1). Note that as yR is known, the log probability
of yR under the current model can be evaluated by substi-
tuting Eqs. (3) and (4) into the following

L
〈N〉
R := −|R|

2
log(2π) +

1

2
log
∣∣∣C〈N〉p̂ (yR)−1

∣∣∣
−1

2

(
yR − E〈N〉p̂ (yR)

)>
C〈N〉p̂ (yR)−1

(
yR − E〈N〉p̂ (yR)

)
,

where |R| represents the number of references points in R.
WhenR is arbitrarily selected and sufficiently large, one can
consider L〈N〉R as a proxy for the likelihood of training ex-
amples for LGPC. Hence, we hereinafter call LR the log
pseudo-likelihood.

As a consequence, the problem of the optimal selection
A∗ at time N + 1 can be formulated as

A∗ := arg max
A⊆Q

L
〈N+1 | A〉
R − L〈N〉R , subject to |A| ≤ S,

which is unfortunately a combinatorial problem and can-
not be solved efficiently. However, it is worth to highlight
that the increment of pseudo-likelihood L〈N+1 | A〉

R − L〈N〉R
satisfies the diminishing returns behavior. That is, adding a
new GP to the selection A increases the pseudo-likelihood
more, if we have selected few GPs; and less, if we have
already selected many GPs. This formalism can be for-
malized using the combinatorial concept of submodular-
ity (Nemhauser, Wolsey, and Fisher 1978). Specifically, let
F (A) := L

〈N+1 | A〉
R − L〈N〉R , the submodular characteristic

of F indicates that for all A ⊆ B ⊆ Q and q ∈ Q \ B it
holds that F (A ∪ {q})− F (A) ≥ F (B ∪ {q})− F (B).

Interest of optimizing a submodular function has grown
in the machine learning community recently (Krause and
Guestrin 2007; Krause, Singh, and Guestrin 2008; Krause
et al. 2007). In practice, heuristics such as greedy se-
lection are often used. The greedy algorithm starts with
the empty set, and iteratively adds the element q∗ :=
arg maxq∈Q\A F (A ∪ {q}), until S elements have been
selected. A fundamental result by (Nemhauser, Wolsey,
and Fisher 1978) stated that for submodular functions, the

? Final version available at http://www.aaai.org/Conferences/AAAI/aaai13.php 4

greedy algorithm achieves at least a constant fraction (1 −
1/e) of the objective value obtained by the optimal solution.
Moreover, no polynomial time algorithm can provide a bet-
ter approximation guarantee unless P = NP (Feige 1998).

Algorithm 1: Greedy subset selection for LGPC.
Input : desired size of selection S (≥ 2)
Output: greedy selection A

1 Initialization A ← Ø, J ← {1, . . . , Q};
2 ∀j ∈ J : ∆j ← F (A ∪ {j})− F (A);
3 j∗ ← arg maxj∈J ∆j ;
4 A ← A∪ {j∗}, J ← J \ {j∗};
5 for s← 2 to S do
6 repeat
7 j∗ ← arg maxj∈J ∆j ;
8 ∆j∗ ← F (A ∪ {j∗})− F (A);
9 if ∀j ∈ J \ {j∗} : ∆j∗ > ∆j then

10 A ← A∪ {j∗}, J ← J \ {j∗};
11 until |A| = s;

Note that evaluating F (A∪ {q}) can be expensive as it is
required to re-compute Eqs. (3) and (4) for all q ∈ Q in each
iteration. In fact, such computation is unnecessary due to
the submodularity of F (Minoux 1978). Define the marginal
benefit of q as ∆q := F (A∪{q})−F (A), the submodularity
indicates that ∆q never increases over iterations. Based on
this observation, our greedy selection scheme is given in Al-
gorithm 1. The algorithm starts with the set A being empty,
and J containing the indices of all GPs. In the first iteration,
the GP with maximal ∆ is selected from J and added to A.
This is achieved by evaluating the marginal benefit for all
GPs in the committee. An ordered list of {∆j}j∈J is main-
tained. From the second iteration, only the top GP in this
ordered list will be evaluated. If the new marginal benefit of
that GP stays on top, then we add it toA. Otherwise, the list
of marginal benefits is re-sorted and, subsequently, the new
top GP is evaluated.

Theoretically, the worst-case complexity for Algorithm 1
is S2O(L), where O(L) denotes the complexity of one
pseudo-likelihood calculation. Empirically, we found on av-
erage only 3 calculations of pseudo-likelihood was required
at each iteration, which gave about 3SO(L).

Incremental Update of LGPC
Once a set of GPs is selected by Algorithm 1, the problem
turns to updating these GPs for the data inclusion in an incre-
mental fashion. Although the update of inputs X and outputs
y can be done straightforwardly, the update of a covariance
matrix K and its inverse J := K−1 is more complicated.
Specifically, the effect of a new point xN+1 on K and J can
be expressed as

K〈N+1〉 :=

[
K〈N〉 u>

u v

]
,J〈N+1〉 :=

[
J〈N〉 + 1

µgg> g

g> µ

]
,

with u := [k(xN+1,x1), . . . , k(xN+1,xN)]> and v :=
k(xN+1,xN+1). Following the partitioned inversion matrix
equations we have

g := −µJ〈N〉u, µ :=
(
v − u>J〈N〉u

)−1
.

In practice, Cholesky factorization is often used so that
L>L := K, which leads to a more efficient and accurate
solution for frequently occuring terms such as x>K−1x =
‖L−1x‖2 and log |K| = 2

(
1> log(diag (L))

)
. The lower

triangular matrix L can be also updated incrementally such
that

L〈N+1〉 :=

[
L〈N〉 0

l> η

]
,

where l can be solved by L〈N〉l = u, and subuently, η :=√
v − ‖l‖2.
Further notice that the model may deal with an endless

stream of data during online learning. Thus, we have to limit
the number of training examples maintained by each GP and
delete old training examples when necessary. Let m be the
index of training example being deleted. Construct P :=
I− (δm − δT+1)(δm − δT+1)>, as a (T + 1)-dimensional
permutation matrix, where δm is a (T+1)-dimensional zero
vector with one on the mth dimension. When a new point
comes in, it is first appended to K〈N+1〉. Then, the dele-
tion of the mth example can be performed efficiently using[
PK〈N+1〉P

]
⇑, where [·]⇑ represents shrinking a (T + 1)-

dimensional matrix or vector to a T -dimensional one by
removing the last row and column of it. Thus, the non-
increasing update equation of J is given by

J〈N+1〉 :=
[
PJ〈N+1〉P

]
⇑
− 1

r
s>s,

where s := [[k(xm,x1), . . . , k(xm,xN+1)]P]⇑ and r :=

k(xm,xm).
So far we have not said which training example should

be deleted. One simple method is to choose it randomly or
to remove the oldest training example over time. Alterna-
tively, one can remove the point that yields maximal mu-
tual information with the new point. In this work, we follow
the score measure introduced by (Csató and Opper 2002).
Specifically, for each point i in set Dq the score is given by
ξt := αt

J
〈N+1〉
tt

, where αt is the tth element of J〈N+1〉y. If

a deletion is needed for the qth GP, then the training exam-
ple with minimal ξ will be removed from Dq . The scores
are computationally cheap as they can be calculated in lin-
ear time. Although there may exist more sophisticated se-
lection schemes, they usually consume more computational
time and hence are not considered in this work.

Predictions of Query Points
Given a query point x∗, the predictive mean and variance
can be calculated by replacing R in Eqs. (3) and (4) with
the test set. Namely, we first compute the predictive mean
and variance of each GP member in the traditional way, and
then substitute them into Eqs. (3) and (4) to get the commit-
tee’s prediction. One can observe that the way of combin-
ing predictions in Eq. (3) automatically assigns less weight

? Final version available at http://www.aaai.org/Conferences/AAAI/aaai13.php 5

(through the inverse predictive variance) to those GPs that
are uncertain about their predictions. The time complexity is
O(QT) for predicting the mean and variance of a test point.

For the sake of efficiency and accuracy, it is reasonable to
only invoke nearby GPs in a neighborhood of x∗ for the pre-
diction. The key observation is that k(x∗,x) depends merely
on the constant σ if x∗ is far away from x. As σ is randomly
initialized in LGPC, a poor prediction could be given by the
qth GP when x∗ is far away from all points in the setDq . The
search of neighboring GPs can be performed by evaluating
1
|Dq|

∑
x∈Dq

k(x∗,x) for all {Dq}Qq=1 and, subsequently, se-
lecting those having largest values.

Experimental Results
Two sets of experiments were carried out to validate our al-
gorithm. First, we compared the accuracy and the efficiency
of LGPC with the standard GPR and state-of-the-art online
regression methods. Second, we investigated several factors
that affect the performance of LGPC in order to gain more
insights of it. An application to the mouse-trajectory predic-
tion is demonstrated at the end.

The experiments were conducted on six large data sets
downloaded from the Internet. On each data set, we linearly
rescaled into the range of [−1, 1] and randomly held out half
of the data for training; the remaining was used as a test set.
Each experiment was repeated 10 times.

Five baseline methods were employed for comparison.
They were standard GP regression (GPR), sparse GP using
pseudo-inputs (SGPP) (Snelson and Ghahramani 2006), lo-
cal GP regression (LoGP) (Nguyen-tuong and Peters 2008),
Bayesian committee machine (BCM) (Tresp 2000) and
sparse online GP regression (SOGP) (Csató and Opper
2002). URLs of these MATLAB implementations are listed
in the references. Note that GPR and SGPP are offline al-
gorithms, they are presented here to show the performance
when the whole training data is given beforehand. A Gaus-
sian kernel function with white noise was used as the co-
variance function for all methods, which was obtained by
setting W in the covariance function as the identity ma-
trix. The maximum number of inducing inputs in SGPP and
SOGP was 50. The threshold for creating a new local model
in LoGP was 0.5. The size of the committee was 20 for
BCM and LGPC, in which each GP maintained at most 100
training examples. For BCM and LGPC, the first 20 train-
ing examples were sequentially assigned to each member
for initialization. The reference set of LGPC had a size of
3, which consisted of the current training example and two
examples randomly sampled from the aforetime data. The
number of selected GPs in LGPC for data inclusion was 5
(i.e. S := 5 in Algorithm 1). Moreover, three variations of
BCM were employed in the experiment. BCMo denotes that
each time only one GP is randomly selected for data inclu-
sion; BCMs represents randomly selecting a subset with a
size of 5, which corresponds to a randomized counterpart of
LGPC; and BCMa represents selecting all GPs. For predict-
ing test inputs, all GPs in the committee of BCM and LGPC
were invoked. The hyperparameters were randomly initial-
ized for all methods. In particular, we drew a set of hyper-

parameters from Uniform(0, 10) for initializing BCM and
LGPC. The conjugate gradient method (in Netlab toolbox
(Nabney 2004)) was employed to optimize the hyperparam-
eters for GPR, SGPP, SOGP and LoGP. For SOGP, an EM
algorithm with 10 cycles was built for jointly optimizing the
posterior process and the hyperparameters.

Comparison of Predictive Accuracy
The comparison of predictive accuracy between different GP
methods is summarized in Table 1(a), where the root mean
square error was used as the evaluation metric. This causes
the trivial method of guessing the mean to have a SMSE
of approximately 1 and a MSLL of zero. Small value of
SMSE or negative value of MSLL indicates a better method.
It is evident from the results that, LGPC gave a consider-
ably lower test error than LoGP, BCM and SGPP. In partic-
ular, LGPC showed a significant improvement over all BCM
variants on the majority data sets, which indicates the ef-
fectiveness of our subset selection strategy. Empirically, we
found that good performance could have been achieved after
learning from first few thousands examples. After that, the
accuracy of LGPC did not change significantly. On delta,
cpuact and houses, the performance of LGPC was com-
parable to SOGP. In fact, the performance of LGPC can
be further improved by allowing each GP to maintain more
training examples, as it is shown in the third experiment.

Comparison of Computation Speed
The comparison of training and prediction speed is shown
in Fig. 1. Different online methods were trained (tested) on
houses data set with increasing training (testing) exam-
ples, i.e. 500, 1, 000, 2, 000, 4, 000 and 8, 000 data points,
respectively. As can be seen in Fig. 1, in both training and
prediction phrases, LGPC showed a substantial reduction of
time comparing to GPR and LoGP. In particular, LGPC took
less time for learning 8, 000 points (210s) than SGPP (240s)
and SOGP (340s). On the other hand, SGPP and SOGP were
found to be extremely efficient in the prediction, as their
time cost only increased at a very low pace with respect to
the number of test points. This is due to the fact that the pre-
diction of SGPP and SOGP involves only a small covariance
matrix based on 50 inducing inputs, whereas LGPC invokes
all GPs in the committee for prediction. Nonetheless, it is
possible to speed up LGPC by invoking only the nearest GP
for the prediction as aforementioned. In short, LGPC is a
more appropriate choice than SOGP in a real-time applica-
tion which requires fast training.

One may notice that LGPC took more training time than
BCMs and its speed advantages over BCMa was not dra-
matic, which is slightly disappointing. This is attributed
to the fact that, although LGPC saves the computational
resources by limiting the number of GPs for data inclu-
sion, it spends extra computational time on selecting a near-
optimal subset with Algorithm 1. The prediction complex-
ity of LGPC, BCMo, BCMs and BCMa was virtually same.
Nonetheless, it should be noted that LGPC outperformed all
BCM variants significantly on houses in terms of predic-
tive accuracy as detailed in Table 1(a), which makes LGPC
overall more preferable than BCM.

? Final version available at http://www.aaai.org/Conferences/AAAI/aaai13.php 6

Table 1: The root mean square error ± the standard deviation on different test sets. URLs of these data sets can be found in
the references. delta: 7, 129× 6, bank: 8, 192× 8, cpuact: 8, 192× 12, elevator: 8, 752× 17, houses: 20, 640× 8,
sarcos: 44, 484× 21. Results were averaged over ten runs. Small value for better methods.

(a) LGPC versus baseline methods.

Method delt bank cpua elev hous sarc
LGPC 0.041±0.001 0.084±0.011 0.072±0.010 0.053±0.005 0.157±0.004 0.032±0.002
LoGP 0.065±0.009 0.188±0.069 0.219±0.041 0.107±0.009 0.232±0.028 0.089±0.001
BCMo 0.044±0.002 0.113±0.012 0.115±0.011 0.066±0.004 0.164±0.008 0.070±0.003
BCMs 0.043±0.001 0.108±0.012 0.114±0.016 0.069±0.005 0.180±0.008 0.073±0.003
BCMa 0.045±0.001 0.122±0.017 0.119±0.009 0.083±0.003 0.203±0.007 0.077±0.004
SOGP 0.040±0.001 0.047±0.001 0.074±0.007 0.038±0.001 0.143±0.001 0.023±0.001
GPR 0.039±0.001 0.041±0.001 0.030±0.001 0.031±0.001 0.115±0.002 0.016±0.002
SGPP 0.045±0.013 0.061±0.045 0.079±0.057 0.065±0.035 0.161±0.046 0.095±0.059

(b) Predictive error of LGPC w.r.t. different size of the committee.

Q delt bank cpua elev hous sarc
5 0.043±0.001 0.093±0.029 0.087±0.030 0.065±0.016 0.171±0.005 0.034±0.006
10 0.042±0.001 0.102±0.016 0.079±0.018 0.056±0.010 0.167±0.007 0.033±0.004
15 0.041±0.001 0.085±0.012 0.075±0.013 0.057±0.008 0.161±0.003 0.034±0.004
20 0.041±0.001 0.084±0.011 0.072±0.010 0.053±0.007 0.157±0.004 0.033±0.003
25 0.041±0.001 0.076±0.006 0.080±0.009 0.053±0.003 0.156±0.003 0.032±0.003
30 0.041±0.001 0.085±0.012 0.095±0.009 0.052±0.004 0.155±0.004 0.032±0.003

(c) Predictive error of LGPC w.r.t. different maximum number of examples.

T delt bank cpua elev hous sarc
50 0.042±0.001 0.114±0.012 0.098±0.016 0.072±0.014 0.172±0.007 0.040±0.004
100 0.041±0.001 0.084±0.011 0.072±0.010 0.053±0.007 0.157±0.004 0.032±0.002
150 0.040±0.001 0.068±0.011 0.057±0.005 0.040±0.003 0.152±0.003 0.028±0.003
200 0.040±0.001 0.054±0.004 0.050±0.007 0.039±0.002 0.146±0.002 0.022±0.002

0.5 1 2 4 8
0

100

200

300

400

500

Training points (× 10
3
)

T
ra

in
in

g
 t
im

e
 [
s
]

GPR

SGPP

LoGP

LGPC

BCMo

BCMs

BCMa

SOGP

0.5 1 2 4 8
0

1

2

3

4

Test points (× 10
3
)

P
re

d
ic

ti
o
n
 t
im

e
 [
s
]

GPR

SGPP

LoGP

LGPC

BCMo

BCMs

BCMa

SOGP

Figure 1: Time cost in second (averaged over 10 runs) re-
quired for training and predicting, respectively. In each run,
a training set and a test set were randomly sampled from
houses data set and the time cost was measured respec-
tively. The training and prediction time of 8, 000 data points
required for GPR was 1100s and 15s, respectively. Note that
prediction time of LGPC can be reduced to 0.02s if only the
nearest GP is invoked for predicting a test point.

Exploration of Model Parameters

In order for LGPC to be a practical tool in real-world ap-
plications, it is necessary to make decisions about the de-
tails of its specification. Fortunately, there are not many free
parameters in LGPC, as all hyperparameters are randomly

initialized and are fixed during the learning process1. Our
exploration focused on three parameters that mainly govern
the performance of LGPC. Namely, the committee size Q,
the maximum number of maintained training points T and
the size S of the selected subset for data inclusion.

The performance of LGPC with respect to different sizes
of the committee is summarized in Table 1(b), where S := 5
and T := 100. On delta, bank and cpuact, the pre-
dictive accuracy reached its peak when the size of the com-
mittee was around 20. After that, the performance dropped
slightly. On larger data sets such as houses and sarcos
the test error had a steady decline asQ increasing. This indi-
cates that it suffices to employ a small committee for learn-
ing a small amount of data. For a large data set increasing the
size of the committee provides more capability to account
for the complex pattern, which generally leads to higher pre-
dictive accuracy.

Table 1(c) summarizes the test results of LGPC with re-
spect to different settings of T , where S := 5 and Q := 20.
As expected, one can improve the predictive accuracy sig-

1We did try few heuristics for initializing the hyperparame-
ters, such as initializing 20 Gaussian kernels with different widths
(e.g. 2−9, . . . , 29, 210) and the same noise level; sampling from a
Gamma distribution; implementing a weak prior by optimizing on
a small validation set. However, such attempts did not yield better
predictive accuracy than the random initialization.

? Final version available at http://www.aaai.org/Conferences/AAAI/aaai13.php 7

nificantly by allowing each GP to maintain more training
examples. Moreover, when T := 200 it was observed that
the high accuracy was achieved much earlier than T := 50;
and the performance was often more robust afterwards.

Finally, to study the performance with respect to different
sizes of the selected subset, we fixed T := 100, Q := 20
and trained LGPC with S := 2, 4, 6, 8 and 10, respectively.
It was found that on delta and sarcos the predictive ac-
curacy was not sensitive to the size of selected subset. On
cpuact, elevator and houses, selecting more than
two GPs slightly degraded the performance. The optimal
size for bankwas 6. In short, it seems that the optimal value
of S varies with data sets.

Mouse-Trajectory Prediction
We applied LGPC for learning mouse-trajectory of different
users in an Internet banking scenario. To collect the data,
we developed a website for simulating an environment, in
which participants were asked to transfer funds to a dummy
account. A complete procedure was composed of five inter-
faces, i.e. login, account overview, transaction details, TAN
authentication and confirmation. Ten participants were in-
volved and each with three trials; the input information was
same for all trials. A Javascript code was developed for
tracking mouse coordinates on every onmousemove event.
The trajectories of the first two trials (ca. 2700 points/user)
were used for training models. The goal was to predict the
trajectory of the last trial (ca. 1000 points/user).

The predicted trajectories of three users using LGPC,
SOGP and offline GPR are visualized in Fig. 2. It was ob-
served that users behaved differently even when they were
performing the same task. For instance, the first user used
the tab key moves the cursor and entered the TAN code with
the numpad, resulting a short and simple mouse-trajectory.
On the other hand, the third user entered the TAN code using
a virtual keyboard on the web page, which made the trajec-
tory sway horizontally. By learning from the first two trials,
reasonable predictions of the third trial were obtained from
all methods. However, when the interface contained many
elements and the trajectory became more complicated, the
offline GPR gave noisy predictions as depicted in Fig. 2(a).
It can be seen that LGPC performed as good as the state-of-
the-art SOGP in learning users’ trajectories.

With a new training point arriving about every 10ms (less
than one minute of running time will result in thousands of
data points), LGPC is a more preferable method due to its
fast learning speed. Efficient trajectory prediction would be
beneficial in security applications, such as distinguishing be-
tween individuals and early warning of identity theft.

Conclusions
The efficiency problem of Gaussian process becomes a pri-
mary issue when it is applied to real-time online applica-
tions. This work has proposed a novel method for reduc-
ing the computational demand of GP regression. It consists
of multiple GPs where each maintains only a small set of
training examples. Each time a subset of GPs is selected
for including newly arrived training examples. The selection

U1

LGPC

U2

LGPC

U3

LGPC

U1

SOGP

U2

SOGP

U3

SOGP

U1

GPR

U2

GPR

U3

GPR

(a) Mouse-trajectories on “transaction details”
U1

LGPC

U2

LGPC

U3

LGPC

U1

SOGP

U2

SOGP

U3

SOGP

U1

GPR

U2

GPR

U3

GPR

(b) Mouse-trajectories on “TAN authentication”

Figure 2: The predictions of three users’ mouse-trajectories
on two interfaces. Each column represents a user. The gray
curve with � denotes a user’s trajectory in the third trial.
The model’s prediction is illustrated by the color curve with
?, whose head is blue and tail is red.

is performed by optimizing a submodular function. Unlike
previous work, our model removes the need for parameter-
fitting and requires little tuning efforts. An improvement of
accuracy and efficiency over existing online GP methods
has been demonstrated in the experiment. In particular, as a
modified version of Bayesian committee machine, we have
showed that updating a chosen subset of GPs is more ef-
fective than updating the whole committee, which leads to
better predictive accuracy. As demonstrated in the task of
mouse-trajectory prediction, LGPC can be applied to a wide
range of real-time applications, such as learning motor dy-
namics and inferring temporal dynamics of mental phenom-
ena.

An important question for future studies is to determine
the optimal size of the committee. One possible way is to
expand or shrink the committee size during the online learn-
ing. In addition, more effective strategies for initializing the
hyperparameters remain to be determined. Furthermore, it
should be interesting to infringe the independence between
GP members for a further improvement on the accuracy.

? Final version available at http://www.aaai.org/Conferences/AAAI/aaai13.php 8

Acknowledgments
This work is funded by the HIVE project (FKZ:
16BY1200D) of the German Federal Ministry of Education
and Research. We would like to thank Nan Li and Ping Luo
for their comments on an earlier draft, Yurong Tao for help
with experiments, and anonymous reviewers for helpful sug-
gestions.

References
Abrams, R., and Balota, D. 1991. Mental chronometry:
Beyond reaction time. Psychological Science 2(3):153–157.
Chen, T., and Ren, J. 2009. Bagging for gaussian process
regression. Neurocomputing 72(7):1605–1610.
Csató, L., and Opper, M. 2002. Sparse on-line gaussian
processes. Neural Computation 14(3):641–668.
delta data set. http://www.dcc.fc.up.pt/
˜ltorgo/Regression/.
bank data set. http://www.cs.toronto.edu/
˜delve/.
cpuact data set. http://www.cs.toronto.edu/
˜delve/.
elevator data set. http://www.dcc.fc.up.pt/
˜ltorgo/Regression/.
houses data set. http://lib.stat.cmu.edu/
datasets/.
sarcos data set. http://www.gaussianprocess.
org/gpml/data/.
Dale, R.; Kehoe, C.; and Spivey, M. 2007. Graded motor
responses in the time course of categorizing atypical exem-
plars. Memory & Cognition 35(1):15–28.
Feige, U. 1998. A threshold of ln n for approximating set
cover. Journal of the ACM 45(4):634–652.
Freeman, J., and Ambady, N. 2009. Motions of the hand ex-
pose the partial and parallel activation of stereotypes. Psy-
chological Science 20(10):1183–1188.
Freeman, J.; Pauker, K.; Apfelbaum, E.; and Ambady, N.
2010. Continuous dynamics in the real-time perception of
race. Journal of Experimental Social Psychology 46(1):179–
185.
GPR and SGPP MATLAB implementation. http://
www.cs.man.ac.uk/˜neill/gp/.
LoGP MATLAB implementation. http://www.
ias.informatik.tu-darmstadt.de/Member/
DuyNguyen-Tuong.
SOGP MATLAB implementation. http://www.cs.
ubbcluj.ro/˜csatol/.
Keerthi, S., and Chu, W. 2006. A matching pursuit approach
to sparse gaussian process regression. In Advances in Neu-
ral Information Processing Systems, volume 18, 643. MIT
Press.
Kimeldorf, G., and Wahba, G. 1971. Some results on
tchebycheffian spline functions. Journal of Mathematical
Analysis and Applications 33(1):82–95.

Krause, A., and Guestrin, C. 2007. Near-optimal observa-
tion selection using submodular functions. In Proceedings
of the National Conference on Artificial Intelligence, vol-
ume 22, 1650. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999.
Krause, A.; Mcmahan, H.; Guestrin, C.; and Gupta, A. 2007.
Selecting observations against adversarial objectives. In Ad-
vances in Neural Information Processing Systems. MIT
Press.
Krause, A.; Singh, A.; and Guestrin, C. 2008. Near-
optimal sensor placements in gaussian processes: Theory,
efficient algorithms and empirical studies. Journal of Ma-
chine Learning Research 9:235–284.
Minoux, M. 1978. Accelerated greedy algorithms for max-
imizing submodular set functions. Optimization Techniques
234–243.
Nabney, I. T. 2004. NETLAB: algorithms for pattern recog-
nition. Springer.
Nemhauser, G.; Wolsey, L.; and Fisher, M. 1978. An analy-
sis of approximations for maximizing submodular set func-
tionsi. Mathematical Programming 14(1):265–294.
Nguyen-tuong, D., and Peters, J. 2008. Local gaussian pro-
cess regression for real time online model learning and con-
trol. In Advances in Neural Information Processing Systems.
MIT Press.
Quiñonero-Candela, J., and Rasmussen, C. 2005. A unify-
ing view of sparse approximate gaussian process regression.
Journal of Machine Learning Research 6:1939–1959.
Rasmussen, C., and Williams, C. 2006. Gaussian processes
for machine learning, volume 1. MIT press Cambridge, MA.
Seeger, M.; Williams, C.; and Lawrence, N. 2003. Fast for-
ward selection to speed up sparse gaussian process regres-
sion. In Workshop on AI and Statistics, volume 9, 2003.
Smola, A. J., and Bartlett, P. 2001. Sparse greedy gaus-
sian process regression. In Advances in Neural Information
Processing Systems, 619–625. MIT Press.
Snelson, E., and Ghahramani, Z. 2006. Sparse gaussian
processes using pseudo-inputs. In Advances in Neural In-
formation Processing Systems, 1257–1264. MIT press.
Song, J., and Nakayama, K. 2008. Target selection in visual
search as revealed by movement trajectories. Vision research
48(7):853–861.
Spivey, M.; Grosjean, M.; and Knoblich, G. 2005. Con-
tinuous attraction toward phonological competitors. Pro-
ceedings of the National Academy of Sciences of the United
States of America 102(29):10393–10398.
Tresp, V. 2000. A bayesian committee machine. Neural
Computation 12(11):2719–2741.

