
Is Feature Selection Secure against Training Data Poisoning?

Huang Xiao XIAOHU@IN.TUM.DE

Department of Computer Science, Technische Universität München, Boltzmannstr.3, 85748 Garching, Germany

Battista Biggio BATTISTA.BIGGIO@DIEE.UNICA.IT

Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy

Gavin Brown GAVIN.BROWN@MANCHESTER.AC.UK

School of Computer Science, University of Manchester, Oxford Road, M13 9PL, UK

Giorgio Fumera FUMERA@DIEE.UNICA.IT

Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy

Claudia Eckert CLAUDIA.ECKERT@IN.TUM.DE

Department of Computer Science, Technische Universität München, Boltzmannstr.3, 85748 Garching, Germany

Fabio Roli ROLI@DIEE.UNICA.IT

Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy

Abstract

Learning in adversarial settings is becoming an
important task for application domains where at-
tackers may inject malicious data into the train-
ing set to subvert normal operation of data-driven
technologies. Feature selection has been widely
used in machine learning for security applica-
tions to improve generalization and computa-
tional efficiency, although it is not clear whether
its use may be beneficial or even counterproduc-
tive when training data are poisoned by intelli-
gent attackers. In this work, we shed light on
this issue by providing a framework to investi-
gate the robustness of popular feature selection
methods, including LASSO, ridge regression and
the elastic net. Our results on malware detec-
tion show that feature selection methods can be
significantly compromised under attack (we can
reduce LASSO to almost random choices of fea-
ture sets by careful insertion of less than 5% poi-
soned training samples), highlighting the need
for specific countermeasures.
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1. Introduction
With the advent of the modern Internet, the number of inter-
connected users and devices, along with the available num-
ber of services, has tremendously increased. This has not
only simplified our lives, through accessibility and ease-of-
use of novel services (e.g., think to the use of maps and
geolocation on smartphones), but it has also provided great
opportunities for attackers to perform novel and profitable
malicious activities. To cope with this phenomenon, ma-
chine learning has been adopted in security-sensitive set-
tings like spam and malware detection, web-page ranking
and network protocol verification (Sahami et al., 1998; Mc-
Callum & Nigam, 1998; Rubinstein et al., 2009; Barreno
et al., 2010; Smutz & Stavrou, 2012; Brückner et al., 2012;
Biggio et al., 2012; 2013b; 2014). In these applications, the
challenge is that of inferring actionable knowledge from
a large, usually high-dimensional data collection, to cor-
rectly prevent malware (i.e., malicious software) infections
or other threats. For instance, detection of malware in PDF
files relies on the analysis of the PDF logical structure,
which consists of a large set of different kinds of objects
and metadata, yielding a high-dimensional data representa-
tion (Smutz & Stavrou, 2012; Maiorca et al., 2012; 2013;
Šrndić & Laskov, 2013). Similarly, text classifiers for spam
filtering rely on the construction of a large dictionary to
identify words that are mostly discriminant of spam and le-
gitimate emails (Sahami et al., 1998; McCallum & Nigam,
1998; Graham, 2002; Robinson, 2003).
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Due to the large number of available features, learning in
these tasks is particularly challenging. Feature selection is
thus a crucial step for reducing the impact of the curse of
dimensionality on classifier’s generalization, and for learn-
ing efficient models providing easier-to-interpret decisions.

For the same reasons behind the growing sophistication and
variability of modern attacks, it is reasonable to expect that,
being increasingly adopted in these tasks, machine learn-
ing techniques will be soon targeted by specific attacks,
crafted by skilled attackers. In the last years, relevant work
in the area of adversarial machine learning has addressed
this issue, and proposed some pioneering methods for se-
cure learning against particular kinds of attacks (Barreno
et al., 2006; Huang et al., 2011; Biggio et al., 2014; 2012;
2013a; Brückner et al., 2012; Globerson & Roweis, 2006).

While the majority of work has focused on analyzing vul-
nerabilities of classification and clustering algorithms, only
recent work has considered intrinsic vulnerabilities intro-
duced by the use of feature selection methods. In particular,
it has been shown that classifier evasion can be facilitated
if features are not selected according to an adversary-aware
procedure that explicitly accounts for adversarial data ma-
nipulation at test time (Li & Vorobeychik, 2014; Wang
et al., 2014; Zhang et al., 2015). Although these attacks do
not directly target feature selection, but rather the resulting
classification system, they highlight the need for adversar-
ial feature selection procedures. Attacks that more explic-
itly target feature selection fall into the category of poison-
ing attacks. Under this setting, the attacker has access to
the training data, and contaminates it to subvert or control
the selection of the reduced feature set.

As advocated in a recent workshop (Joseph et al., 2013),
poisoning attacks are an emerging security threat for data-
driven technologies, and could become the most relevant
one in the coming years, especially in the so-called big-
data scenario dominated by data-driven technologies. From
a practical perspective, poisoning attacks are already a per-
tinent scenario in several applications. For instance, in col-
laborative spam filtering, classifiers are retrained on emails
labeled by end users. Attackers owning an authorized email
account protected by the same anti-spam filter may thus
arbitrarily manipulate emails in their inbox, i.e., part of
the training data used to update the classifier. Some sys-
tems may even ask directly to users to validate their deci-
sions on some submitted samples, and use their feedback
to update the classifier (see, e.g., PDFRate, an online tool
for detecting PDF malware designed by Smutz & Stavrou,
2012). Furthermore, in several cases obtaining accurate la-
bels, or validating the available ground truth may be ex-
pensive and time-consuming; e.g., if malware samples are
collected from the Internet, by means of honeypots, i.e.,
machines that purposely expose known vulnerabilities to

be infected by malware (Spitzner, 2002), or other online
services, like VirusTotal,1 labeling errors are possible.

Work by Rubinstein et al. (2009) and Nelson et al. (2008)
has shown the potential of poisoning attacks against PCA-
based malicious traffic detectors and spam filters, and pro-
posed robust techniques to mitigate their impact. More re-
cently, Mei & Zhu (2015) have demonstrated how to poison
latent Dirichlet allocation to drive its selection of relevant
topics towards the attacker’s choice.

In this work, we propose a framework to categorize
and provide a better understanding of the different at-
tacks that may target feature selection algorithms, build-
ing on previously-proposed attack models for the security
evaluation of supervised and unsupervised learning algo-
rithms (Biggio et al., 2014; 2013b; 2012; Huang et al.,
2011; Barreno et al., 2006) (Sect. 2). We then exploit this
framework to formalize poisoning attack strategies against
popular embedded feature selection methods, including the
so-called least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 1996), ridge regression (Hoerl &
Kennard, 1970), and the elastic net (Zou & Hastie, 2005)
(Sect. 3). We report experiments on PDF malware detec-
tion, assessing how poisoning affects both feature selection
and classification error (Sect. 4). We conclude the paper
by discussing our findings and contributions (Sect. 5), and
sketching promising future research directions (Sect. 6).

2. Feature Selection Under Attack
In this section, we present our framework for the security
evaluation of feature selection algorithms. It builds on the
framework proposed by Biggio et al. (2014; 2013b) to as-
sess the security of classification and clustering algorithms,
which in turn relies on a taxonomy of attacks against learn-
ing algorithms originally proposed by Huang et al. (2011);
Barreno et al. (2006). Following the framework of Biggio
et al. (2014; 2013b), we define ours in terms of assump-
tions on the attacker’s goal, knowledge of the system, and
capability of manipulating the input data.

Notation. In the following, we assume data is generated
according to an underlying i.i.d. process p : X 7→ Y ,
for which we are only given a set D = {xi, yi}ni=1 of n
samples, each consisting of a d-dimensional feature vector
xi = [x1

i , . . . , x
d
i ]
> ∈ X , and a target variable yi ∈ Y .

Learning amounts to inferring the underlying process p
from D. Feature selection can be exploited to facilitate this
task by selecting a suitable, relevant feature subset from
D, according to a given criterion. For instance, although
in different forms, wrapper and embedded methods aim
to minimize classification error, while information theo-
retic filters optimize different estimates of the information

1http://virustotal.com

http://virustotal.com
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gain (Brown et al., 2012). To denote a given feature sub-
set, we introduce a vector π ∈ {0, 1}d, where each ele-
ment denotes whether the corresponding feature has been
selected (1) or not (0). Then, a feature selection algorithm
can be represented in terms of a function h(D) that selects
a feature subset π by minimizing a given selection criterion
L(D,π) (e.g., the classification error).

2.1. Attacker’s Goal

The attacker’s goal is defined in terms of the desired secu-
rity violation, which can be an integrity, availability, or
privacy violation, and of the attack specificity, which can
be targeted or indiscriminate (Barreno et al., 2006; Huang
et al., 2011; Biggio et al., 2014; 2013b).

Integrity is violated if malicious activities are performed
without compromising normal system operation, e.g., at-
tacks that evade classifier detection without affecting the
classification of legitimate samples. In the case of feature
selection, we thus regard integrity violations as attacks that
only slightly modify the selected feature subset, aiming to
facilitate subsequent evasion; e.g., an attacker may aim to
avoid the selection of some specific words by an anti-spam
filter, as they are frequently used in her spam emails.

Availability is violated if the functionality of the system
is compromised, causing a denial of service. For classifica-
tion and clustering, this respectively amounts to causing the
largest possible classification error and to maximally alter-
ing the clustering process on the input data (Huang et al.,
2011; Biggio et al., 2014; 2013b). Following the same ra-
tionale, the availability of a feature selection algorithm is
compromised if the attack enforces selection of a feature
subset which yields the largest generalization error.

Privacy is violated if the attacker is able to obtain infor-
mation about the system’s users by reverse-engineering the
attacked system. In our case, this would require the attacker
to reverse-engineer the feature selection process, and, get-
ting to know the selected features, infer information about
the training data and the system users.2

Finally, the attack specificity is targeted, if the attack af-
fects the selection of a specific feature subset, and indis-
criminate, if the attack affects the selection of any feature.

2.2. Attacker’s Knowledge

The attacker can have different levels of knowledge of the
system, according to specific assumptions on the points

2Note that privacy attacks against machine learning are very
speculative, and only considered here for completeness. Further,
feature selection algorithms are typically unstable, making them
very difficult to reverse-engineer. It would be thus of interest to
understand whether feature selection exhibits some privacy guar-
antees, e.g., if it can be intrinsically differentially private.

(k.i)-(k.iii) described in the following.

(k.i) Knowledge of the training data D: The attacker
may have partial or full access to the training data D. If
no access is possible, she may collect a surrogate dataset
D̂ = {x̂i, ŷi}mi=1, ideally drawn from the same underlying
process p from which D was drawn, i.e., from the same
source from which samples in D were collected; e.g., hon-
eypots for malware samples (Spitzner, 2002).

(k.ii) Knowledge of the feature representation X : The
attacker may partially or fully know how features are com-
puted for each sample, before performing feature selection.

(k.iii) Knowledge of the feature selection algorithm
h(D): The attacker may know that a specific feature se-
lection algorithm is used, along with a specific selection
criterion L(D); e.g., the accuracy of a given classifier, if a
wrapper method is used. In a very pessimistic setting, the
attacker may even discover the selected feature subset.

Perfect Knowledge (PK). The worst-case scenario in
which the attacker has full knowledge of the attacked sys-
tem, is usually referred to as perfect knowledge case (Big-
gio et al., 2014; 2013b; 2012; Kloft & Laskov, 2010;
Brückner et al., 2012; Huang et al., 2011; Barreno et al.,
2006), and it allows one to empirically evaluate an upper
bound on the performance degradation that can be incurred
by the system under attack. In our case, it amounts to com-
pletely knowing: (k.i) the data, (k.ii) the feature set, and
(k.iii) the feature selection algorithm.

Limited Knowledge (LK). Attacks with limited knowl-
edge have also been often considered, to simulate more re-
alistic settings (Biggio et al., 2014; 2013b;a). In this case,
the attacker is assumed to have only partial knowledge of
(k.i) the data, i.e., she can collect a surrogate dataset D̂, but
knows (k.ii) the feature set, and (k.iii) the feature selec-
tion algorithm. She can thus replicate the behavior of the
attacked system using the surrogate data D̂, to construct a
set of attack samples. The effectiveness of these attacks is
then assessed against the targeted system (trained on D).

2.3. Attacker’s Capability

The attacker’s capability defines how and to what extent the
attacker can control the feature selection process. As for
supervised learning, the attacker can influence both train-
ing and test data, or only test data, respectively exercising
a causative or exploratory influence (more commonly re-
ferred to as poisoning and evasion attacks) (Barreno et al.,
2006; Huang et al., 2011; Biggio et al., 2014). Although
modifying data at test time does not affect the feature se-
lection process directly, it may nevertheless influence the
security of the corresponding classifier against evasion at-
tacks at test time, as also highlighted in recent work (Li &
Vorobeychik, 2014; Wang et al., 2014). Therefore, evasion
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should be considered as a plausible attack scenario even
against feature selection algorithms.

In poisoning attacks, the attacker is often assumed to con-
trol a small percentage of the training data D by injecting
a fraction of well-crafted attack samples. The ability to
manipulate their feature values and labels depends on how
labels are assigned to the training data; e.g., if malware is
collected via honeypots (Spitzner, 2002), and labeled with
some anti-virus software, the attacker has to construct poi-
soning samples under the constraint that they will be la-
beled as expected by the given anti-virus.

In evasion attacks, the attacker manipulates malicious data
at test time to evade detection. Clearly, malicious sam-
ples have to be manipulated without affecting their mali-
cious functionality, e.g., malware code has to be obfuscated
without compromising the exploitation routine. In several
cases, these constraints can be encoded in terms of dis-
tance measures between the original, non-manipulated at-
tack samples and the manipulated ones (Dalvi et al., 2004;
Lowd & Meek, 2005; Globerson & Roweis, 2006; Teo
et al., 2008; Brückner et al., 2012; Biggio et al., 2013a).

2.4. Attack Strategy

Following the approach in Biggio et al. (2013b), we define
an optimal attack strategy to reach the attacker’s goal, un-
der the constraints imposed by her knowledge of the sys-
tem and capabilities of manipulating the input data. To
this end, we characterize the attacker’s knowledge in terms
of a space Θ that encodes assumptions (k.i)-(k.iii) on the
knowledge of the data D, the feature space X , the feature
selection algorithm h, and the selection criterion L. Ac-
cordingly, for PK and LK attacks, the attacker’s knowledge
can be respectively represented as θPK = (D,X , h,L) and
θLK = (D̂,X , h,L). We characterize the attacker’s capa-
bility by assuming that an initial set of samples A is given,
and that it is modified according to a space of possible mod-
ifications Φ(A). Given the attacker’s knowledge θ ∈ Θ
and a set of manipulated attacks A′ ∈ Φ(A), the attacker’s
goal can be characterized in terms of an objective function
W(A′,θ) ∈ R which evaluates how effective the attacks
A′ are. The optimal attack strategy can be thus given as:

maxA′ W(A′;θ)
s.t. A′ ∈ Φ(A) .

(1)

2.5. Attack Scenarios

Some relevant attack scenarios that can be formalized ac-
cording to our framework are briefly sketched here, also
mentioning related work. For the sake of space, we do not
provide a thorough formulation of all these attacks. How-
ever, this can be obtained similarly to the formulation of
poisoning attacks given in the next section.

Evasion attacks. Under this setting, the attacker’s goal is
to manipulate malicious data at test time to evade detec-
tion, as in the recent attacks envisioned by Li & Vorob-
eychik (2014); Wang et al. (2014) (i.e., an integrity, indis-
criminate violation with exploratory influence). Although
evasion does not affect feature selection directly, the afore-
mentioned works have shown that selecting features with-
out taking into account the adversarial presence may lead
one to design much more vulnerable systems. Thus, eva-
sion attacks should be considered as a potential scenario to
explore vulnerabilities of classifiers learnt on reduced fea-
ture sets, and to properly design more secure, adversary-
aware feature selection algorithms.

Poisoning (integrity) attacks. Here, we envisage another
scenario in which the attacker tampers with the training
data to enforce selection of a feature subset that will facili-
tate classifier evasion at test time (i.e., an integrity, targeted
violation with causative influence). For instance, an at-
tacker may craft poisoning samples to enforce selection of
a given subset of features, whose values are easily changed
with trivial manipulations to the malicious data at test time.

Poisoning (availability) attacks. Here the attacker aims to
inject well-crafted poisoning points into the training data
to maximally compromise the output of the feature selec-
tion algorithm, or directly of the learning algorithm (Mei
& Zhu, 2015; Biggio et al., 2012; Rubinstein et al., 2009;
Nelson et al., 2008) (i.e., an availability, indiscriminate vi-
olation with causative influence). This attack scenario is
formalized in detail according to our framework in the next
section, to target embedded feature selection algorithms.

3. Poisoning Embedded Feature Selection
We report now a detailed case study on poisoning (avail-
ability) attacks against embedded feature selection algo-
rithms, including LASSO, ridge regression, and the elastic
net. These algorithms perform feature selection by learn-
ing a linear function f(x) = w>x + b that minimizes the
trade-off between a loss function ` (y, f(x)) computed on
the training data D and a regularization term Ω(w). The
selection criterion L can be thus generally expressed as:

min
w,b
L =

1

n

n∑
i=1

` (yi, f(xi)) + λΩ(w) , (2)

where λ is the trade-off parameter.3 The quadratic loss
`(y, f(x)) = 1

2 (f(x)− y)
2 is used by all the three con-

sidered algorithms. As for the regularization term Ω(w),
ideally, one would like to consider the `0-norm of w to
exactly select a given number of features, which however
makes the problem NP-hard (Natarajan, 1995). LASSO

3Note that this is equivalent to minimizing the loss subject to
Ω(w) ≤ t, for proper choices of λ and t (Tibshirani, 1996).



Is Feature Selection Secure against Training Data Poisoning?

uses `1 regularization, i.e., Ω(w) = ‖w‖1, yielding the
tighter convex relaxation to the ideal problem formulation.
Ridge regression uses `2 regularization, Ω(w) = 1

2‖w‖
2
2.

The elastic net is a hybrid approach between the aforemen-
tioned ones, as it exploits a convex combination of `1 and
`2 regularization, i.e., Ω(w) = ρ‖w‖1 + (1 − ρ) 1

2‖w‖
2
2,

where ρ ∈ (0, 1). Eventually, if one is given a maximum
number of features k < d to be selected, the ones corre-
sponding to the first k feature weights sorted in descending
order of their absolute values can be thus retained.

In the considered setting, the attacker’s goal is to maxi-
mally increase the classification error of these algorithms,
by enforcing the selection of a wrong subset of features.
As for the attacker’s knowledge, we consider both PK and
LK as discussed in Sect. 2.2. In the sequel, we consider LK
attacks on the surrogate data D̂, since for PK attacks we can
simply set D̂ = D. The attacker’s capability amounts to
injecting a maximum number of poisoning points into the
training set. To estimate the classification error, the attacker
can evaluate the same criterion L used by the embedded
feature selection algorithm, on her available training set D̂,
excluding the attack points (as they will not be part of the
test data). The attack samples are thus kept outside from
the empirical loss computation of the attacker, while they
are clearly taken into account by the learning algorithm.
Assuming that a single attack point xc is added by the at-
tacker, the attack strategy can be thus formulated as:

max
xc

W =
1

m

m∑
j=1

` (ŷj , f(x̂j)) + λΩ(w) (3)

where it is worth remarking that f is learnt by minimiz-
ing L(D̂ ∪ {xc}) (Eq. 2), and thus depends on the attack
point xc, as well as the corresponding w and b. The at-
tacker’s objectiveW (Eq. 3) can be thus optimized by itera-
tively modifying xc with a (sub)gradient-ascent algorithm,
in which, at each step, the solutionw, b is updated by min-
imizing L(D̂ ∪ {xc}), i.e., simulating the behavior of the
feature selection algorithm on the poisoned data. Note that
the parametersw, b estimated by the attacker are not gener-
ally the same ones estimated by the targeted algorithm. The
latter will be indeed estimated by minimizingL(D∪{xc}).

Gradient Computation. By calculating the partial
derivative of Eq. (3) with respect to xc, and substituting
`(y, f(x)) and f with their expressions, one yields:

∂W
∂xc

=
1

m

m∑
j=1

(f(x̂j)− ŷj)
(
x̂>j

∂w

∂xc
+

∂b

∂xc

)
+ λr

∂w

∂xc
,

(4)

where, for notational convenience, we set r = ∂Ω
∂w . Note

that r = sub(w) for LASSO, r = w for ridge regres-
sion, and r = ρ sub(w) + (1 − ρ)w for the elastic net,

being sub(w) the subgradient of the `1-norm, i.e., a vector
whose kth component equals +1 (-1) if wk > 0 (wk < 0),
and any value in [−1,+1] if wk = 0. As the subgradient
is not uniquely determined, a large set of possible ascent
directions should be explored, dramatically increasing the
computational complexity of the attack algorithm. Further,
computing ∂w

∂xc
and ∂b

∂xc
requires us to predict how the so-

lution w, b changes while the attack point xc is modified.

To overcome these issues, as in Cauwenberghs & Poggio
(2000); Biggio et al. (2012), we assume that the Karush-
Kuhn-Tucker (KKT) conditions under perturbation of the
attack point xc remain satisfied, i.e., we adjust the solution
to remain at the optimum. At optimality, the KKT condi-
tions for Problem (2) with quadratic loss and linear f , are:

∂L
∂w

>
=

1

n

n∑
i=1

(f(x̂i)− ŷi) x̂i + λr> = 0 , (5)

∂L
∂b

=
1

n

n∑
i=1

(f(x̂i)− ŷi) = 0 , (6)

where we transposed the first equation to have a column
vector, and keep the following derivation consistent. If L
is convex but not differentiable (e.g., when using `1 reg-
ularization), one may express these conditions using sub-
gradients. In this case, at optimality a necessary and suf-
ficient condition is that at least one of the subgradients of
the objective is null (Boyd & Vandenberghe, 2004). In our
case, at optimality, the subgradient is uniquely determined
from Eq. (5) as r = − 1

λ
1
n

∑n
i=1 (f(x̂i)− ŷi) x̂>i . This al-

lows us to drastically reduce the complexity of the attack
algorithm, as we are not required to explore all possible
subgradient ascent paths for Eq. (4), but just the one corre-
sponding to the optimal solution.

Let us assume that the optimality conditions given by
Eqs. (5)-(6) remain valid under the perturbation of xc. We
can thus set their derivatives with respect to xc to zero. Af-
ter deriving and re-arranging in matrix form, one obtains:[

Σ + λv µ
µ> 1

] [ ∂w
∂xc
∂b
∂xc

]
= − 1

n

[
M
w>

]
, (7)

where Σ = 1
n

∑
i x̂ix̂

>
i ,µ = 1

n

∑
i x̂i, and M = xcw

>+
(f(xc)− yc) I. The term v yields zero for LASSO, the
identity matrix I for ridge, and (1− ρ)I for the elastic net.

The derivatives ∂w
∂xc

and ∂b
∂xc

can be finally obtained by
solving the linear system given by Eq. (7), and then sub-
stituted into Eq. (4) to compute the final gradient.

Poisoning Feature Selection Algorithm. The complete
poisoning attack algorithm is given as Algorithm 1, and an
exemplary run on a bi-dimensional dataset is reported in
Fig. 1. To optimize the attack with respect to multiple at-
tack points, we choose to iteratively adjust one attack point
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Algorithm 1 Poisoning Embedded Feature Selection

Input: D̂, the (surrogate) training data; {x(0)
c , yc}qc=1, the

q initial attack points with (given) labels; β ∈ (0, 1); and
σ, ε, two small positive constants.
Output: {xc}qc=1, the final attack points.

1: p← 0
2: repeat
3: for c = 1, . . . , q do
4: {w, b} ← learn the classifier on D̂ ∪ {x(p)

c }qc=1.

5: Compute∇W =
∂W(x(p)

c )
∂xc

according to Eq. (4).

6: Set d = ΠB

(
x

(p)
c +∇W

)
− x(p)

c and k ← 0.
7: repeat {line search to set the gradient step η}
8: Set η ← βk and k ← k + 1

9: x
(p+1)
c ← x

(p)
c + ηd

10: untilW(x
(p+1)
c ) ≤ W(x

(p)
c )− ση‖d‖2

11: end for
12: p← p+ 1

13: until |W({x(p)
c }qc=1)−W({x(p−1)

c }qc=1)| < ε

14: return: {xc}qc=1 = {x(p)
c }qc=1

at a time, while updating the current solution w, b at each
step (this can be efficiently done using the previous solu-
tionw, b as a warm start). This gives the attack much more
flexibility than a greedy strategy where points are added
one at a time, and never modified after insertion. We also
introduce a projection operator ΠB(x) to project x onto the
feasible domain B; e.g., if features are normalized in [0, 1],
one may consider B as the corresponding box-constrained
domain. This enables us to define a feasible descent direc-
tion d within the given domain B, and perform a simple
line search to set the gradient step size η.

Descent in Discrete Spaces. If feature values are discrete,
it is not possible to follow the gradient-descent direction
exactly, as it may map the given sample to a set of non-
admissible feature values. It can be however exploited as a
search heuristic. Starting from the current sample, one may
generate a set of candidate neighbors by perturbing only
those features of the current sample which correspond to
the maximum absolute values of the gradient, one at a time,
in the correct direction. Eventually, one should update the
current sample to the neighbor that attained the maximum
value ofW , and iterate until convergence.

4. Experiments
In this section, we consider an application example in-
volving the detection of malware in PDF files, i.e., one
among the most recent and relevant threats in computer se-
curity (IBM). The underlying reason is that PDF files are
excellent carriers for malicious code, due to the flexibility

Figure 1. Poisoning LASSO. Red and blue points are the positive
(y = +1) and negative (y = −1) training data D. The decision
boundary at f(x) = 0 (for λ = 0.01, in the absence of attack)
is shown as a solid black line. The solid red line highlights the
path followed by the attack point xc (i.e., the magnified red point)
towards a maximum ofW(xc) (shown in colors in the left plot),
which also corresponds to a maximum of the classification error
(right plot). A box constraint is also considered (dashed black
square) to bound the feasible domain (i.e., the attack space).

of their logical structure, which allows embedding of sev-
eral kinds of resources, including Flash, JavaScript
and even executable code. Resources are simply embed-
ded by specifying their type with keywords, and inserting
the corresponding content in data streams. For instance, an
embedded resource in a PDF may look like:

13 0 obj << /Kids [ 1 0 R 11 0 R ]
/Type /Page ... >> end obj

where keywords are highlighted in bold face. Recent work
has promoted the use of machine learning to detect ma-
licious PDF files (apart from legitimate PDFs), based on
the analysis of their logical structure and, in particular,
of the present keywords rather than the content of data
streams (Smutz & Stavrou, 2012; Maiorca et al., 2012;
2013; Šrndić & Laskov, 2013).

Experimental setup. In our experiments, we exploit the
feature representation proposed by Maiorca et al. (2012),
where each feature simply denotes the number of occur-
rences of a given keyword in the PDF file. We collected
5993 recent malware samples from the Contagio dataset,4

and 5951 benign samples from the web. As a preliminary
step, following the procedure described by Maiorca et al.
(2012), we extracted keywords from the first 1,000 sam-
ples in chronological order. The resulting 114 keywords
were used as our initial feature set X . We then randomly
sampled five pairs of training and test sets from the remain-
ing data, respectively consisting of 300 and 5,000 sam-
ples, to average the final results. To simulate LK attacks
(Sect. 2.2), we also sampled an additional set of five train-
ing sets (to serve as D̂) consisting of 300 samples each.
We normalized each feature between 0 and 1 by bound-
ing the maximum keyword count to 20, and dividing each
feature value by the same value. This value was selected

4http://contagiodump.blogspot.it

http://contagiodump.blogspot.it
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Figure 2. Results on PDF malware detection, for PK (top row) and LK (bottom row) poisoning attacks against LASSO, ridge, and elastic
net, in terms of classification error (first column), number of automatically selected features (second column), and stability of the top
k = 30 (third column) and k = 50 (fourth column) selected features, against an increasing percentage of injected poisoning samples.
For comparison, we also report the classification error attained by all methods against random label-flip attacks (first column). All the
reported values are averaged over five independent runs, and error bars correspond to their standard deviation.

to restrict the attacker’s capability of manipulating data to
a large extent, without affecting generalization accuracy in
the absence of attack.5 We evaluate the impact of poisoning
against LASSO, ridge and elastic net. We first set ρ = 0.5
for the elastic net, and then optimized the regularization pa-
rameter λ for all methods by retaining the best value over
the entire regularization path (Friedman et al., 2010; Pe-
dregosa et al., 2011). We evaluate our results by reporting
the classification error as a function of the percentage of in-
jected poisoning samples, which was increased from 0% to
20% (where 20% corresponds to adding 75 poisoning sam-
ples to the initial data). Furthermore, to understand how
feature selection and ranking are affected by the attack, we
also evaluate the consistency index originally defined by
Kuncheva (2007) to evaluate the stability of feature selec-
tion under random perturbations of the training data.

Kuncheva’s Stability Index. Given two feature subsets
A,B ⊆ X , with ‖A‖ = ‖B‖ = k, r = ‖A ∩ B‖, and
0 < k < ‖X‖ = d, it is defined as:

IC(A,B) =
rd− k2

k(d− k)
∈ [−1,+1] , (8)

5If no bound on the keyword count is set, an attacker may add
an unconstrained number of keywords and arbitrarily influence
the training process.

where positive values indicate similar sets, zero is equiv-
alent to random selections, and negative values indicate
strong anti-correlation between the feature subsets. The
underlying idea of this stability index is to normalize the
number of common features in the two sets (i.e., the car-
dinality of their intersection) using a correction for chance
that accounts for the average number of common features
randomly selected out of k trials.

To evaluate how poisoning affects the feature selection pro-
cess, we compute this index using for A a feature set se-
lected in the absence of poisoning, and comparing it against
a set B selected under attack, at different percentages of
poisoning. To compare subsets of equal size k, for each
method, we considered the first k features exhibiting the
highest absolute weight values. As suggested by Kuncheva
(2007), all the corresponding pairwise combinations of
such sets were averaged, to compute the expected index
value along with its standard deviation.

Experimental results. Results are reported in Fig. 2, for
both the PK and LK settings. No substantial differences
between these settings are highlighted in our results, mean-
ing that the attacker can reliably construct her poisoning
attacks even without having access to the training data D,
but only using surrogate data D̂. In the absence of attack
(i.e., at 0% poisoning), all methods exhibit reliable perfor-
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mances and a very small classification error. Poisoning up
to 20% of the training data causes the classification error
to increase of approximately 10 times, from 2% to 20% for
LASSO, and slightly less for elastic net and ridge, which
therefore exhibit slightly improved robustness properties
against this threat. For comparison, we also considered a
random attack that generates each attack point by randomly
cloning a point in the training data and flipping its label. As
one may note from plots in the first column of Fig. 2, our
poisoning strategy is clearly much more effective.

Besides the impact of poisoning on the classification er-
ror, the most significant result of our analysis is related to
the impact of poisoning on feature selection. In particu-
lar, from Fig. 2 (third and fourth column), one can im-
mediately note that the (averaged) stability index (Eq. 8)
quickly decreases to zero (especially for LASSO and the
elastic net) even under a very small fraction of poisoning
samples. This means that, in the presence of few poison-
ing samples, the feature selection algorithm performs as a
random feature selector in the absence of attack. In other
words, the attacker can almost arbitrarily control feature
selection. Finally, it is worth remarking that, among the
considered methods, ridge exhibited higher robustness un-
der attack. We argue that a possible reason besides select-
ing larger feature subsets (see plots in the second column
of Fig. 2) is that feature weights are more evenly spread
among the features, reducing the impact of each training
point on the embedded feature selection process. We dis-
cuss in detail the importance of selecting larger feature sub-
sets against poisoning attacks in the next section.

5. Discussion
We think that our work gives a two-fold contribution to the
state of the art. The first contribution is to the field of ad-
versarial machine learning. We are the first to propose a
framework to evaluate the vulnerability of feature selec-
tion algorithms and to use it to analyze poisoning attacks
against popular embedded feature selection methods, in-
cluding LASSO, ridge regression, and the elastic net. The
second contribution concerns the robustness properties of
`1 regularization. Despite our results are seemingly in con-
trast with the claimed robustness of `1 regularization, it
is worth remarking that `1 regularization is robust against
non-adversarial data perturbations; in particular, it aims
to reduce the variance component of the error by select-
ing smaller feature subsets, at the expense of a higher bias.
Conversely, poisoning attacks induce a systematic bias into
the training set. This means that an attacker may more eas-
ily compromise feature selection algorithms that promote
sparsity by increasing the bias component of the error. The
fact that `1 regularization may worsen performance under
attack is also confirmed by Li & Vorobeychik (2014), al-

though in the context of evasion attacks. Even if the un-
derlying attack scenario is different, also evasion attacks
induce a specific bias in the manipulation of data, and are
thus more effective against sparse algorithms that exploit
smaller feature sets to make decisions.

6. Conclusions and Future Work
Due to the massive use of data-driven technologies, the
variability and sophistication of cyberthreats and attacks
have tremendously increased. In response to this phe-
nomenon, machine learning has been widely applied in
security settings. However, these techniques have not
been originally designed to cope with intelligent attackers,
and are thus vulnerable to well-crafted attacks. While at-
tacks against learning and clustering algorithms have been
widely analyzed in previous work (Barreno et al., 2006;
Huang et al., 2011; Brückner et al., 2012; Biggio et al.,
2012; 2013b; 2014), only few attacks targeting feature se-
lection algorithms have been recently considered (Li &
Vorobeychik, 2014; Mei & Zhu, 2015; Zhang et al., 2015).

In this work, we have provided a framework that allows one
to model potential attack scenarios against feature selection
algorithms in a consistent way, making clear assumptions
on the attacker’s goal, knowledge and capabilities. We
have exploited this framework to characterize the relevant
threat of poisoning attacks against feature selection algo-
rithms, and reported a detailed case study on the vulnera-
bility of popular embedded methods (LASSO, ridge, and
elastic net) against these attack. Our security analysis on a
real-world security application involving PDF malware de-
tection has shown that attackers can completely control the
selection of reduced feature subsets even by only injecting
a small fraction of poisoning training points, especially if
sparsity is enforced by the feature selection algorithm.

This demands for the engineering of secure feature selec-
tion algorithms against poisoning attacks. To this end, one
may follow the intuition behind the recently-proposed fea-
ture selection algorithms to contrast evasion attacks, i.e.,
to model interactions between the attacker and the feature
selection algorithm (Li & Vorobeychik, 2014; Wang et al.,
2014; Zhang et al., 2015). Recent work on robust LASSO
and robust regression may be another interesting future di-
rection to implement secure feature selection against poi-
soning (Nasrabadi et al., 2011; Nguyen & Tran, 2013).
From a more theoretical perspective, it may be of interest
to analyze: (i) the impact of poisoning attacks on feature
selection in relation to the ratio between the training set
size and the dimensionality of the feature set; and (ii) the
impact of poisoning and evasion on the bias-variance de-
composition of the mean squared error. These aspects may
reveal additional interesting insights also for designing se-
cure feature selection procedures.
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