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Abstract—In many learning scenarios, supervised learning is
hardly applicable due to the unavailability of a complete set of
data labels, while unsupervised model overlooks valuable user
feedback in an interactive system setting. In this paper, a novel
semi-supervised support vector clustering algorithm is presented,
where a small number of user indicated labels are available
as supervised information. We apply the clustering algorithm
in the anomaly detection area, and show that the given labels
significantly improve the recognition of anomalies. Moreover, the
partially labeled data proliferates the information without extra
computation but strengthening the robustness to anomalies.

I. INTRODUCTION

In recent years, kernel and spectral clustering methods [1]

have invoked immense interest of researchers due to its non-

parametric characteristics. Ben-Hur et.al [2] developed the

support vector clustering (SVC) algorithm that discovers the

smallest sphere in the feature space enclosing all the data

points. With a delicate selection of parameters, the support

vector clustering can naturally separate data samples into

various classes. This support vector descriptive model shares

the common core idea with the one-class support vector

machine [3]. Unfortunately, the SVC has not yet been adapted

to the semi-supervised mode. In many systems, we observe

that some feedback can be contributed by users at a very low

expense, which encourages the raise of the semi-supervised

learning [4]. Especially in anomaly detection, it is highly

expected that a least effort from users could improve the

performance at a significant amount. He et al. [5] introduces

the semantic anomaly factor to measure the deviation an outlier

behaves from the majority of its cluster members by inquiring

their labels. Another well studied semi-supervised learning

method is the semi-supervised support vector machine [6],

which prevents the decision boundary from passing through

high density area. A graph based semi-supervised method

leverages the non-negative matrix factorization [7] to cluster

data by minimizing distances of same labeled samples while

maximizing distances of different labeled samples.

In this paper, we present the semi-supervised version of

support vector clustering, named as indicative support vector

clustering (iSVC). Given a limited number of binary labels as

normal or abnormal, the support vector clustering algorithm

can be guided to produce a more reliable and accurate bound-

ary separating normal instances from anomalies. The iSVC

reweighs part of the input data points utilizing the supervised

information given by users, and then constructs the boundary

alleviating the impact of outliers on the hypersphere. To our

knowledge, this is the first semi-supervised support vector

clustering method.

II. SUPPORT VECTOR CLUSTERING

Given a data set of N points {xi}
N

i=1 ⊆ X , it forms a d-

dimensional real-valued input space with X ⊆ R
d. The sup-

port vector clustering looks for a smallest sphere S = 〈R, g〉
in H enclosing all the mapped data points, where R is the

radius of the sphere and g is the center in H. It is formulated

as Tikhonov regularization problem, and the Wolfe dual form

to it is as follows:

W =
∑

j

K(xj , xj)βj −
∑

i,j

βjβjK(xi, xj),

where βi is the Lagrangian multiplier and K(·, ·) is the

kernel function. Solving this quadratic problem, we obtain

the variables {βj} assigning the input data into three disjoint

sets {SVs, BSVs, Insiders} [2]. And the cluster boundary is

determined by the radius R and mapped back to the input

space to form the corresponding contour.

Cluster assignment

The SVC algorithm searches the smallest sphere enclosing

all the points, but not classifies each point into its containing

cluster. To assign the cluster labels, it requires a further

geometrical analysis of the input data. However, in anomaly

detection, the cluster labeling process is not a necessity when

anomalies are already identified. This characterizes the SVC as

an ideal choice for anomaly detection. Throughout this paper,

we neglect the cluster assignment of SVC, therefore convert

it to an one-class classifier separating outliers from normal

instances.

III. SVC ALGORITHM ON ANOMALY DETECTION

The SVC lends its advantages to anomaly detection when

it becomes an one-class classifier. It forms an enclosed hy-

persphere separating the data into three sets, or generally



speaking, two sets: {X+,X−}. We denote the positive set

X+ for anomalies and the negative set X− for normalities. The

bounded support vectors (BSVs) correspond the set X+ which

are far away from the sphere center, and all the other points

belong to the set X−. According to the properties of SVC, the

number of anomalies is upper bounded by 1/C, where C is

the penalty coefficient to the regularization problem. That is,

the probability of anomalies in the input data Pa is bounded

by 1
NC

, Therefore, the penalty C and the sample size N
determine a tolerance level for the outliers in the input data.

Besides, the distance of an outlier xl to the center g can be

computed as:

dxl
= K(xl, xl)− 2

∑

βjK(xl, xj) +
∑

βiβjK(xi, xj)

For a hypersphere S = 〈R, g〉 obtained by SVC, the third term

in dxl
is fixed, and for Gaussian kernel K(xl, xl) = 1. When

the outlier xl is distant from the center g, it implies a small

value for
∑

βjK(xl, xj), which is a weighted average of the

Gaussian kernels on all the samples. When all the points are

regarded as anomalies, i.e., Pa = 1 and C = 1/N , we have

an approximated Parzen Window Estimate,

P (xl) =
1

N

∑

K(xl, xj)

Thus, given a SVC hypersphere S = 〈R, g〉, the further

a point lies away from the center g, the lower its density

estimate could be in comparison with others. This forms the

fundamental idea of using SVC for anomaly detection.

IV. INDICATIVE SUPPORT VECTOR CLUSTERING

A study in Section III reveals two problems of the SVC in

anomaly detection applications. First, the sparsity of anomalies

does not always hold. Most anomaly detection algorithms are

not employable, if the anomalies form cluster themselves.

Second, the existence of anomalies will tamper with the

center and radius of the hypersphere, the robustness of SVC

algorithm is thus questionable when the negative impact of

the outliers is overlooked. In this section, we propose a novel

semi-supervised version of the SVC algorithm by integrating

user given labels.

A. Weighted Regularization for Robustness

The SVC generalizes the solution as a smallest sphere in the

Hilbert space H by allowing a portion of points to be ruled out,

but simultaneously penalizing their outlying. In accordance

with the properties of SVC, the optimal center g is a weighted

mean of all the SVs and BSVs under feature mapping Φ.

Suppose the Lagrangian multipliers {βj} can be fragmented

as {βsv, βbsv, βin} in corresponds to {SVs, BSVs, Insiders}
respectively:

g =
∑

βsvΦ(xsv) +
∑

βbsvΦ(xbsv) +
∑

βinΦ(xin),

where 0 < βsv < C, βbsv = C and βin = 0. The bounded

support vectors contribute even more than the support vectors

on positioning the center. However, in anomaly detection

or other noise-aware applications, BSVs are recognized as

outliers or noises, to which a robust learning model should

be more resilient. For robustness, a weighted regularization

term to the original SVC objective function is proposed, the

Lagrangian is now reformed as:

L = R2 −
∑

(

R2 + ξj − ‖Φ(xj)− g‖2
)

βj

−
∑

ξjµj +
∑

cjξj , (1)

Instead of equivalently penalizing all the input data with a

constant C, the weighted regularization term
∑

cjξj in Eq.

(1) treats each point individually. The objective is that, the

larger the regularization coefficient cj is, the less possible the

point xj would be driven away from the hypersphere, and vice

versa. In this way, the BSVs (anomalies) should have lower

values of βj , and the SVs or insiders are optimized with higher

values. Consequently, we alleviate the negative effect of the

BSVs on the formation of the hypersphere S, and the SVs are

the main factors leading to the decision boundary.

B. Integration of Indicative Labels

Assumption 1: Anomalies are the patterns found to behave

distinctly from the normal patterns, and similarly behaving

instances are more likely hosted in the same cluster.

To obtain the regularization weights {cj}
N

j=1, the supervised

information from user given labels can be integrated in addi-

tion to the input data based on the assumption 1, that is, similar

data patterns are more closely located to each other. Given a

data set X ⊆ R
d, two supervised data sets are indicated by

users,

X+ = {(xl, yl) |xl ∈ X , yl = 1)}

X− = {(xr , yr) |xr ∈ X , yr = −1)}

l, r ∈ {1, . . . , N}

X+ is a labeled subset of X with only anomalies, while

X− is likewise a labeled subset with normal samples. On

the Assumption 1, a given label of an instance indicates

the similarity of its neighborhood and can broadcast the

supervised information over its neighbors. More precisely, a

given anomaly increases the probabilities of its neighborhood

of being anomalies, while a given normal instance implies that

its neighborhood are more confident of being normal.

To leverage the favorable supervised information to obtain

the regularization weights, an impact function f is defined in

the input space X given the labeled sets X+ and X−.

f (xi) =

∑

xl∈X+ K (xl, xi)
∑

l 1
+ (xl, xi)

+

∑

xr∈X−
K (xr, xi)

∑

l 1
− (xr, xi)

(2)

And 1
+ and 1

− are both indicator functions defined as

1
+(xl, xi) =

{

1 ‖xl − xi‖ ≤ 2h

0 otherwise

1
−(xr , xi) =

{

−1 ‖xr − xi‖ ≤ 2h

0 otherwise

We define the radius of the affected neighborhood as 2h for

simplicity, which means that the impact of the given labeled



data is bounded. The bounds of the indicator functions 1
+

and 1
− can also be configured individually so that we have

flexibility on controlling the degree of impact by anoma-

lies or normal samples. Besides, the similarity measurement

K (x, xi) follows a Gaussian distribution N (x, h) with respect

to a normalization factor. Therefore, the impact function f (xi)
represents the probability of xi being an anomaly affected by

X+ or a normal instance affected by X−.

By use of the impact function f (xj), the regularization

weights cj can be computed

cj =

{

c0 ·
1−f(xj)

1−exp(−2) +
1
N

· f(xj)−exp(−2)
1−exp(−2) if f (xj) > 0

c0 ·
1−|f(xj)|
1−exp(−2) +

|f(xj)|−exp(−2)
1−exp(−2) if f (xj) < 0

(3)

where c0 is the initial value of cj and N is the sample size.

Together with the constraints on the labeled samples, the Wolfe

dual form becomes:

W =
∑

j

K(xj ,xj)βj −
∑

i,j

βjβjK(xi, xj) (4)

subject to 0 ≤ βj ≤ cj

βX+ = cX+

0 ≤ βX− < cX−

The weighted regularization term and the additional con-

straints do not change the convexity. Solving this dual problem

by maximizing W , we obtain the robust SVC boundary

providing a more reliable separation of anomalies from normal

instances. Note that we only need to compute the impact func-

tion for each point, the additional complexity is then O (N).
Nevertheless, the problem can still be solved in polynomial

time without noticeable computational burden.

V. EXPERIMENTS

In this section, we evaluated the iSVC algorithm both on

synthetic data and real-world data. The required parameters

for iSVC involve the kernel bandwidth h, an initial penalty

constant c0 and user given positive and negative label sets that

correspond to anomalies and normal instances respectively.

The bandwidth h controls the smoothness of the cluster bound-

ary and also the number of the support vectors. For simplicity,

we assume an optimal h without explicitly evaluating it in

experiments. Note that this can be done by the cross-validation.

For the initial value of c0, a good estimate could be derived

from the proportion of the outliers in input data set, namely,

c0 = 1/nbsv, where nbsv is the number of outliers in data

set. In the end, only a small number of labels are supposed

to be given by users and we show that the involvement of the

supervised information indeed improves the performance of

support vector clustering significantly on anomaly detection.

A. On Synthetic Data

To illustrate the mechanism and capability of iSVC algo-

rithm, experiments were conducted firstly on a 2-d synthetic

data set. It contains two normal classes of compacted Gaus-

sians, each of which has 250 samples. Another set of 150
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Fig. 1: Comparisons of SVC and iSVC by giving different

configurations of sample labels on the synthetic data set.

anomaly samples forms a sparse ring encircling the normal

instances. The experiments were performed in three distinct

configurations of given labels.

In Figure 1, the iSVC clustering results given different

label sets are shown in a 3x3 grid. Each row has the same

bandwidth h and the initial c0, and the first column of the

results gives the cluster boundaries of original SVC algorithm

on the synthetic data. In Figure 1a, a moderate value of C
only discloses a minority of the actual anomalies, while a

handful of normal instances are also recognized as anomalies

due to their low densities. Clearly, the SVC algorithm fails

when the densities of data samples are not explicitly separable

between normalities and anomalies. In the middle of the first

row, 5 given anomalies are evenly distributed along the ring.

We observe that more anomalies are discovered under the

supervised information. On the rightmost, more anomalies

up to 10 are given, however, part of which are redundantly

located on the left half ring. Consequently, the anomalies on

the right half ring are completely unaffected. In the Figure 1b,

a smaller c0 produces an excessive discovery of anomalies

with a significant false positive. Since the normal instances

are more compacted in the center, supervised information

can be passed on its neighborhood more efficiently. On the

rightmost of the second row, only 5 given normal instances

produce a perfect separation of the anomalies from the normal

samples. In Figure 1c, it does not present a promising cluster

boundary for anomalies, however, the normal instances are

mostly detected under a small number of given normal labels.

Additional anomaly labels are required to achieve a perfect

separation.



B. On Real-world Data

The evaluation of the iSVC algorithm was then performed

on real-world data sets. Again, we assume an optimal kernel

bandwidth h for each experiment session without explicitly

estimating it. The experiments show that iSVC improves the

SVC algorithm and outperforms other semi-supervised binary

classifier, and also presents its potential to related practitioners.

MNIST Digit Images: We firstly selected four digit sets from

the MNIST digit images data set [8]: {0, 2, 6, 9}. To fabricate a

reliable anomaly-aware scenario, 100 images of digit {0} were

manually tampered with a couple of horizontal noisy lines. For

digits {2, 6, 9}, we sampled 150 images out of each class as

normal instances. For illustration, we ran the PCA first on the

input data with respect to its first two principal components.

In the lower dimension, the tampered digit images {0} are

relatively distant from other digits images. In Figure 2b, SVC

algorithm generated several false positives and false negatives

as well. Given 2 normalities and 5 anomalies in Figure 2c,

iSVC gave a better estimate of the cluster boundary setting

the anomaly digits {0} apart from other normal digits.

On the WDBC Data: Last experiments were conducted on

the Wisconsin Diagnostic Breast Cancer (WDBC) data set

from UCI repository [9] to illustrate the empirical advantages

of iSVC. The data set contains in total 569 samples, out of

which 212 are malignant and 357 are benign. For comparison,

we employed the semi-supervised fast linear SVM solver [6]

as a binary classifier, denoted as S3VM. Note that S3VM

requires an additional parameter indicating the ratio of outliers

in the unlabeled data set, and this is normally not available in

practice. To approximate a value of the ratio, we estimated it

from the labeled data instead of the unlabeled data. Suppose

the labeled data are actively sampled according to a certain

distribution, this reflects the underlying ratio of positive sam-

ples. The results are shown in Table I.

We started with a very small value of penalty constant C
which should identify excessive anomalies by iSVC. By given

some labels, iSVC outperforms the original SVC algorithm

and behaves much more stable than S3VM. Especially when

imbalanced labels are given, e.g., only giving 5% positive or

5% negative labels will completely exterminate the function
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Fig. 2: MNIST digit images of {0, 2, 6, 9} are demonstrated

on its first two principals under PCA. Both SVC and iSVC are

conducted on the reduced data set with the parameters h = 2.5
and C = 0.012.

TABLE I: Empirical results on the WDBC data set given

different proportions of sample labels.

WDBC data set with h = 0.9,C = 0.001

Accuracy F1-measure FPR FNR

SVC 63.4% 50.5% 28.6% 50%

5% positive and 0% negative labels

iSVC 90.5% 87.0% 6.4% 14.6%

S3VM 39.2% 55.0% 96.9% 0%

0% positive and 5% negative labels

iSVC 89.8% 87.7% 14.8% 2.4%

S3VM 64.9% 10.7% 0% 94.3%

5% positive and 5% negative labels

iSVC 92.3% 89.8% 7.0% 8.9%

S3VM 88.4% 86.3% 17.4% 1.9%

10% positive and 10% negative labels

iSVC 93.9% 91.9% 6.4% 5.6%

S3VM 92.4% 90.6% 10.4% 2.8%

of S3VM.

VI. CONCLUSION

The iSVC algorithm is proposed to circumvent the inherent

deficiencies of SVC of integrating additional supervised infor-

mation. Given a small number of sample labels, the iSVC ex-

hibits its prominent performance on anomaly detection, more

generally, on semi-supervised binary classification problem. In

future, we will extend our work on the automatic estimate of

an optimal bandwidth and also on the active selection of data

samples, to which users are supposed to give labels, such that

a minimal expenditure on the labeling process can improve

the performance at the most.
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