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Abstract. Android malicious applications have become so sophisticated
that they can bypass endpoint protection measures. Therefore, it is safe
to admit that traditional anti-malware techniques have become cumber-
some, thereby raising the need to develop efficient ways to detect Android
malware. In this paper, we present Hybroid , a hybrid Android malware
detection and categorization solution that utilizes program code struc-
tures as static behavioral features and network traffic as dynamic be-
havioral features for detection (binary classification) and categorization
(multi-label classification). For static analysis, we introduce a natural-
language-processing-inspired technique based on function call graph em-
beddings and design a graph-neural-network-based approach to convert
the whole graph structure of an Android app to a vector. For dynamic
analysis, we extract network flow features from the raw network traffic
by capturing each application’s network flow. Finally, Hybroid utilizes
the network flow features combined with the graphs’ vectors to detect
and categorize the malware. Our solution demonstrates 97.0% accuracy
on average for malware detection and 94.0% accuracy for malware cat-
egorization. Also, we report remarkable results in different performance
metrics such as F1-score, precision, recall, and AUC.

1 Introduction

Android has become the most popular mobile operating system worldwide. Un-
fortunately, it has become a primary target platform for attackers using An-
droid to launch millions of malicious applications due to its prominence. At-
tackers dupe victims to reveal their sensitive information or perform malicious
operations, such as spying on users, propagating spam, or launching unwanted
advertisements. Simultaneously, investigation of Android malware, which in-
cludes malware detection and categorization, has become crucial for security
researchers and experts in both academia and industry. As a result, numer-
ous research studies have attempted to detect and categorize Android mal-
ware [5, 10,17,21,27–29,32].
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Numerous approaches leverage the contextual information of Android appli-
cations, yet nearly none of them can monitor malware behaviors if we use contex-
tual information statically. For example, Li et al. [14] presented a classifier using
the Factorization Machine architecture, which extracts various Android applica-
tion features from manifest files (e.g., permissions and intents) and source code
(API calls). Similarly, Chen et al. [6] proposed an approach that detects Android
malware with Android application’s static features, such as permissions, com-
ponents, and sensitive API calls. Although these methods add an extra security
level to the Android platform, they come with their limitations, particularly for
those obfuscated applications when executed [7]. This problem can be mitigated
by introducing dynamic analysis, which monitors malware actions and analyzes
the captured behavior when running in a sandboxed environment.

In essence, similar to static analysis, there are two types of dynamic analysis
target Android applications. The first focuses on system-level behavior, extract-
ing features from API usage or system calls, whereas the latter extracts features
from network-level actions (i.e., data received or sent over the network). Analyz-
ing system-level malware behavior is expensive and slows down the processing
speed. In contrast, analyzing network-level activities is scalable and more cost-
efficient, while it often exposes the core behavior of malware when trying to
communicate with the attacker. Specifically, it can reveal the exfiltrated infor-
mation and the commands sent or received by the malware. From a network
perspective, monitoring and analyzing a system that extracts behavioral infor-
mation from the user causes less overhead on the end hosts. To detect legitimate
and malicious behavior, several approaches utilize the network traffic pattern of
Android applications [2, 15, 16, 25, 32]. Most of them concentrate on the manual
indicated features and build rule-based classifiers for detecting Android malware.
Sadly, sophisticated attacks can easily evade network-rule-based methods since
rule-based analysis relies on distinguishing expected versus anomalous behavior;
these methods may suffer when malware is modified to hide its footprints or be-
havior. However, one of the main challenges of analyzing network-level activities
is related to their offline inspection behavior.

In this paper, we present Hybroid , a hybrid framework for Android malware
detection and categorization based on static and dynamic features to overcome
the drawbacks mentioned above. From the users’ point of view, Hybroid does not
change anything of the Android application itself. We take the program code in-
side apps as input for static analysis and present a Natural Language Processing
(NLP) inspired method based on the function call graph, which detects ob-
fuscated applications. In brief, we first design the opcode2vec, function2vec,
and graph2vec components to represent instructions, functions, and the entire
program’s information with vectors. Next, we take network traffic as input and
extract 13 features for dynamic analysis. Finally, we combine static and dynamic
analysis features and feed them into the machine learning and deep learning net-
works for training and prediction. Our results show that Hybroid outperforms
most existing frameworks, as we get 97.0% accuracy for malware detection and
94.0% accuracy for malware categorization on average.
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Fig. 1. Hybroid architecture

In summary, we make the following primary contributions:

– We present and open source Hybroid ,1 a hybrid framework for Android mal-
ware detection and categorization based on static and dynamic features.

– We design and implement automatic extraction of flow-based features from
the Android raw network traffic as a dynamic feature.

– We leverage NLP and convert machine codes, functions, and programs to
opcode2vec, function2vec, and graph2vec by embedding methods.

– We evaluate the accuracy of our approach using a real-world dataset and
show that Hybroid outperforms nearly all state-of-the-art solutions.

2 System Design

In this section, we describe the architecture of Hybroid (see Figure 1), which
comprises static and dynamic features. We extract static features by studying
the Control Flow Graph (CFG) of the Android bytecode and the dynamic fea-
tures by investigating the network flow data. Next, we combine these two groups
of features as input vectors to train a machine learning model. Essentially, our
approach is divided into three main parts: static features preparation (features
from program code), dynamic features preparation (features from network traf-
fic), and machine learning classification.

2.1 Static Features Preparation

Before getting into our methodology’s details, we have to extract the opcode,
basic block, and CFG from the Android APKs (Android application package).

1 https://github.com/PegX/Hybroid
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Fig. 2. Converting program code to vector

We extract the CFG by utilizing the Androguard framework (APK static ana-
lyzer) and iterate each function in the program to get the basic block for each
function (method).2 Furthermore, we analyze each instruction and take opcode
as our basic term. After obtaining the opcode, basic block, and CFG, our pri-
mary approach is presented as follows. For the packing and obfuscated apps,
similar to Xu et al. work [26], Androguard can also help our Hybroid to extract
CFG and opcode from the apps, and we can also construct our graph structure.

Figure 2 depicts an overview of the steps involved in extracting features from
the code graph structure. The entire process includes three main steps: (i) opcode
embedding that converts the machine instructions into vectors, (ii) basic block
embedding that transforms a basic block of the program into a vector (basic
blocking embedding is done with Tagged CFG, which is used to combine multi-
opcode to a vector), and (iii) graph embedding that modifies the whole function
call graph into a vector. Finally, during the conversion of the opcode, basic block,
and function call graph into vectors, we utilize representation learning techniques
to learn the essential model parameters for getting the final 64-bit vector.

Representation Learning. To generate the node attribute in the CFG, we
leverage representation learning. Representation learning [4], which can learn
features from raw data automatically, has increasingly attracted researchers’
and engineers’ focus. Compared to those manually indicated attributed con-
trol flow graph (ACFG) methods, like Xu et al. [30], Adagio [10], and Yan et
al. [31], Hybroid can extract ACFG automatically without preparing manual
features and avoiding the challenge of manual indicated methods (how to pick
up the useful features is a challenge) because of the representation learning. Ad-
ditionally, Hybroid borrows ideas from Natural Language Processing to assist
the feature engineering. It uses the word2vec to convert instructions to vectors
and automatically learns the vector from the basic block’s raw instruction.

In brief, Hybroid static analysis part introduces representation learning as
the fundamental technique to represent code and use the control flow graph as
fundamental to organize the program. Additionally, it utilizes NLP to convert
the byte sequences (instruction and basic block) to vectors, used to replace
the manually indicated features [10, 31]. Hybroid then feeds those generated

2 https://github.com/androguard

https://github.com/androguard
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vectors into a learning-based classifier to extract static features. In other words,
Hybroid uses the transform learning technique to use the previously trained
instruction2vec model to convert the byte sequences to vectors.

Opcode Embedding. To simplify the procedure, we replace instruction (op-
code and operands) embedding with opcode embedding. The reason for this
replacement is the following. First, the opcode represents Dalvik’s instruction
behaviors, whereas the operands represent the parameters. Dalvik’s operands
are virtual registers in a virtual machine. Those values are significantly affected
by the underlying usage of Dalvik VM or ART VM. Thus, it is not possible to
enumerate them all. Additionally, if various malware samples in the same family
use the same malicious pattern, the opcode itself can capture these behaviors.

In theory, our opcode embedding method may suffer from the operand re-
moval problem [11]. A significant issue with operand removal is that all the
Invoke-Virtual instructions have the same embedding vector, no matter what
are the targets of the Invoke-Virtual instructions.3 For the opcode embedding
method, or opcode2vec, we map each opcode opi ∈ OP (where OP stands for the
whole Dalvik opcodes) to a vector of the real number, using the word2vec model
with the skip-gram method [18]. word2vec is an excellent feature learning tech-
nique, which is based on continuous bag-of-word and skip-gram techniques. The
skip-gram learning technique uses the current opcode to predict the surround-
ing opcodes. We train our opcode2vec model with a large corpus of opcodes
extracted from real applications.

Basic Block Embedding. In this work, we treat the basic block embedding
in the control flow graph similarly to the sentence embedding in the natural
language processing. Overall, we introduce our method for performing the basic
block(nodes in control flow graph) embedding, which are described as follows. We
utilize the weighted mean of a non-empty finite multi-set of instruction’s opcode
to calculate the basic block embedding. Assuming the function f includes n-
opcode and a l-dimensional vector represents each opcode, the weight of the

corresponding non-negative weights w1, w2, . . . , wn are given as: ~̃f =
∑n

i=1 wixi∑n
i=1 wi

,

where xi represents the l-dimensional opcode embedding and wi stands for the
weighted of each opcode.

Graph Embedding. After deriving the basic block embedding, we take the
generated basic block embedding as the node embedding of the control flow
graph. In other words, we perform graph embedding on a control flow graph
level. The module’s ultimate purpose is to convert the graph representation into
a vector and then feed it as input for the neural network-based classifier. We take
structure2vec [9] graph embedding method to convert one graph to a vector.

We utilize the Equations (1), (2), and (3) to convert a control flow graph to a
graph-vector, which stands for the whole Android application. In our work, our
graph-based control flow graph embedding includes two components. The first

3 All the calling instructions such as invoke-super, invoke-direct, invoke-static, and
invoke-interface suffer from the same problem.
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Algorithm 1: Graph embedding

Input: Instruction embedding vi : i ∈ I, control flow graph insider of a
function gf , parameter α

Output: Graph embedding vf : f ∈ F

1 Initialize µ0
v = ~Rand, forallv ∈ V

2 for t=1 to T do
3 for v ∈ V do

4 lv =
∑

u∈N(v) µ
(t−1)
u

5 µ
(t)
v = tanh(W1xv + σ(lv))

6 vf = W2(
∑

v∈V µ
T
v )/len(V ))

7 return vf

one is the control flow graph extraction, and the other is the graph embedding
for each control flow graph, which is adapted from the structure2vec.

The graph vectors (nodes) are basic blocks for graph embedding, and the
edges are connections among those basic blocks in the CFG. Each vector (node)
contains a set of opcodes inside it. The basic block embedding constructs each
node’s feature. Finally, a p-dimensional vector µi is associated with each vertex
vi. We use adapted structure2vec to dynamically update the p-dimensional
vector µt+1

i during the training of the network. The updating process is executed
as follows:

µ(t+1)
v = F (xv,

∑
u∈Nv

µ(t)
u ),∀v ∈ V. (1)

We randomly initialize the µ
(0)
v at each vertex. In practice, we design the

function F as follows:

F (xv,
∑
u∈Nv

µ(t)
u ) = tanh(W1xv + σ(

∑
u∈N(v)

µu)) (2)

For an effective nonlinear transformation σ(.), we define σ(.) itself as an n
layer fully-connected neural network and the W1 is trainable parameter.

σ(l) = P1 ∗ReLU(P2 ∗ . . . ReLU(Pnl)) (3)

The overall CFG-based embedding algorithm is illustrated in Algorithm 1.
The graph embedding generates the vector embedding after all iterations, and
we use the average aggregation function as our last step to transform the vector
embedding to the graph-based function embedding.

After deriving our graph embedding for the function call graph, we design a
two-layer MLP (multilayer perceptron) network as our representation learning
network to learn parameters used to convert the program code into vectors. In
our network, malware detection is a binary classification issue. We label malware
samples as 1 and benign samples as -1 at training. During testing, we treat all
predictions less than zero as benign and the rest as malicious.



Title Suppressed Due to Excessive Length 7

Flow
aggregation

PCAP

Feature
selection

Flow events

Network
traffic

analyzer

Argus Normalization

Fig. 3. Dynamic analysis overview

vf(Gh) = α ∗ ((< gi, wi1 > +bi1), wi2 + bi2) (4)

where the wi1, wi2 ∈ Rp is the weight of the two-layer MLP network and the
bi1, bi2 ∈ Rp is the offset from the origin of the vector space. In this setting,
a function call graph Gh is classified as malicious if f(Gh) > 0 and benign if
f(Gh) < 0. The vector vf(Gh) that corresponds to f(Gh) is collected as the
final representation of the program code. By using the above-stated methods,
we finally get a 64-bit vector representing the whole program code and present
the static features of program code.

Last but not least, we should mention the transductive and inductive em-
bedding. Our work relies on word2vec to convert instructions to vectors. This
requires relying on a large and representative dataset to train the embedding:
word2vec is a transductive approach and requires access to the entire alphabet.
As our method focuses on instruction mnemonics, our transductive approach of
word2vec did not influence the final results since graph embedding (convert the
control flow graph to vectors) is an inductive approach in which graphs of the
testing dataset are unknown at training time.

2.2 Dynamic Features Preparation

Figure 3 illustrates an overview of dynamic analysis (i.e., extracting features
from network traffic). The whole process involves three main steps. The first
step is the network flow generation that involves converting raw network traffic
into network flow events. Alternatively, we could use deep packet inspection to
extract network traffic features to understand the malware behavior better. How-
ever, this tactic cannot be applied to most real-world scenarios due to privacy
concerns. In contrast, high-level flow features do not necessarily render a correct
picture of malware behavior. To address this gap, we leverage static analysis,
combining it with dynamic network analysis. In the second step, we normalize
the flow features extracted from Argus,4 and in the last step, we use feature
selection mechanisms to reduce and finalize our dynamic feature set.

Network Flow Generation. The raw data (PCAP files) captured from each
application network traffic is fed into a packet parser to analyze network behav-

4 https://openargus.org/

https://openargus.org/
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iors. Our proposed solution uses the Argus network traffic analyzer to handle
the first phase of our dynamic analysis. Argus is an open-source tool that gener-
ates bidirectional network flow data with detailed statistics for each flow. Argus
defines a flow by a sequence of packets with same values for five tuples that are
Source IP , Source Port, Destination IP , Destination Port, and Protocol.

However, the output values of Argus features’ are almost numeric, except
for two categorical values: direction and flag states. To map them into discrete
values, we use the one-hot encoding that encodes categorical features as a one-hot
numeric array for our feature generation. The output of Argus involves numerous
flow events with around 40 feature sets related to each flow.

Since there are at least more than one flow events for each PCAP file, the
next step is to map each bunch of flow events into one data sample. To handle
this step, we aggregate the values of network flow features by calculating the
mean values, appending them to a single record. These steps mentioned above
perform as a preprocessing phase, which converts the raw network data into
numeric values that create a dataset ready to train any machine learning model.

Normalization. The extracted features must be normalized before being given
to the classification algorithms since their values vary significantly. For exam-
ple, if we chose Euclidean distance as a distance measure for classification, nor-
malization guarantees that every feature contributes proportionally to the final
distance. To achieve normalization, we use min-max scaling as shown below:

x1 = (x−min(x))/(max(x)−min(x)) (5)

where min(x) and max(x) represent range values. This method returns feature
values within the range [0,1]. An alternative method would be using standard
scaling by subtracting the mean values of the features and then scaling them to
unit variance. However, this method would mitigate the differences in the values,
making the detection harder (we examined this experimentally).

Feature Selection. Selecting features is critical, as it affects the performance
of the model. There exist two main reasons to reduce the number of features:

1. Complexity Reduction: When the number of features increases, most ma-
chine learning algorithms require more computing resources and time for
execution. Thus, reducing the number of features is essential for saving time
and resources.

2. Noise Reduction: Extra features do not always help to improve the algorithm
performance. In contrast, they may produce severe problems related to model
overfitting. Therefore, selecting a set of useful features reduces the possibility
of model overfitting.

Before the training and testing phase, we implemented various feature selec-
tion algorithms to find the best set of final features for our analysis. We used
three feature selection algorithms: Pearson Correlation, Extra Trees Classifier
(extremely randomized trees), and a Univariate feature selection (select features
according to the highest k scores). At the end of the process, we selected 13
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Table 1. List of network flow features

Notation Traffic Features

Mean Average duration of aggregated records
sTos Source TOS byte value
dTos Destination TOS byte value
sTtl Source to destination TTL value
dTtl Destination to source TTL value
TotBytes Total transaction bytes
SrcBytes Source to destination transaction bytes
DstWin Destination TCP window advertisement
SrcTCPBase Source TCP base sequence number
DstTCPBase Destination TCP base sequence number
Flgs er State flag for Src loss/retransmissions
Flgs es State flag for Dst packets out of order
Dir Direction of transaction

network flow features for our final dynamic analysis feature engineering. These
selected features describe the general behavior of the network activity for each
data sample and can be found in Table 1.

However, we perform an extra analysis to explore the quality of selected fea-
tures that are highly related to the target labels. We assume that any two features
are independent without being redundant. To investigate the redundancy score,
we use Kendall’s correlation method (Figure 4). Notice that any two indepen-
dent features are interpreted as redundant if the correlation score is extremely
high, whereas a high correlation between dependent features is desired.

Observation of Malware Network Communications. We check the type
of communication to spot if the applications use secure communication channels
or transmit the data on unencrypted flows. We can make observations about the
entire encrypted data flows instead of just the handshake or individual packets.
This is done by extracting the features of each data record by flow-level instead
of packet-level approach. As we can see in Table 2, a relatively small number
of applications are using encryption for communication. When we compared
malicious to benign applications traffic, we found out that the communications
that initially start with more upload than download traffic are more likely to
be malicious. The reason is that when malware connects to a control server, it
often identifies itself with a client certificate, which is rarely seen during normal
TLS usage. Another aspect we notice is that after the initial connection to the
control server has been established, the channel is often kept open but idle, with
only regular keep-alive packets being sent.

When comparing these two aspects with what ordinary TLS traffic created
in an HTTPS session in a browser looks like, one can easily see a very different
behavior: when requesting a website, the initial upload usually consists only of
a GET request (little upload), with a large response in the form of web page
content being sent from the server (large download). However, Hybroid results
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Fig. 4. Dynamic network flow feature correlation scores

(see Section 3.5) of malware detection and categorization show that analyzing
flow metadata would be effective on encrypted flows too.

2.3 Machine Learning Classification

The classification aims to detect and categorize the APK samples, whether the
source APK is a benign application or a specific type of malware. In the begin-
ning, we tested various supervised learning algorithms (support vector machines,
naive Bayes, decision tree, random forests, and gradient boosting) to assess clas-
sifier performance. The differences of using various learning algorithms confirm
our methodology that the selected static and dynamic features help to iden-
tify the distinction between benign and malicious APKs. Test results revealed
that SVM and naive Bayes demonstrated the worst performance and were thus
excluded from the tests.

For model validation, we used the cross-validation technique to test whether
the model can predict new samples that were not used in previous estimations.
The intention for cross-validation is to reduce the chance of overfitting or selec-
tion bias and improve the model’s generalization to an independent dataset.
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Table 2. Type of malware category communication networks

Category HTTP Flow TLS Flow

Adware 52.00% 8.00%
Ransomware 29.22% 0.00%
Scareware 61.38% 10.89%
SMSmalware 52.20% 10.28%

3 Evaluation

We use different types of machine learning metrics to test and evaluate Hy-
broid . To do so, we leverage a dataset that contains the original APK files and
the mobile network traffic data generated by the applications. Next, we seek
to identify the best detection classifier, and based on classifier performance, we
try to use different parameter engineering. We compare our solution with other
machine learning state-of-the-art related works, such as static and dynamic anal-
yses based detection. The extracted results prove the advantages of our proposed
solution, which combines the static and dynamic analysis of Android malware
into a unified classification procedure.

3.1 Experimental Setup

We implemented the proposed methods using Python, Scikit-Learn, Tensorflow,
and Keras. We set up our experiments on our Euklid server with 32 Core Pro-
cessor, 128 GB RAM, and 16 GB GPU. Besides, we used 5-fold cross-validation.
To obtain a reliable performance, we averaged the results of the cross-validation
tests, executed each time with a new random dataset shuffle.

3.2 Evaluation Metrics

Due to the imbalanced nature of the dataset (see Section 3.3), accuracy may not
be the only reliable indicator of classifier performance. Thus, the performance
of detection and categorization will be evaluated with metrics such as precision,
recall, and F-measure (F1-score). In general, the accuracy metric is used when
true negatives and true positives are crucial; the F1-score is used when false
positives and false negatives are more important. When the class distribution
is nearly equal, accuracy can be used, whereas the F1-score is a better metric
when we have imbalanced classes. However, in most real-life classification prob-
lems, the datasets are imbalanced, and therefore, the F1-score is a better metric
to evaluate the model. However, since other related studies report accuracy as
their primary evaluation metric, we also compare and consider accuracy as a
comparison metric. Another metric to evaluate our work is to consider the re-
ceiver operating characteristic (ROC) curve, which presents the true positive
rate (TPR) against the false positive rate (FPR).
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Table 3. Dataset descriptions

Name Number Description Distribution(%)

APK files 2,126 All program code files 100%
PCAP files 2,126 All the raw network traffic files 100%

Benign APKs 1,700 No. of benign APK 80%
Adware APKs 124 No. of Adware category APK 5.9%
Ransomware APKs 112 No. of Ransomware category APK 5.2%
Scareware APKs 109 No. of Scareware category APK 5.2%
SMSmalware APKs 101 No. of SMSmalware category APK 4.7%

3.3 Dataset

For the dataset, we use the public CICAndMal2017 [13]. The benign applications
were collected from the Google play market published in 2015, 2016, and 2017.
On the other hand, the malicious ones were collected from various sources such
as VirusTotal5 and Contagio security blog6. The dataset includes 426 malware
and 1,700 benign samples with their corresponding network traffic raw data,
which are delicately captured from physical smartphone devices while running
the applications.

In the networking part, the phones’ behavior was generated by scripts, which
imitated normal phone usage like phone calls and utilized SMS along with GPS
spoofing and web browsing. Every phone was also connected to a Gmail, Face-
book, Skype, and WhatsApp account. The normal behavior of phones was cap-
tured in PCAP files that served as the entry point in our work. After infecting
every phone with malware from the malware pool provided with the dataset
in the form of APK files, the resulting network communication was collected.
Table 3 provides a short description of the CICAndMal2017 dataset.

3.4 Power Law and Opcode Embedding

Before moving to our evaluation tasks, we use the distribution of our opcode
to prove the reasonability of using natural processing language techniques in
our works. In order to get the reasonable opcode2vec module, we pre-train the
opcode2vec by the AndroZoo dataset. We extract all opcodes by the Androguard
tool and obtain 18,240,542 opcodes in total. Then, we take those opcodes as
our word corpus to train the opcode2vec model. Figure 5 presents the opcode
distribution for the above datasets. More specifically, it shows Dalvik’s opcode
distribution, which has 216 opcodes, and the top-20 opcodes are presented. They
all follow the power-law distribution, which makes borrowing word embedding
techniques from natural language processing to do opcode embedding reasonable.

5 https://virustotal.com
6 http://contagiominidump.blogspot.com

https://virustotal.com
http://contagiominidump.blogspot.com
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Fig. 6. Malware detection overall performance of different related works

3.5 Performance of Classifiers

In this section, the evaluation of the Android malware detection and categoriza-
tion algorithms is presented in detail. For the malware detection experiments,
we compare Hybroid with other related solutions. Figure 6 shows the difference
between our solution and the other malware detection schemes. Hybroid demon-
strates an accuracy of 97.0% (Figure 6-a), while CIC2017 [13], DREBIN [3],
SVM [8], and Adagio [10] demonstrate accuracy of 87.6%, 95.4%, 93.9%, and
89.3%, respectively. Other metrics, such as F1-score, precision, and recall, are
also presented in Figures 6-b, 6-c, and 6-d.

In addition, Figure 7 shows the ROC curve of our solution and the other
compared algorithms, while TPR is plotted against the FPR for the various
thresholds of the detection methods. As the ROC curve shows, Hybroid demon-
strates the best performance (represented by the purple line), which means that
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Fig. 7. Malware detection ROC curve of different related works

the combination of static and dynamic features boosts the classifier performance.
Besides, we can observe, Hybroid presents the best area under the ROC curve
(AUC), which is 99.6%, while the Adagio method shows the worst AUC of 86.7%.
The Figure 7 also presents AUCs of the other compared solution classifiers.

To evaluate our work independently, we tested three various classifiers (de-
cision tree, random forest, and gradient boosting) with static, dynamic, and
combined features. We tested these three classifiers to identify differences in the
performance of final classifiers. The obtained results confirmed that the com-
bination of static and dynamic features yields the best performance. Moreover,
we saw that the decision tree classifier demonstrates the lowest accuracy, preci-
sion, and recall compared to the other algorithms. Decision tree is also prone to
overfitting. Random forest presented higher accuracy, precision, and recall as a
more robust model than decision tree, limiting overfitting without substantially
increasing error. On the other hand, compared with random forest, gradient
boosting demonstrates the best metric results in our framework, implying that
it is the most effective supervised learning algorithm for our experiment.

Gradient boosting is similar to random forest with a set of decision trees but
with a main difference. It combines the results of week learners along the way,
unlike random forest combines the results by majority rules or averaging at the
end of the process. This accounts for the difference in the results.

Figure 8 shows the performance for the malware detection task. In the F1-
score of various classifiers, we witness that combined features with gradient
boosting achieve the best F1-score, which is 97%. Meanwhile, we only get 93%
with static features from the program code and 95% with dynamic features from
network flow. On the other hand, among the three classifiers with combined
features, the gradient boosting classifier yields the best precision result, which
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Fig. 8. Malware detection performance of the different classification algorithms

Fig. 9. Malware categorization performance of the different classification algorithms

is 97%. Meanwhile, random forest and decision tree demonstrate a precision of
96% and 91%, respectively.

Subsequent to the malware detection, we also evaluated Hybroid with the
malware categorization, which is a multi-label classification task. We see from
Figure 9 that the gradient boosting classifier receives the best results with com-
bined features, namely 94% precision, 94% recall, and 94% F1-score. With the
random forests classifier, our Hybroid also demonstrates significant results with
a 92% F1-score. Figure 9 (a, b, c) depicts the evaluation results with F1-score,
recall, and precision in detail.

Also, Figure 10 illustrates the ROC curves for the malware categorization
task. Different curves show the different values of AUC. As it is shown, Hybroid
demonstrates 97.6% macro accuracy on average for malware categorization, and
categorization of the benign class receives the best performance AUC for 99.5%.
For SMSware, we obtained the worst AUC, i.e., 94.6%. One potential reason
for this issue could be the small number of SMSware in the dataset (only 4.7%
samples are SMSware).

4 Limitation and Future Work

Although we combined static and dynamic analysis to improve the performance
of Hybroid , some issues need to be addressed in the future. The biggest chal-



16 Authors Suppressed Due to Excessive Length

Fig. 10. Malware categorization ROC curve of gradient boosting

lenge is the lack of labeled data for CICAndMal2017 by Lashkari et al. [13].
They include only 426 malware and 1,700 benign APKs and their correspond-
ing network traffic raw files. The main challenge is not having an alternative
good-quality public dataset that covers the network traffic captured on real An-
droid devices. For the malware detection, especially for the static feature-based
work, the dataset with 2,126 samples is too small. However, for the networking
dynamic feature-based work, 2,126 is a classic number. Actually, most network-
ing dynamic analysis studies evaluate their frameworks with similar numbers,
such as Jeon et al. [12] evaluate on 1,401 samples (1,000 malware and 401 be-
nign) or Onwuzurike et al. [20] take 2,336 benign and 1,892 malware samples.
Despite the static analysis work that needs more data samples, the number
for networking dynamic analysis is normal. To address the lack of enough la-
beled data in the static analysis, we also separately trained and tested our static
graph-based model with 45,592 malware and 90,313 benign samples following
TESSERACT [23] policies (we split 80% of the whole dataset for training and
the other 20% for testing). These data samples are captured from the Andro-
Zoo7, VirusShare8, VirusTotal and we achieved the accuracy and F1-score of
95.0% and 96.0% respectively which shows that our methodology demonstrate
competitive results on much larger dataset too.

Also, for the static analysis, Hybroid is affected by the obfuscated APKs,
and we cannot successfully extract graph features from 47 obfuscated APKs. To
further improve the robustness of Hybroid , we plan to extend CICAndMal2017

7 https://androzoo.uni.lu
8 https://virusshare.com

https://androzoo.uni.lu
https://virusshare.com
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dataset in the near future to have more labeled network traffic data which are
captured from Android real devices.

5 Related Work

Detecting Android malware and categorizing its families have attracted much
attention from researchers as Android smartphones are gaining increasing pop-
ularity. Methods for Android malware detection are generally classified into tra-
ditional feature codes and machine learning.

For the traditional feature-based approaches, the detectors inspect the clas-
sical malicious behaviors. For example, program code-based malware detection
methods extract features from the code itself. Technically, those features include
permission [2,32], API call [1,3,22,32], N-gram [3], and CFG [10] based methods.
Malware detection methods that use permissions and intents extract them from
manifest files to detect Android malware [3]. In general, DREBIN performs a
comprehensive static analysis, gathering as many application features as possible.
These features are embedded in a joint vector space, such that typical malware
patterns can be automatically identified and used to explain our method’s deci-
sions. In contrast with our work, DREBIN takes permissions and intents from
manifest files, which cannot work for the obfuscated APKs. Meanwhile, Hybroid
takes the graph structure from the program code, which obfuscation cannot
affect. Additionally, we consider dynamic features from network flow, whereas
DREBIN only considers the static features.

Graph-based malware detection systems use the graph structure for detec-
tion purposes, such as the Apk2vec [19] and the Adagio [10]. Adagio [10] shows
a kernel-hashing-based malware detection system on the function call graph,
which is based on the efficient embeddings of function call graphs with an ex-
plicit feature map inspired by a linear-time graph kernel. In an evaluation with
real malware samples purely based on structural features, Adagio outperforms
several related approaches and detects 89% of the malware with few false alarms,
while it also allows for pinpointing malicious code structures within Android ap-
plications. Both the Adagio and our solution are based on the function call graph
of Android applications. However, we design the graph embedding based on the
function call graph, whereas Adagio uses the kernel-hashing method. In addition,
we also take the network flow into our Hybroid to obtain the dynamic features.

Machine learning and deep learning techniques are also heavily introduced
into the network traffic analysis. Researchers use manual indicated features to
recognize a network traffic application pattern with traditional machine learning
algorithms, such as traffic classification, network security, and anomaly detec-
tion [15,25,32]. Finally, for network traffic analysis, there are three different gran-
ularities: raw packet, flow, and session levels [13,16,24,25]. CICAndMal2017 [13]
takes network traffic as the dynamic features to detect and categorize the An-
droid malware. Compared to our work, it only considers the network flow rather
than other static features, such as program code, permissions, and intents.
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6 Conclusion

In this paper, we presented Hybroid , a layered Android malware classification
framework, which utilizes network traffic as a dynamic and code graph structure
as static behavioral features for malware detection. As a hybrid approach, it
extracts not only 13 network flow features from the original dumped network
dataset but also introduces NLP inspired technique based on function call graph
embedding that converts the whole graph structure of an Android application
into a vector. Hybroid utilizes the network flow features in combination with the
graphs vectors to detect and categorize the malware. Overall, it demonstrates an
average accuracy of 97.0% and 94.0% in detecting and categorizing the Android
malware, respectively. The empirical results imply that our stated solution is
effective in the detection of malware applications.
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16. Maŕın, G., Caasas, P., Capdehourat, G.: DeepMAL – Deep Learning Models for
Malware Traffic Detection and Classification. In: Data Science–Analytics and Ap-
plications (2021)

17. McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer,
S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., et al.: Deep Android Malware
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