
Hiding in the Shadows: Empowering ARM for
Stealthy Virtual Machine Introspection

Sergej Proskurin
Technical University of Munich

proskurin@sec.in.tum.de

Tamas Lengyel
The Honeynet Project
tamas@tklengyel.com

Marius Momeu
Technical University of Munich

momeu@sec.in.tum.de

Claudia Eckert
Technical University of Munich

eckert@sec.in.tum.de

Apostolis Zarras
Maastricht University

apostolis.zarras@maastrichtuniversity.nl

ABSTRACT
ARM has become the leading processor architecture for mobile and
IoT devices, while it has recently started claiming a bigger slice of
the server market pie as well. As such, it will not be long before
malware more regularly target the ARM architecture. Therefore,
the stealthy operation of Virtual Machine Introspection (VMI) is
an obligation to successfully analyze and proactively mitigate this
growing threat. Stealthy VMI has proven itself perfectly suitable
for malware analysis on Intel’s architecture, yet, it often lacks the
foundation required to be equally effective on ARM.

In this paper, we closely examine both ARMv7 and ARMv8 ar-
chitectures to identify shortcomings and develop novel techniques
necessary for effective virtualization-based dynamic malware anal-
ysis. We implement and open-source a prototype, named altp2m,
for the open source Xen Project hypervisor on ARM. Compared to
traditional VMI approaches, our solution enables hypervisors to dy-
namically allocate and switch among multiple guest memory views
by utilizing the Second Level Address Translation (SLAT). Further, we
implement an alternative single-stepping mechanism and leverage
the execute-only capability of the SLAT mechanism on ARMv8 to
enable stealthy in-guest instrumentation. To target also ARMv7-
based systems, wemanipulate the TLB organization through altp2m
to coordinate the guest kernel execution flow. To demonstrate the
effectiveness of our system, we combine all building blocks of our
work to form the foundation for the dynamic malware analysis
system DRAKVUF on ARM. Overall, our experiments reveal that
our novel dynamic analysis system is stealthy, efficient, and is per-
fectly suited to assist malware analysts to quickly comprehend the
behavior and reduce the mitigation time of malware targeting ARM.

ACM Reference Format:
Sergej Proskurin, Tamas Lengyel, Marius Momeu, Claudia Eckert, and Apos-
tolis Zarras. 2018. Hiding in the Shadows: EmpoweringARM for Stealthy Vir-
tual Machine Introspection. In 2018 Annual Computer Security Applications
Conference (ACSAC ’18), December 3–7, 2018, San Juan, PR, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3274694.3274698

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 2018 Annual
Computer Security Applications Conference (ACSAC ’18), December 3–7, 2018, San Juan,
PR, USA, https://doi.org/10.1145/3274694.3274698.

1 INTRODUCTION
State-of-the-art malware utilizes techniques that facilitate its exe-
cution with same privileges as the sensitive and security relevant
parts of the Operating System (OS). This allows malware to operate
under the radar and evade detection. To address this ever prevailing
threat, security applications progressively take advantage of virtual-
ization technology. More precisely, Chen et al. [5] suggest to isolate
applications from the host OS to enhance security and mobility;
virtualization technology encapsulates, and thus protects, security
mechanisms from the OS by means of a hypervisor. This method
has proven effective, which led to an increased adoption of virtu-
alization for malware detection and analysis frameworks in both
commercial [3, 10, 32] and open source applications [17, 18, 24, 33].

Virtualization has helped defenders gain the upper hand in the
arms race against malicious actors. As hypervisors expose a nar-
row, virtual hardware interface toward guests, they bare a limited
attack vector while maintaining a complete and untainted view
of the guest’s state. To benefit from this constellation, Virtual Ma-
chine Introspection (VMI) must be applied [12]. VMI constitutes
techniques that allow hypervisors through hardware virtualization
extensions to observe, analyze, and control the state of guest Virtual
Machines (VMs). In particular, the stealthy nature of VMI is of high
relevance as it can assist the analysis of split-personality malware
that behaves differently if it believes it is being analyzed [6].

Previously, x86 was the dominant player in the server world and
an exceedingly attractive target for exploitation; 1 this is where VMI
was most needed. The same applies to malware. Yet, IoT, mobile
devices, and the growing demand for ARM in the server market
created renewed emphasis on developing VMI systems for ARM.

Virtualization-based analysis frameworks often resort to tech-
niques allowing to intercept and single-step guest OSes [7, 13, 17].
To intercept the guest’s execution, one can apply both invasive [7,
13, 17] and non-invasive [8, 20, 24] approaches. To assist malware
analysis, both approaches must be invisible to the guest. Although
non-invasive approaches are inherently stealthy, in-guest memory
or register artifacts used by invasive approaches must be explicitly
hidden. For instance, an adversary can use the finite number of
hardware breakpoint registers to reveal the analysis framework.
Also, while Intel as well as the AArch64 execution state of ARMv8
CPUs allow to hide memory-artifacts by marking memory pages as
execute-only, second level translation tables of both the AArch32

1We refer to both x86 and x86-64 as the x86 architecture.

https://doi.org/10.1145/3274694.3274698
https://doi.org/10.1145/3274694.3274698


ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Proskurin et al.

execution state of ARMv8 and the ARMv7 architecture prohibit
execute-only memory and thus impede stealthy VMI.

To transparently single-step guest OSes on Intel CPUs, the Mon-
itor Trap Flag (MTF) can be used. As a matter of fact, MTF is part
of Intel’s virtualization extensions and inaccessible to the guest.
Sadly, this feature is not supported by ARM. Literally, it is unfea-
sible to single-step the guest in a stealthy way by relying solely
on the hardware capabilities. While previous efforts employ VMI
on ARM [13, 29, 37], none of them achieves a stealthy solution
against attackers with root privileges. Emulation presents a poten-
tial workaround, but is known for being imperfect [9, 35, 36].

In this paper, we explore new directions of VMI primitives, which
empower stealthy monitoring of guest OSes with multiple virtual
CPUs (vCPUs) on both AArch32 and AArch64 without resorting
to emulation. First, we introduce an alternative method on placing
breakpoints; instead of using hardware or software breakpoints that
either leak information about the analysis framework or require
logic that distinguishes between breakpoints set by the analysis
system and the guest—thus increasing the performance overhead—
we expand the idea that was first presented in SPROBES [13]. As
such, we place Secure Monitor Call (SMC) instructions into the guest
kernel to intercept the VM and redirect the control to the hypervisor.
By injecting only two SMC instructions, we enable single-stepping
without using the hardware-intended approach, which can reveal
the analysis system. In parallel, we implement a system, which
facilitates an external monitor using second level translation tables
to define and dynamically switch among different guest physical
memory views. In this context, we introduce our extension to the
Xen Project hypervisor [19] on ARM, called alternate p2m (altp2m).

These methodologies suffice for stealthy analysis on AArch64.
Yet, to hide from malware on AArch32, which lacks execute-only
memory, we consolidate the aforementioned techniques along with
the Translation Lookaside Buffer (TLB). In detail, we take control of
the TLB organization by leveraging altp2m to establish a stealthy
guest monitoring approach. This approach employs altp2m to care-
fully de-synchronize the TLB organization to effectively hide code
pages in guest memory. This allows us to maintain different map-
pings of the same guest physical frame in the instruction and data
TLB and thus to effectively hide code pages in guest memory [31].

We extend the well-known dynamic malware analysis frame-
work DRAKVUF [17] with the capabilities of the above primitives
to empower ARM for stealthy VMI. In fact, we leverage DRAKVUF
to evaluate the performance and effectiveness of our VMI primitives
that are tailored for AArch32 and AArch64. We believe our work
constitutes an important building block, able to introduce stealthy
VMI to the ARM architecture while remaining efficient and robust.

In summary, we make the following main contributions:
• We empower stealthy multi-vCPU guest kernel monitoring
on ARM by extending the Xen hypervisor to dynamically
switch among different guest physical memory views.

• We utilize Xen and altp2m to de-synchronize the TLB or-
ganization on AArch32 to tackle the architectural deficit of
execute-only memory in the second level translation tables.

• We develop and open source the foundation for the binary
analysis framework DRAKVUF and establish stealthy dy-
namic malware analysis on AArch32 and AArch64.

2 BACKGROUND
Split-personality malware frequently employs anti-virtualization
techniques [2, 6] to reveal and evade introspection. This can be
addressed by trying to make the VM indistinguishable from real
hardware—a system that achieves perfect VM transparency is still
infeasible in practice [11]. Recently, however, we observe an increas-
ing trend toward system consolidation through virtualization which
renders the goal of VM transparency obsolete. A virtualized system
does not necessarily indicate that its sole purpose is malware anal-
ysis. Therefore, it makes no sense for attackers to exclude virtual
environments. Nevertheless, malware can still detect VM-based
analysis systems, through artifacts, ranging from guest-accessible
memory to register contents. Consequently, cloaking remains an
open question and emphasizes the need for stealthy monitoring.

Contrary to x86, ARM does not foresee hardware capabilities that
are essential for stealthy malware analysis. In fact, this is one of the
reasons why existing VMI approaches for x86 cannot be applied to
ARM. In particular, ARM is not capable of hiding artifacts involved
in single-stepping guest VMs. Additionally, ARMv7 complicates
hiding in-guest code instrumentation, as it lacks the capability
of granting execute-only permissions to code pages. While both
points can be addressed through emulation techniques, we choose
to avoid emulation, as it is known for being imperfect [9, 35, 36].
In this section, we introduce the ARM architecture and depict its
limitations in regard to stealthy VMI. We particularly amplify upon
the ARM virtualization extensions discussing chosen architectural
components that are relevant for this paper.

2.1 ARM Exception Levels
ARMdistributes software execution across different processor modes,
each with distinct privilege levels on ARMv7, also referred to as
exception levels onARMv8. Disregarding the Thumb/T32 instruction
set (i.e., a 16-bit and 32-bit encoded subset of the ARM Instruction
Set Architecture (ISA)), while ARMv7 supports only 32-bit, ARMv8
facilitates 32-bit and 64-bit execution. Thus, ARMv8 differentiates
between the AArch32 (binary compatible to ARMv7) and AArch64
execution state. Both have only moderate differences, which are
of no relevance to our work. To ensure a consistent terminology,
we prefer the term exception levels (ELs) over privilege levels and
refer to AArch32 and AArch64.

Different exception levels restrict access to privileged resources.
Similar to x86, the execution of OSes is mainly distributed across
two processor modes in different exception levels (i.e., User and
Supervisor). The notion of processor modes is limited to AArch32,
yet, it can be equally applied to AArch64 as the distribution of
software does not change. Figure 1 illustrates the hierarchy of exe-
cution levels and the associated processor modes on both AArch32
and AArch64. User applications execute in the less privileged EL0,
whereas the OS kernel runs in the higher privileged EL1. Sys-
tems with hardware virtualization introduce EL2, into which the
Hyp mode—dedicated for hypervisors or Virtual Machine Monitors
(VMMs)—is placed claiming the highest privileges.2

Similar to system-calls, guest VMs executing in EL0 and EL1 trap
into the higher privileged VMM in EL2 (e.g., on privileged or sensi-
tive instructions fetches, or on access to hardware devices managed
2In the following, we use the terms hypervisor and VMM interchangeably.



Hiding in the Shadows: Empowering ARM for Stealthy VMI ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Figure 1: Exception Level hierarchy and mode distribution
on AArch32 and AArch64 until ARMv8.3. For detailed archi-
tectural differences, please refer to [1].

by the VMM). This allows the guests to keep their original excep-
tion levels, while isolating the execution of the VMM. ARM also
distinguishes between the normal and secure world, which is part of
ARM’s security extensions and referred to as TrustZone. While the
normal world maintains all three exception levels, the secure world
does not contain EL2 and hence does not support virtualization.
Therefore, the secure world will not be further considered.

2.2 Guest Physical Memory Architecture
Hypervisors provide the illusion to guest VMs of having control
of their physical memory. While guests maintain page tables for
translating guest virtual to guest physical addresses, the VMM is
responsible for translating guest physical into machine physical
addresses. This lends VMMs a memory isolation property that
ensures that even compromised guest’s cannot manipulate other
VMs or the VMM itself. On systems without virtualization support,
the VMM maintains an additional set of page tables (shadow page
tables) for managing the guest’s physical memory in software. By
write-protecting the guest’s page tables, the VMM intercepts their
modifications and redirects translations to a dedicated memory
location. The downside is that the complex software management
of shadow page tables entails a significant performance overhead.

To approach the poor performance of shadow page tables on
hardware with virtualization support, the Memory Management
Unit (MMU) features a supplementary level of indirection through
the Second Level Address Translation (SLAT). Similar to shadow page
tables, the hardware requires an additional set of page tables that is
maintained solely by the VMM and cannot be accessed by the guest.
These second stage translation tables complement the translation
of guest virtual to guest physical addresses, by mapping the guest
physical to machine physical addresses. Accesses to memory that
is not mapped or lack access permissions in these tables result in
traps allowing the VMM to isolate and control the guest’s view
on the physical memory. For instance, Intel’s Extended Page Tables
(EPTs) allow to define execute-only memory, which lends a VMM
the ability to hide code instrumentation [7, 17]. In contrast to Intel
and AArch64, SLAT on AArch32 does not support this functionality.

2.3 Debug Exceptions
Another feature that is imperative for further understanding con-
cerns the implementation of breakpoints and watchpoints as well
as single-stepping. ARM features a set of debug registers that can be
configured to generate debug events. These events in turn generate
debug exceptions which must be handled in dedicated exception
handler routines that are typically set up by debuggers.

Both AArch32 and AArch64 support up to 16 configurable break-
points. Every breakpoint can be set by means of the Breakpoint
Control Register DBGBCR in conjunction with one of the Breakpoint
Value Registers DBGBVR. Respectively, ARM supports up to 16 watch-
points, which function in a similar way. In the simplest case, a set
breakpoint or watchpoint holds an instruction address, that gener-
ates an associated debug event on every instruction or data fetch.
On top of that, ARM features software breakpoint instructions. The
CPU generates debug events on execution of these instructions.

To single-step hit breakpoints, a monitor can configure DBGBCR to
mismatch the breakpoint address in one of the DBGBVR registers: as
addresses of instructions following the hit breakpoint do not match
the address in DBGBVR, this will cause the CPU to generate a debug
event on execution of every following instruction. Alternatively,
AArch64 allows to generate Software Step exceptions by setting
the SS bit of the Monitor Debug System Control MDSCR_EL1 and
Saved Program Status Register SPSR of the target exception level.
For instance, to single-step a hit breakpoint in EL1 the monitor
must set the MDSCR_EL1.SS and SPSR_EL1.SS bits. After returning
to the trapped instruction, the SPSR will be written to the process
state PSTATE register in EL1. Consequently, the CPU executes the
next instruction and generates a Software Step exception.

To prevent disclosure of the analysis system, the VMM can inter-
cept (and emulate) guest-access to debug registers and hence cover,
e.g., set breakpoints controlled by the VMM. Yet, we highlight that
adversaries can use the finite number of breakpoint and watch-
point registers as side channel information to reveal the analysis
framework. Also, in-guest debugging cannot be perfectly emulated.
For example, the KVM hypervisor implements VMM-based debug-
ging on ARM with the restriction that the guest will be unable
to use these features concurrently. Thus, hardware breakpoints
and watchpoints, as well as single-stepping through breakpoint
mismatching—the only way to single-step guest’s on AArch32—are
not suited for stealthy VMI.

Software Step exceptions on AArch64 are also visible to guest
VMs. The VMM can intercept accesses to MDSCR_EL1 and hide the
SS bit. Also, ARM forbids direct access to the PSTATE.SS bit in all
exception levels, complicating the discovery of analysis systems.
Still, an adversary with control over the guest’s exception handlers
in EL1 can reveal the analysis by provoking an interrupt from EL1
that traps as well to EL1: in the exception handler, the PSTATE
holding the set SS bit will be written to SPSR_EL1 which in turn is
accessible. We have validated this behavior as part of our evaluation
(Section 4.4). Since accesses to SPSR_EL1 cannot be intercepted, the
VMM would need to trap and emulate every instruction in the
exception handlers to cloak the analysis. This, however, is not a
good alternative as the overhead of handling exceptions would rise
enormously. As such, we are in need for stealthy single-stepping
alternatives, upon which we place great emphasis in this paper.



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Proskurin et al.

Figure 2: Xen altp2m enables a monitor in the privileged
domain Dom0 to manage different memory views of DomU.
While the execute-view maps the target guest frame execute-
only, the permissions of the original-view are unchanged.

2.4 Translation Lookaside Buffer
To counter the lack of execute-only memory on AArch32, we shift
our focus toward the TLB organization. Virtual memory address
translation entails high performance overhead. The reason for this
is that the associated page tables reside inmainmemory. To increase
performance, the TLB buffers recent guest virtual to guest physical
address (and guest physical to machine physical) translation results.
The TLB organization on x86 and ARM evolved to a split TLB
architecture. A split TLB separates the TLB into two disjoint sets
comprising the instruction TLB (iTLB) and data TLB (dTLB); the
iTLB caches translated instruction fetches, whereas the dTLB holds
translated data fetches. To further speed upmemory translation, the
TLB organization adds a superior caching level serving as a victim
cache for the instruction and data TLB. On ARM, the introduced
cache is called unified TLB (uniTLB) and is comparable to the shared
TLB (sTLB) on x86. The uniTLB holds evicted entries from the iTLB
and dTLB and is first consulted before walking the page tables.

To minimize TLBmaintenance, the TLBs are associated or tagged
with an identifier, which organizes the TLB entries based on a spe-
cific context. This means TLB entries with the same Address Space
Identifier tag refer to a specific process. Similarly, entries tagged
with the same Virtual Machine Identifier (VMID) refer to a specific
VM or rather to a specific second level translation table (the VMID is
part of the Virtualization Translation Table Base Register VTTBR). As
such, the CPU does not need to flush the TLBs on context switches,
thus significantly increasing the overall system performance.

2.5 Threat Model
We assume an adversary with root privileges, who possesses full
control of the guest VM; she can access all security relevant parts of
the OS, including the guest kernel and exception handlers. We also
assume the attacker is indifferent to virtualized systems. Yet, she
will abort her operation in case of disclosure of an analysis frame-
work. Additionally, she can employ anti-virtualization techniques,
such as carving the guest’s memory for artifacts that may reveal
the presence of virtualization-based analysis frameworks. These
artifacts comprise instructions, such as software breakpoints and
hypercalls, capable of redirecting the guest’s execution to the VMM.
Further, she can inspect the OS for agents in form of processes
or kernel modules. Moreover, we assume she cannot modify the

OS before her malicious code has been injected, thus she cannot
manipulate any security critical vectors without us noticing it.

In this paper, we consider that the attacker can analyze in-guest
register and thus reveal analysis frameworks that utilize debug
registers, e.g., to hardware breakpoints, watchpoints, and the single-
steppingmechanism. The attacker understands that although access
to these registers can be intercepted and falsified by a VMM-based
analysis framework, the VMMwill not be able to cloak the resulting
side effects. For instance, if the attacker is being emulated, she has
the necessary means to discover it, due to imperfect emulation.

As part of our evaluation, we apply this threat model to the
adore-ng rootkit to simulate a realistic attacker (Section 4.4).

3 GUEST KERNEL MONITORING PRIMITIVES
Malware can reveal analysis systems that use standard debugging
techniques and change its behavior [2, 6]. Thus, non-stealthy anal-
ysis can cause false observations. Stealthy monitoring requires:

(R1) a mechanism to intercept the guest in EL1 (guest kernel),
(R2) a single-stepping mechanism that cannot be discovered by

in-guest artifacts, and
(R3) execute-only memory

Sadly, ARM does not support stealthy single-stepping (Section 2).
On AArch32 the finite number of hardware breakpoints helps the at-
tacker to infer the presence of an analysis framework; on AArch64,
the attacker can spill the set PSTATE.SS bit into the SPSR_EL1 reg-
ister to uncover the analysis framework. Besides, AArch32 lacks
execute-only memory (Section 2). As such, both architectures do
not meet (R2) and AArch32 additionally fails to comply with (R3).

To tackle these shortcomings, we present VMI primitives that
enable monitoring of VMs, without relying on the intended hard-
ware mechanisms. Instead, we employ virtualization extensions to
intercept the guest kernel at arbitrary locations (aka. tap points [23])
and leverage such tap points to single-step trapped instructions in
a stealthy way. Next, we extend Xen to control the guest’s physical
memory, which presents the foundation for stealthy monitoring on
ARM. Finally, we combine these primitives to set the ground for
stealthy VMI on ARM. Figure 2 illustrates an overall architecture
of our system whose components are described in this section. In
the following, we present primitives that, when combined, form
stealthy monitoring systems on both AArch64 and AArch32.

3.1 Implementing Kernel Tap Points
A monitor can leverage SLAT to intercept the guest’s execution at
arbitrary locations. By withdrawing the execute permission from
code pages containing functions of interest, themonitor can redirect
the guest’s execution in EL1 and EL0 to the VMM. Yet, this coarse-
grainedmethod incurs a high overhead: execution of code irrelevant
for tracing on the page holding the target instruction would trap
into the VMM. Instead, it is more desirable to monitor only the fact
that the guest has executed a specific function. This demand can be
met by software breakpoints. These instructions lend themselves
as the instruction of choice to implement tap points (R1). Yet, there
exist other instructions that can be similarly configured to trap
to the VMM and have additional properties that make them more
desirable. The SMC instruction is the ideal candidate as it can be



Hiding in the Shadows: Empowering ARM for Stealthy VMI ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

(a) Without Xen altp2m. (b) With Xen altp2m.

Figure 3: On execution of the first SMC in the original page,
the VMM redirects control-flow either to the backup page (a)
or switches to the step-view (b) to single-step Instr 1. In both
cases, the pages are marked execute-only.

configured to trap to the VMM and thus employed as a trigger to
switch the execution-flow of the guest OS to the VMM.

The benefit of using the SMC instruction is that the guest is
architecturally unable to subscribe to SMC traps. In contrast to
software breakpoints, SMC traps can only be directed to TrustZone
or to the VMM. This property reduces complexity of the monitor, as
the execution of an SMC instruction never has to be re-injected into
the guest. A limitation of the SMC in place of a software breakpoint
is that it can only be executed in EL1, that is the guest kernel.

While the SMC instruction can thus be used for implementing tap
points in the guest kernel (R1), achieving stealthy single-stepping
without architectural support presents a great challenge. Without
stealthy single-stepping we seem to reach an impasse on how to
resume the execution of the guest kernel without losing control
over the execution-flow. If we remove the tap point to allow the
trapped vCPU to continue execution, an additional event needs to
be triggered to place the tap point back. This event will normally
be generated by a single-step exception. Further, in multi-vCPU
domains, removing the tap point from memory is critical, as it may
introduce a race condition: while removing the tap point, other
vCPUs must not fetch the instruction from the same location.

3.2 Novel Single-Stepping Mechanism
The ARM architecture has an advantage over its x86 counterparts
that we can leverage for a novel single-stepping scheme, without
using the single-stepping feature of the CPU: ARM implements a
fixed-width ISA. On x86, software breakpoints cannot be placed
at arbitrary locations, as you may end up overwriting a part of a
large instruction. On ARM, we can determine the position of the
next instruction; depending on the execution mode, the width of
instructions is known beforehand. Thus, we can locate instruction
boundaries in memory without having to rely on a disassembler.

To illustrate how to utilize the fixed-width ISA for single-stepping,
let us consider a scenario where we run a guest VM with a single
vCPU. An external monitor with access to debug information of the
target kernel, such as the System.map file on Linux, can determine
the location of system-call handling kernel functions. By reading
the first two instructions from the prolog of the target kernel func-
tion into a backup buffer and then overwriting the function’s first

instruction with an SMC, the monitor will intercept the guest kernel
(R1) on execution of the marked kernel function. Upon execution
of the SMC, the monitor can place the original first instruction
back into memory while writing a second SMC in place of the
immediately following instruction. When execution is resumed,
the original instruction is executed followed by the execution of
the second SMC. Now, the monitor can restore the original SMC
without losing control over the guest kernel and hence conclude
single-stepping of the first instruction in the system-call handler. On
AArch64, we achieve stealthy single-stepping of the guest (R2) by
configuring the instrumented page, holding the system-call handler,
as execute-only (R3); reads and writes will trap into the VMM.

To achieve multi-vCPU safety, we store the first instruction at
a location already mapped as executable, but unused at run-time.
Here, we can safely place the second SMC after the stored instruc-
tion. The exact location of this memory is flexible as we only need
space for two instructions per monitored location. For this, we
can leverage known memory holes in the Linux kernel, such as
the memory immediately following the kernel. For simplicity, we
dedicate an entire page, backup page, for these two instructions
(Figure 3(a)). In the figure, the original-view represents the phys-
ical memory that is made visible to the guest through SLAT. On
execution of the first SMC in the system-call handler, we point the
trapped vCPU’s Program Counter (PC) to the backup page holding
the original first instruction without performing any further mod-
ifications. Once the second SMC in the backup page is executed,
we point the PC back to the instruction following the first SMC
in the original page. While the above focuses on single-stepping
the first instruction of system-call handlers, we can apply the same
approach for arbitrary regions in the guest kernel. This however,
must foresee corner-cases, such as function returns and branches,
and thus requires the monitor to compute the target address.

3.3 Xen altp2m on ARM
Due to architectural differences between Intel and ARM, existing
VMI solutions cannot be applied to the ARM architecture. To shift
existing malware analysis tools that rely on the requirements (R1),
(R2), and (R3) to the ARM architecture, we mimic the behavior of
an effective approach for Intel, namely Xen alternate p2m subsystem
(short altp2m). The original Xen altp2m has been exclusively used
on Intel. In this architecture, a VM’s memory view can be directly
associated with an EPT represented by the EPT pointer (EPTP)
in the hardware defined data structure Virtual Machine Control
Structure (VMCS). The VMCS holds the host’s and the guest’s state
and VM control information. It has capacity for up to 512 EPTPs—
memory views—that can be dynamically switched. Xen altp2m is
the first public implementation making use of this CPU feature,
which makes it a unique tool for Virtual Machine Introspection [14].

We implement altp2m for ARM upon the Xen p2m subsystem.
Xen p2m stands for physical to machine and leverages SLAT to
manage and isolate memory between guest domains (Xen’s notion
for VMs) and the VMM. On ARM the Virtualization Translation
Table Base Register (VTTBR) holds the base address of SLAT tables,
similarly to the EPTP on Intel. Xen p2mmaintains only one VTTBR.
As such, the p2m subsystem maintains a single view of the guest’s
physical memory, even for VMs with multiple vCPUs. On the other



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Proskurin et al.

Figure 4: The execute-view maps the target guest frame as
execute-only; the original-viewmaps it as read-write-execute.

hand, Xen altp2m on ARM allows to dynamically define and switch
among different VTTBRs per domain and vCPU. The interaction
with the altp2m interface takes place through dedicated hypercalls,
called HVMOPs. These facilitate the privileged domain Dom0 to
create, switch, and destroy individual memory views that are then
applied to unprivileged domains DomU (Figure 2). In addition, the
altp2m interface allows to define memory access permissions of
individual guest physical page frames per view and also remap
individual guest frames to different machine frames.

VMI tools leverage SLAT to control access permissions of the
guest’s physical memory [7, 17]. When the guest traps into the
VMM due to a memory access violation, the access permissions
of the associated entries must be temporarily relaxed; the VMM
must grant the required permission so the guest can continue. Yet,
relaxing permissions in this ubiquitous view may allow one of the
remaining vCPUs to access the targeted memory without notify-
ing the VMM. One solution is to pause remaining vCPUs while
single-stepping the trapped vCPU. This, however, imposes severe
performance degradation. Also, the lack of stealthy single-stepping
on ARM makes VMI-tools susceptible to disclosure. Xen altp2m
solves such race conditions by maintaining different views of the
guest’s physical memory (Figure 2). Instead of changing permis-
sions of a single memory view at run-time, altp2m allows to allocate
a set of views beforehand. This way, a monitor can individually
assign a specific memory view to each vCPU of DomU. As such,
for instance on memory access violations, VMI-tools can switch
the view of the affected vCPU to a less restrictive view, instead
of explicitly relaxing permissions of the view that led to the trap;
switching views is as simple as switching the domain’s VTTBR.

Let us depict a scenario in which we monitor writes to critical
regions (e.g., exception vectors) in a multi-vCPU domain. This sce-
nario assembles the architecture in Figure 2. A monitor in Dom0
allocates two distinct guest memory views that can be applied to
each vCPU in DomU. The monitor grants all guest frames of the crit-
ical region execute-only permissions in the execute-view. The same
guest frames keep their original permissions in the original-view
(Figure 4); write attempts to the critical page by vCPUs with an ac-
tive execute-view generate memory access violations. We configure
this behavior as default on all vCPUs. On a potentially malicious
write attempt, instead of relaxing permissions, the monitor switches
the view of the trapped vCPU to the less restrictive original-view.
This allows us to record the event, satisfy the write request, and
avoid the target application to become suspicious. We do not relax
permissions of other vCPUs and thus avoid race conditions. To
ensure the monitor regains control immediately after the write, we
single-step the trapped vCPU and switch back to the execute-view.

To further highlight the potential of Xen altp2m, we combine
the single-stepping scheme in Section 3.2 with Xen altp2m. For
every instruction to be single-stepped, an external monitor has
to increase the guest’s physical memory by two additional pages.
This allows it to create two shadow-copies of the page holding the
original instruction (we need two additional copies if we would
like to satisfy code integrity checks that can be redirected to a view
pointing to the original page). That is, similar to the above scenario,
we allocate two additional guest memory views: the execute-view
holds the first duplicate, shadow-copy’, while the step-view maps
the shadow-copy” (Figure 3(b)). We replace the target instruction in
the execute-view with a privileged SMC instruction. Then, instead
of allocating a backup page in the same memory view, we replace
the second instruction of the same function in the shadow-copy”. As
such, on execution of the first SMC in the execute-view, the monitor
can switch to the step-view without further adjustment. Finally,
upon the execution of the target instruction, the execution of the
adjacent SMC instruction in step-view traps again into the VMM,
where we return to the execute-view and complete single-stepping.

These scenarios demonstrate the potential of Xen altp2m, enforc-
ing memory restrictions through SLAT. The guest has no access to
SLAT tables, as they reside in VMM’s memory. Thus, such memory
restrictions are stealthy. In fact, we meet the requirements (R1-R3)
and hence establish a base for stealthy VMI on AArch64.

3.4 Splitting the TLBs
Sadly, AArch32 is not capable of enforcing execute-only pages; every
code page has to be both readable and executable, or instruction
fetches will fail. Thus, while (R1) and (R2) (partially) apply to
AArch32, (R3) is not covered. Therefore, we cannot assure stealthy
operation of Xen altp2m without further actions. To overcome this
limitation we explore the TLB organization on ARM and implement
a system we refer to as split-TLB that satisfies our requirements. 3

ARM implements TLB-tagging to isolate translations taggedwith
different VMIDs. We made a joint decision with Xen maintainers
that unique VMIDs will be assigned to each altp2m view. Contrary
to x86, on ARM a TLB tag corresponds to a specific memory view
instead of a vCPU ; by switching altp2m views we activate the asso-
ciated VMID, without having to flush differently tagged mappings
of same guest physical memory. On the other hand, if different
altp2m views shared a VMID, the guest would be susceptible to
using stalled translations in the TLB, even though the active view
contained the most recent mappings in memory. We choose to em-
ploy this architectural feature to hide modified code pages from
data fetches and thus mimic execute-only memory on AArch32. As
such, we extend the altp2m interface to pair the VMIDs of altp2m
views to de-synchronize the physically separated iTLB and dTLB.

To cause an inconsistent state in the TLBs that we require for
hiding code pages, we prime the iTLB so that it holds guest frame
mappings that translate to different machine frames than those
cached in the dTLB. That is, we require a mechanism that allows
us to translate one guest frame to two physically different machine
frames; only one of both mappings will be exclusively cached either
in the iTLB or dTLB. To achieve this effect, first, we duplicate the

3The term split-TLB first appeared in the context of processor architectures. In this
paper, we use this term also as a substitute for the de-synchronized TLB organization.



Hiding in the Shadows: Empowering ARM for Stealthy VMI ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Figure 5: The original-view translates the guest frame to
MFN1, while the execute-view translates the same guest frame
to MFN2. Both views are tagged with the same VMID.

page with the instruction to be monitored and replace it with an
SMC instruction in the shadow-copy without modifying the origi-
nal page. Then, we prepare two altp2m views and map both pages
according to Figure 5. It is essential that both memory views are
tagged with the same VMID; the systemwill ignore the primed iTLB
entry, if it switches to a memory view with a different VMID. We
grant the original page read-only permissions. We withdraw write
permissions from the original page in the original-view to intercept
write attempts. This allows us to monitor any change to the original
page and propagate the modifications to the shadow-copy as re-
quired. Since AArch32 does not support execute-only mappings, we
grant the shadow-copy read-execute permissions. Also, we withdraw
the execute right from all other mappings in the execute-view, as to
limit the execution in this view to the page of interest (Figure 6).

We configure the original-view to be active by default. On the
first execution of the function to be monitored, the guest hands
over control to the VMM: the instruction fetch violates the permis-
sions of the read-only mapping. As such, the translation result does
not get cached in the TLBs. The monitor leverages this architec-
tural property to intercept the guest upon permission violation and
switch to the execute-view, which grants execution access of the
requested guest frame. This time, upon the successful SLAT table
walk using the execute-view, the translation mechanism populates
the iTLB with the machine frame that is associated with the execute-
view (MFN2 in Figure 5). Consequently, further instruction fetches
from the page in question will directly consult the primed iTLB
entry until it gets evicted. When the primed iTLB entry gets evicted
it will need to be primed again. Upon execution of the SMC in the
execute-view, the monitor can single-step the original instruction
as described in Sections 3.2 and 3.3. After single-stepping the moni-
tored instruction, the monitor switches back to the original-view.

The setup configures two views that map one guest frame to
two machine physical frames with different access permissions.
By priming the iTLB the target instruction is fetched from the
execute-view, while reads use the original-view. As the iTLB and
dTLB hold mappings from two different views, the primed system
does not need the VMM to switch the views. This setup satisfies
reads initiated, for example, by integrity checkers. At the same time,
it transparently causes the guest to execute the SMC instruction in
the shadow-copy of the original page (R3). Thus, split-TLB incurs
minimal overhead, as it traps to the VMM only for the purpose of

Figure 6: The original-view maps the target to the original
machine frame; the execute-view to the shadow-copy.

priming the TLBs or on execution of SMC instructions. Nevertheless,
this setup entails a limitation that we discuss in detail in Section 5.2.

4 EVALUATION
To evaluate our work, we have implemented the discussed Xen
altp2m subsystem and ported LibVMI [18] and the dynamic mal-
ware analysis framework DRAKVUF [17] to the ARM architecture. 4
We have equipped DRAKVUF with the presented VMI-primitives
to assemble the foundation for stealthy guest kernel monitoring on
AArch32 and AArch64. This allowed us to assess both the effective-
ness and performance penalty of the introduced primitives.

4.1 System Setup
Our system setup comprised an external monitor (i.e., DRAKVUF)
running on top of the Xen hypervisor v4.11. DRAKVUF was exe-
cuted in the privileged domain Dom0 and it traced system-calls that
were executed in the unprivileged domain DomU. The domains exe-
cuted the Linux kernel v4.15. Generally, DRAKVUF uses OS-profiles
statically generated by Rekall [26] to locate system-calls and set tap
points in the prologue of each system-call handling function in the
guest’s kernel memory. This way, it establishes the means to inter-
cept and monitor the guest’s kernel behavior. Unfortunately, Rekall
lacks the ability to generate profiles for Linux kernels compiled for
AArch64. Consequently, we have implemented and open-sourced a
custom Rekall profile generator to gather relevant AArch64 system-
call and kernel data structure information. 5

As part of our evaluation, DRAKVUF leveraged our Xen altp2m
implementation 6 to dynamically create and switch among different
guest memory views on ARM; it used the altp2m interface to com-
municate with the introduced subsystem from Dom0. We employed
altp2m in combination with the discussed VMI-primitives that meet
our requirements (R1 – R3) to stealthy monitor every system-call
on AArch64 (Section 3). In total, our system-setup monitored 340
different system-calls which were distributed across 111 different
4 KB memory pages. In addition, we armed altp2m with the ability
to take control over the TLB organization to assess the primitives
for stealthy monitoring on AArch32 (Section 3.4).

We have set up our system on a HiKey LeMaker AArch64 de-
velopment board running an ARM Cortex-A53 CPU with 1.2 GHz.
Further, we have lent 1GB of RAM to the privileged domain Dom0
and the target domain DomU. Although we performed all measure-
ments on AArch64, the setup can be equally applied to AArch32.

4https://github.com/drakvuf-on-arm/drakvuf-on-arm
5https://github.com/drakvuf-on-arm/rekall-profile-generator
6https://github.com/drakvuf-on-arm/xen/tree/arm-altp2m-drakvuf

https://github.com/drakvuf-on-arm/drakvuf-on-arm
https://github.com/drakvuf-on-arm/rekall-profile-generator
https://github.com/drakvuf-on-arm/xen/tree/arm-altp2m-drakvuf


ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Proskurin et al.

(a) Hardware-SS (b) Double-SMC-SS (c) Split-TLB-SS

Figure 7: Xen altp2m guest-physical memory view configuration leveraging three single-stepping alternatives.

4.2 DRAKVUF on ARM
To assess the presented VMI-primitives for the ARM architecture,
we have combined these with DRAKVUF. The established foun-
dation for DRAKVUF enabled thereby stealthy dynamic malware
analysis on ARM. In addition, to demonstrate that our proposed
single-stepping primitive (by using both synchronized and de-
synchronized TLB configuration) can keep up with the performance
of the hardware-supported approach, we have implemented a con-
ventional, non-stealthy single-stepping mechanism for Xen in the
way it is specified by the AArch64 specification [1]; this single-
stepping alternative leverages dedicated hardware capabilities con-
trolled through the PSTATE.SS bit on AArch64 (Section 2).

That is, within the scope of our evaluation, we have extended
Xen, LibVMI, and DRAKVUF in such a way that we can employ the
VMI-primitives for setting arbitrary tap points in the guest’s kernel
memory and protecting these through our Xen altp2m subsystem
implementation. At the same time, we can combine these primitives
with one of the three different single-stepping approaches:

• Hardware-SS: a non-stealthy single-stepping implementation
that leverages hardware capabilities of AArch64 (Section 2).

• Double-SMC-SS: our stealthy method that leverages two SMC
instructions protected by Xen altp2m (Section 3.3).

• Split-TLB-SS: an approach that additionally de-synchronizes
the TLB organization to make up for the lack of execute-only
memory (R3) on AArch32 (Section 3.4).

Regardless of the applied single-stepping method, DRAKVUF
leverages Xen altp2m to set and protect tap points in the pro-
logue of each system-call handling function. More precisely, we
leveraged DRAKVUF to duplicate all pages holding system-calls
to be monitored (Figure 7). Then, we allocated two guest memory
views, whereas the first view (original-view) mapped the original
page, the second view (execute-view) mapped the shadow-copy. We
granted the original page in the original-view read-only permissions.
The permissions of the shadow-copy in the execute-view were ei-
ther execute-only on AArch64 or read-execute on AArch32. In both
Hardware-SS and Double-SMC-SS setups, it was the execute-view
that was active by default; Split-TLB-SS used the original-view as de-
fault. Finally, we replaced the first instruction of every system-call
handling function in the shadow-copywith an SMC instruction. Fur-
ther processing depends on the employed single-stepping method.
The following exemplifies the individual steps taken by DRAKVUF

to trace every invocation of a system-call inside the guest domain
in accordance with one of the single-stepping alternatives.
Hardware-SS: To prevent the guest from discovering the instru-
mented SMC instruction in the shadow-copy, we mark the memory
page mapped in the execute-view as execute-only (Figure 7(a)). This
way, the execution of the first instruction of the system-call handler
in the execute-view interrupts the guest kernel execution and hands
control over to Xen, which in turn notifies DRAKVUF about the trap.
Consequently, DRAKVUF switches back to the original-view, single-
steps only one instruction (i.e., the original first instruction of the
system-call handling function) via the dedicated hardware mecha-
nism, and resumes execution in the execute-view. All read-requests
to code pages that are marked execute-only in the execute-view can
be satisfied by switching to the original-view. Also, we intercept
write-requests to propagate potential changes to all views.
Double-SMC-SS: In this context, we use the same original-view
and execute-view configurations as in Hardware-SS. In addition, we
create a third view, step-view, which we use to single-step instruc-
tions without the intended hardware capabilities. The step-view
maps a second copy of the original page, in which we replace the
second instruction of the system-call handler function with a second
SMC (Figure 7(b)). This way, on interception of the first SMC in
the execute-view, DRAKVUF switches to the step-view to execute
and trap immediately after the first instruction. The second SMC
instruction in the step-view facilitates DRAKVUF to switch back to
the execute-view and continue execution right after the first SMC.
Split-TLB-SS: As AArch32 lacks execute-only memory, we granted
read-execute permissions to the shadow-copies in the execute-view
and step-view Figure 7(c)). To de-synchronize the entries in the
iTLB from the dTLB, we used the same VMID for the original- and
execute-view. We primed the iTLB such that instruction fetches
from the target page accessed the execute-view in the iTLB; data
access consulted the original-view in the dTLB. Right after executing
the first SMC, DRAKVUF dynamically switched to the step-view to
single-step the original first instruction similarly to Double-SMC-SS.

In all configurations, every time a system-call trapped into Xen,
it notified DRAKVUF about the event, which monitored the system-
call for further processing; on every system-call, DRAKVUF inter-
cepted the guest, monitored the event, single-stepped the trapped
instruction according to the applied single-stepping alternative, and
resumed the guest. As such, during benchmarking, our monitor
was overwhelmed with a persistent shower of system-calls.



Hiding in the Shadows: Empowering ARM for Stealthy VMI ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Table 1: Monitoring overhead (OHD) of DRAKVUF utilizing Hardware-SS, Double-SMC-SS, and Split-TLB-SS primitives mea-
sured by Lmbench 3.0, in msec.

Benchmark w/o Hardware (OHD) Double-SMC Split-TLB
Step-View (OHD) Backup Page (OHD) Step-View (OHD) Backup Page (OHD)

fork+execve 1383.33 6053.67 4.38 × 5567.33 4.02 × 6033.00 4.36 × 26690.66 19.29 × 17057.00 12.33 ×
fork+exit 377.43 835.52 2.21 × 787.14 2.09 × 924.83 2.45 × 5910.83 15.66 × 4225.83 11.20 ×
fork+/bin/sh 3249.17 12542.00 3.86 × 11672.67 3.59 × 12737.33 3.92 × 53134.66 16.35 × 34231.33 10.54 ×
fstat 0.62 94.94 152.57 × 78.65 126.40 × 84.20 135.81 × 103.52 166.97 × 75.33 121.06 ×

mem read 1745.00 1692.33 0.97 × 1692.33 0.97 × 1738.00 1.00 × 1730.33 0.99 × 1735.33 0.99 ×
mem write 4687.67 4310.00 0.92 × 4308.33 0.92 × 4715.00 1.00 × 4575.33 0.98 × 4602.00 0.98 ×
open/close 5.44 202.67 37.25 × 158.33 29.11 × 179.26 35.95 × 269.67 49.57 × 184.65 33.94 ×
page fault 1.49 1.72 1.15 × 1.74 1.16 × 1.62 1.09 × 1.90 1.28 × 1.91 1.28 ×
pipe lat 12.26 371.92 30.34 × 344.83 28.13 × 425.28 34.69 × 955.53 77.94 × 482.60 39.36 ×
read 0.67 95.21 141.14 × 79.10 117.27 × 84.06 125.46 × 99.34 148.27 × 75.39 111.77 ×
select 500 fd 28.33 124.62 4.40 × 110.23 3.89 × 114.51 4.04 × 124.47 4.39 × 113.85 4.02 ×
signal handle 4.34 189.67 43.70 × 150.33 34.64 × 154.13 35.51 × 178.00 41.01 × 158.33 36.48 ×
signal install 0.51 95.00 186.27 × 72.00 141.18 × 75.13 147.31 × 89.07 174.65 × 73.73 144.58 ×
stat 2.63 99.97 38.06 × 80.73 30.74 × 85.30 32.43 × 105.58 40.14 × 83.57 31.82 ×
syscall 0.31 94.21 299.05 × 75.15 238.55 × 83.49 269.32 × 98.48 317.68 × 78.84 250.26 ×
write 0.47 95.34 203.32 × 76.82 163.81 × 83.86 178.43 × 103.22 219.62 × 73.77 157.31 ×

4.3 Performance
Automated VMI-based malware analysis strongly affects the over-
all system performance. As such, the VMI-induced performance
overhead must be kept to a minimum. To evaluate the performance
overhead of the introduced VMI-primitives, we have conducted two
experiments comprising a set of CPU-intensive macro- and micro-
benchmarks, during which we used DRAKVUF to monitor every
system-call that was set off by the benchmarking tools in DomU.
To solely focus on the monitoring overhead, we have deactivated
the output to the console. All results are means over three runs.

In the first experiment, we used DRAKVUF to trace all system-
calls that were set off by a set of lmbench 3.0 micro-benchmarks.
This allowed us to analyze the induced performance cost on system-
software level (Table 1). To be more precise, first, we have executed
DRAKVUF in combination with the Hardware-SS approach that
leveraged the AArch64 hardware architecture to single-step pro-
tected tap points and determined the overall execution overhead. In
this way, we have established a baseline which we then have com-
pared with DRAKVUF’s performance using both of our proposed
single-stepping variants, namely Double-SMC-SS and Split-TLB-SS.
Besides, as both variants can leverage a backup page in the execute-
view instead of using an additional step-view (Figure 3(a)), we ex-
amined the performance of both configurations for each single-
stepping primitive. Overall, the results show that the performance
of Double-SMC-SS and Split-TLB-SS are close to our baseline imple-
mentation for single-stepping and thus present suitable alternatives.

Surprisingly, we have observed that in most cases the Double-
SMC-SS implementation outperforms Hardware-SS. One can argue
that our implementation responsible for managing the hardware-
supported single-stepping in Xen requires additional overhead that
might result in the observed behavior. However, we believe that
the hardware logic behind stepping one instruction requires more
time than simply intercepting the execution of an SMC.

The performance of the Split-TLB-SS approach strongly depends
on the number of memory pages are involved in the system-call.
That is, since we have only a very limited number of iTLB-entries
(10 iTLB entries on ARM Cortex-A53), as soon as the system-call ac-
cesses memory pages that are not yet part of the iTLB, primed iTLB
entries might get evicted according to the TLB eviction strategy.

Table 2: Virtualization overhead (OHD) induced by
DRAKVUF, utilizing Hardware-SS, Double-SMC-SS, and
Split-TLB-SS primitives by the Phoronix Test Suite v7.6.0.

Benchmark (unit) w/o Hardware (OHD) Double-SMC (OHD) Split-TLB (OHD)

Gzip (s) 416.81 466.78 11.99 % 568.10 36.30 % 1209.24 190.12 %
N-queens (s) 779.78 779.79 0.00 % 779.78 0.00 % 779.76 0.00 %
7-Zip (MIPS) 612.67 616.00 -0.54 % 612.00 0.11 % 550.33 10.17 %

In our second experiment, we have conducted a set of CPU-
intensive macro-benchmarks of the Phoronix Test Suite v7.6.0 and
summarized the results in Table 2. Please note that the units of our
measurements vary. The collected results suggest that DRAKVUF
incurs only limited overhead on the overall system performance
and thus is very well suited for efficient malware analysis on ARM.

4.4 Effectiveness
To demonstrate the effectiveness of DRAKVUF onARM,we have set
up our system to analyze the adore-ng rootkit on ARM. By setting a
tap point to trace kallsyms_lookup_name, we identiefied that the
rootkit determined the location of the kernel function for kernel
hot patching (aarch64_insn_patch_text). In particular, it created
kernel hooks required, among others, to hide files, processes, and
logs and to communicate with the rootkit. As such, we set another
tap point to aarch64_insn_patch_text and hence observed all
malicious writes to kernel regions holding sensitive function hooks.

We have further lend the adore-ng a split-personality property
that was looking for artifacts that could reveal our monitor. When
the rootkit had detected our analysis framework, it terminated its
operation. With this property, adore-ng was able to successfully
uncover our system when it leveraged Hardware-SS to trace and
single-step the rootkit (Section 2.3). Also, the rookit was able to re-
veal SMC instructions by synchronizing the TLBs, when we applied
our Split-TLB-SS scheme on AArch32. The exact steps to disclose
Split-TLB-SS are described in Section 5.2. Yet, the Double-SMC-SS
method on AArch64 remained undisclosed. Consequently, as we
can use the AArch64 architecture to also trace AArch32 guests, we
deem this analysis method stealthy for both architectures.



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Proskurin et al.

5 DISCUSSION
This section discusses alternative tracing methods and reviews the
limitations of the proposed VMI primitives.

5.1 Alternative Tracing Methods
Our approach necessitates two guest context switches to trap on
and single-step one instruction. If we limit ourselves to tracing the
Linux kernel, we can adapt the functionality of ftrace [30], a tracing
framework for Linux kernel analysis. Assuming a Linux kernel
compiled with the CONFIG_DYNAMIC_FTRACE parameter, the prolog
of white-listed kernel functions holds a call to a dedicated stub, calls
to which allow ftrace to record the function call. When tracing is
disabled, this stub is filled with NOP instructions. We can reuse the
call to the function stub in every kernel function by placing an SMC
instruction to this position and protecting it through Xen altp2m.
This approach eliminates the need for the second SMC (Figure 3),
as we do not need to replace and single-step any instructions.

This approach reduces the single-stepping overhead. Yet, it limits
itself to monitoring only Linux guests with ftrace support. Also,
tracing has to be deactivated; an adversary can use this knowledge
to reveal the monitor. On the other hand, the monitor can fall back
to our default approach if tracing is activated. In contrast, our single-
stepping method (Sections 3.2 and 3.3) is not limited to tracing only
Linux kernels and can single-step functions at arbitrary locations
by considering corner-cases affecting the control-flow. This renders
our design capable of monitoring all guest kernel locations.

Besides, our single-stepping schemes create up to three altp2m
views, whereas each maps an own variant of the original page
(Figure 7). I.e., we consume up to two additional pages per page
holding the target function. Instead of creating an additional step-
view, we can use a backup page holding the original instruction and
a second SMC per tap point (Figure 3(a)). Thus, we can reduce the
pages as one backup page has capacity for up to 512 tap points.

5.2 Limitations
The discussed techniques present novel approaches for stealthy
monitoring the kernel space in multi-vCPU guest domains. Our
implementation of Xen altp2m on AArch64 in connection with
de-synchronizing split-TLBs on AArch32 allows us to hide arbitrary
code from the guest. Yet, our prototype entails following limitations.
Applicability: By employing SMC instructions as a trigger to
switch the control flow to the VMM, we limit ourselves to only
intercepting the execution of EL1, which is the guest’s kernel space.
While providing the means to hide arbitrary code in the user space,
we chose the SMC instruction because guests cannot subscribe to
SMC events. This concept reduces the complexity of the monitor, as
it eliminates the need for any SMC event injections into the guest.
A great alternative to the SMC instruction is the Branch Exchange
Jazelle (BXJ) instruction [4]. This instruction can be executed in
EL0 and can be configured to trap into EL2. Yet, while BXJ can be
executed by AArch32 guests, AArch64 guests do not support this in-
struction. Another alternative can be implemented by instructions
accessing memory that is known to be protected by the monitor.
Robustness: Our Split-TLB-SS solution cannot guarantee ongoing
stealthy operation on AArch32 CPUs that implement a uniTLB. On
such systems, attackers can re-synchronize the TLBs and reveal

SMC instructions from inside the guest. Therefore, she must syn-
chronize the TLBs to detect pages hidden in the iTLB. This can be
achieved by forcing the system to evict the primed iTLB entries to
the uniTLB and fetch them to the dTLB. The attacker must ensure
that the dTLB does not contain valid mappings of the affected pages,
as they would satisfy the guest’s read and write requests. Also, if the
primed entries in the iTLB get evicted, while having valid mappings
in the dTLB, the VMM will be able to re-prime the iTLB. As such,
the guest must only evict the dTLB. Explicit evictions result from
flush operations. Implicit evictions result when the iTLB or dTLB
buffer gets full and needs to store a new entry; the hardware evicts
one of the entries from either the iTLB or dTLB to the uniTLB. The
adversary knows that ARM holds a finite number (in our case 10)
of fully associative entries in the iTLB and dTLB. Upon allocation
of pages, she can read or write to them forcing the system to implic-
itly flush the dTLB. Hence, the next data access to the target page
will consult the uniTLB. Next, the attacker flushes the iTLB to the
uniTLB in a similar way to ensure the primed entries are available
for future access through the dTLB. Subsequent reads from the
target address will consult the uniTLB and reveal the hidden SMC.
Scope: On AArch32, we further restrict our scope to tracing the
execution of code pages in kernel space, which do not perform
integrity checks on themselves. This applies to the majority of the
kernel, including system-call handlers. This limitation emerges as
we cannot hide injected SMC instructions at arbitrary positions in
the kernel space; AArch32 specifies executable pages to be marked
with read-execute access privileges. Thus, for instance, we distance
our mechanisms from monitoring dynamically loaded kernel mod-
ules that might perform integrity checks of routines located on the
same page as the checking mechanisms themselves.

Besides, the analyst must be aware of system-calls that are
mapped into the Virtual Dynamic Shared Object (VDSO), a shared
library mapped into the address space of user space applications. It
is used to increase performance of frequently called system-calls,
by eliminating the context-switch overhead. This way, frequently
called system-calls are mapped to user space and therefore cannot
be monitored through SMC instructions. On ARM, however, sym-
bols that are exported through the VDSO into user space are limited
(i.e., four symbols on AArch64 and two symbols on AArch32).
Stealth: Some of the problematic anti-virtualization categories deal
with behavioral discrepancies between physical and virtual envi-
ronments. These comprise timing overhead induced by emulation
or analysis. Side effects of certain instructions can differ as they are
not sufficiently documented. This category can only be partially
addressed. The hardware behavioral knowledge can be gathered
through massive testing [27] and simulated by a VMM. Yet, if an at-
tacker has access to external time sources, such as NTP, she will be
able to detect discrepancies caused by the virtualization overhead.

6 RELATEDWORK
An analysis framework must be stealthy to avoid perturbing mal-
ware. SPIDER [7] is a stealthy debugging and instrumentation
framework based on Linux KVM. In addition, DRAKVUF [17] is
a VMI-based, automated dynamic malware analysis framework
built on top of LibVMI [18] and Xen. SPECTRE [39] facilitates a
stealthy analysis framework by operating on a level below the



Hiding in the Shadows: Empowering ARM for Stealthy VMI ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

hypervisor. In a similar fashion, MALT [38] provides debugging ca-
pabilities that can be employed from remote. SPROBES [13] utilizes
ARM TrustZone to enforce kernel integrity. Similarly, Ninja [21]
leverages TrustZone and also ARM’s performance monitor unit
to transparently analyze malware. Also, Lengyel et al. [15, 16] ex-
plore concepts that may be leveraged for VMI with Xen on ARM.
Finally, the WhiteRabbit [25] VMI framework combines on-the-fly
virtualization with VMI on x86 and ARM. Our primitives combined
with WhiteRabbit would establish a stealthy monitor that could be
deployed on systems that were not explicitly set up for VMI.

In the opposite direction, ShadowWalker rootkit [28], abuses the
split organization of TLBs for stealth purposes. Similarly, Wurster
et al. [34] defeat integrity checks. Additionally, the MoRE Shadow
Walker [31] demonstrates that modern, hybrid TLB organizations
with an additional shared TLB level are prone to de-synchronization
techniques. Grsecurity, on the other hand, de-synchronizes the
split-TLB architecture in PAGEEXEC [22] to overcome the lack of
hardware supported execute-only pages. These mechanisms mainly
focus on the x86 architecture. Also, the presented approaches re-
quire invasive kernel changes or a dedicated hypervisor. In con-
trast, our approach employs capabilities of the open source Xen
hypervisor to de-synchronize TLBs on both ARMv7 and ARMv8
architectures facilitating stealthy monitoring of guest domains.

7 CONCLUSION
In this paper, we proposed novel techniques that facilitate stealthy
monitoring of guest OSes on ARM. We overcame ARM’s lack of
hardware support for stealthy VMI by presenting primitives which
empower monitoring of guest OSes. These primitives establish an
alternative way of setting and single-stepping software breakpoints
without using the intended hardware mechanisms. We extended the
Xen Project hypervisor to leverage SLAT to define and dynamically
switch among different guest physical memory views. To this end,
we introduced the first system on ARM capable of holding multiple
guest memory views in parallel which presents a stealthy solution
on AArch64. We further combined the above techniques with pecu-
liarities of the TLBs to overcome the lack of execute-only memory
on AArch32 by de-synchronizing the TLB organization. We have
examined this approach and identified its inherent advantages and
limitations. In conclusion, we believe that our methodologies can
establish powerful covert VMI analysis systems on ARM.

REFERENCES
[1] ARM. 2017. ARMArchitecture Reference Manual, ARMv8 for ARMv8-A Architecture

Profile (DDI 0487C.a).
[2] Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda, Christopher

Kruegel, and Giovanni Vigna. 2010. Efficient Detection of Split Personalities in
Malware. In ISOC Network and Distributed System Security Symposium (NDSS).

[3] Bitdefender. 2018. Bitdefender. http://www.bitdefender.com/.
[4] Robert Buhren, Julian Vetter, and Jan Nordholz. 2016. The Threat of Virtualization:

Hypervisor-Based Rootkits on the ARM Architecture.
[5] Peter M. Chen and Brian D. Noble. 2001. When Virtual Is Better Than Real. In

USENIX Workshop on Hot Topics in Operating Systems (HotOS).
[6] Xu Chen, Jon Andersen, Z Morley Mao, Michael Bailey, and Jose Nazario. 2008.

Towards an Understanding of Anti-Virtualization and Anti-Debugging Behavior
in Modern Malware. In Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN).

[7] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. 2013. SPIDER: Stealthy Binary
Program Instrumentation and Debugging via Hardware Virtualization. In Annual
Computer Security Applications Conference (ACSAC).

[8] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether: Mal-
ware Analysis via Hardware Virtualization Extensions. In ACM Conference on

Computer and Communications Security (CCS).
[9] Ferrie, Peter. 2007. Attacks on More Virtual Machine Emulators. Symantec

Technology Exchange (2007).
[10] FireEye. 2018. FireEye. https://www.fireeye.com/.
[11] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. 2007. Com-

patibility Is Not Transparency: VMM Detection Myths and Realities. In USENIX
Workshop on Hot Topics in Operating Systems (HotOS).

[12] Tal Garfinkel and Mendel Rosenblum. 2003. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In ISOC Network and Distributed
System Security Symposium (NDSS).

[13] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. 2014. SPROBES: Enforc-
ing Kernel Code Integrity on the TrustZone Architecture. In IEEE Mobile Security
Technologies Workshop (MoST).

[14] Tamas K Lengyel. 2016. Stealthy Monitoring With Xen Altp2m. https:
//blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m.

[15] Tamas K. Lengyel, Thomas Kittel, and Claudia Eckert. 2015. Virtual Machine
Introspection With Xen on ARM. In Workshop on Security in highly connected IT
systems (SHCIS).

[16] Tamas K Lengyel, Thomas Kittel, Jonas Pfoh, and Claudia Eckert. 2014. Multi-
Tiered Security Architecture for ARM via the Virtualization and Security Exten-
sions. In International Workshop on Database and Expert Systems Applications
(DEXA).

[17] Tamas K Lengyel, Steve Maresca, Bryan D. Payne, George D. Webster, Sebastian
Vogl, and Aggelos Kiayias. 2014. Scalability, Fidelity and Stealth in the DRAKVUF
Dynamic Malware Analysis System. In Annual Computer Security Applications
Conference (ACSAC).

[18] LibVMI. 2018. LibVMI Virtual Machine Introspection. http://libvmi.com.
[19] Linux Foundation. 2018. Xen Project. https://www.xenproject.org/.
[20] Litty, Lionel and Lagar-Cavilla, H. Andrés and Lie, David. 2008. Hypervisor Sup-

port for Identifying Covertly Executing Binaries. In USENIX Security Symposium.
[21] Zhenyu Ning and Fengwei Zhang. 2017. Ninja: Towards transparent tracing and

debugging on arm. In USENIX Security Symposium.
[22] PaX Project. 2018. Pageexec. http://pax.grsecurity.net/docs/pageexec.txt.
[23] Bryan D Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. 2008. Lares:

An Architecture for Secure Active Monitoring Using Virtualization. In IEEE
Symposium on Security and Privacy (S&P).

[24] Jonas Pfoh, Christian Schneider, and Claudia Eckert. 2011. Nitro: Hardware-Based
System Call Tracing for Virtual Machines. In International Workshop on Advances
in Information and Computer Security (IWSEC).

[25] Sergej Proskurin, Julian Kirsch, and Apostolis Zarras. 2018. Follow the WhiteR-
abbit: Towards Consolidation of On-the-Fly Virtualization and Virtual Machine
Introspection. In IFIP International Conference on ICT Systems Security and Privacy
Protection (IFIP SEC).

[26] Rekall Forensics. 2018. Advanced Forensic and Incident Response Framework.
http://www.rekall-forensic.com/.

[27] Hao Shi, Abdulla Alwabel, and Jelena Mirkovic. 2014. Cardinal Pill Testing of
System Virtual Machines. In USENIX Security Symposium.

[28] Sherri Sparks and Jamie Butler. 2005. ShadowWalker: Raising the Bar for Rootkit
Detection. Black Hat, Japan (2005).

[29] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015.
CopperDroid: Automatic Reconstruction of Android Malware Behaviors.. In ISOC
Network and Distributed System Security Symposium (NDSS).

[30] The Linux Kernel. 2018. Ftrace – Function Tracer. https:
//www.kernel.org/doc/Documentation/trace/ftrace.txt.

[31] Jacob Torrey. 2014. MoRE Shadow Walker: TLB-splitting on Modern X86. Black
Hat, USA (2014).

[32] VMRay. 2018. VMRay GmbH. https://www.vmray.com.
[33] Sebastian Vogl, Fatih Kilic, Christian Schneider, and Claudia Eckert. 2013. X-Tier:

Kernel Module Injection. In International Conference on Network and System
Security (NSS).

[34] Glenn Wurster, Paul C van Oorschot, and Anil Somayaji. 2005. A Generic Attack
on Checksumming-Based Software Tamper Resistance. In IEEE Symposium on
Security and Privacy (S&P).

[35] Xen Project. 2018. Xen Security Advisory 203. https:
//xenbits.xen.org/xsa/advisory-203.html.

[36] Xen Project. 2018. Xen Security Advisory 204. https:
//xenbits.xen.org/xsa/advisory-204.html.

[37] Lok Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing
the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis. In
USENIX Security Symposium.

[38] Fengwei Zhang, Kevin Leach, Angelos Stavrou, Haining Wang, and Kun Sun.
2015. Using Hardware Features for Increased Debugging Transparency. In IEEE
Symposium on Security and Privacy (S&P).

[39] Fengwei Zhang, Kevin Leach, Kun Sun, and Angelos Stavrou. 2013. SPECTRE: A
Dependable Introspection Framework via System Management Mode. In Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

http://www.bitdefender.com/
https://www.fireeye.com/
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m
http://libvmi.com
https://www.xenproject.org/
http://pax.grsecurity.net/docs/pageexec.txt
http://www.rekall-forensic.com/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.vmray.com
https://xenbits.xen.org/xsa/advisory-203.html
https://xenbits.xen.org/xsa/advisory-203.html
https://xenbits.xen.org/xsa/advisory-204.html
https://xenbits.xen.org/xsa/advisory-204.html

	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

