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Abstract. Android is the most popular smartphone operating system.
At the same time, miscreants have already created malicious apps to
find new victims and infect them. Unfortunately, existing anti-malware
procedures have become obsolete, and thus novel Android malware tech-
niques are in high demand. In this paper, we present Falcon, an Android
malware detection and categorization framework. More specifically, we
treat the network traffic classification task as a 2D image sequence classi-
fication and handle each network packet as a 2D image. Furthermore, we
use a bidirectional LSTM network to process the converted 2D images
to obtain the network vectors. We then utilize those converted vectors to
detect and categorize the malware. Our results reveal that Falcon could
be an accurate and viable solution as we get 97.16% accuracy on av-
erage for the malware detection and 88.32% accuracy for the malware
categorization.

Keywords: Malware Detection, Malware Categorization, bi-directional LSTM,
2D image sequence Classification

1 Introduction

As the most popular mobile operating system globally, Android has become the
main target for many attackers who seek to exploit new victims. These adver-
saries leverage malicious apps to infect mobile devices to carry out miscreants’
nefarious activities, such as sending spam emails, spreading new malware, gen-
erating revenue from online advertisements by performing click-frauds, or even
tricking users into revealing personal and private data. On the other side, both
industry and academia work on the domain of Android malware investigation,
which includes malware detection and categorization in an attempt to mitigate
the aforementioned phenomenon [7, 10, 14, 18, 20]. Many of the proposed ap-
proaches utilize the contextual information of Android applications (primarily
Android APKs code). Chen et al. [8] propose a technique that examines An-
droid malware based on its static behavior that involves the use of components,
permissions, and sensitive Application Programming Interface (API) calls. Li et
al. [14] introduce a classifier based on the Factorization Machine (FM) archi-
tecture, in which they extract numerous Android app heuristics from both the
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manifest files and source code. However, both methods analyze the Android ap-
plication statically without running the program. Gibert et al. [11] present a way
to convert the executable files into a 2D image and achieve malware detection
based on the 2D image classification.

Meanwhile, several works either utilize the Android dynamic features, which
are generated by running the Android application in a sandbox [26,29] or capture
the network traffic to detect legitimate and malicious behaviors [2,16,17,28,32].
The first approach is expensive because it monitors those running applications
in different level calls (system-level, function-level, etc.) and performs several
low-level operations during their running activities. In contrast, capturing net-
work traffic to analyze the application’s behavior is cheaper. However, most of
the existing network traffic research is based on the manual indicated rules and
builds rule-based classic machine learning classifiers (network port, deep packet
inspection, statistical, and behavior-based features) to detect and categorize An-
droid malware. Still, those methods face a new challenge which is how to pick
up the appropriate features.

Representation learning [5], which can learn features from raw data auto-
matically, has increasingly attracted researchers and engineers. It can solve the
above challenge with the manual indicated methods. Wang et al. [28] present
a representation learning method for malware traffic classification, which con-
verts the raw network traffic/flow data to image and takes the converted images
as the input. Then, it uses a Convolutional Neural Network (CNN) to extract
features from the raw network traffic. However, converting the network flows to
images, and pre-train the 2D-gray-image-sequence-based multi-class classifica-
tion model, cannot classify those malware or benign samples based on each 2D
gray image. Normally, each PCAP file includes hundreds or thousands of raw
network packets and network flows. Therefore, the malware classification issue
converts to a continuous 2D image classification task. In other words, that is a
2D image sequence classification or sequential image classification [4, 15]. Most
of the sequential image classification works combine Recurrent Neural Networks
(RNNs) and CNNs, as they put the RNNs focus on the sequential task and the
CNNs on the image features. Meanwhile, in the Natural Language Processing
(NLP) field, in order to process the sequential issues with a pre-trained model,
BERT [9], GPT (v2, v3) [6,23], and other transformers (e.g., ELMo [22], Trans-
former [27]) capture the sequence relationship by leveraging Long Short Term
Memory (LSTM) or RNN networks.

In this paper, we present Falcon, a network-traffic-pattern-based malware
detection and categorization framework. We operate Falcon as follows. First,
we convert the network packets to 2D gray images and leverage CNNs to pre-
train the classification network for the network traffic features. We then use
a bi-directional LSTM network to process the continuous network traffic and
perform malware classification similar to the 2D image sequence classification
task. The results of our system are promising since Falcon exhibits 97.16% accu-
racy on average for the malware detection and 88.32% accuracy for the malware
categorization.
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In summary, we make the following main contributions:

– We introduce Falcon, a network-traffic-pattern-based Android malware de-
tection and categorization framework.

– We design a bidirectional LSTM network to accomplish 2D gray image se-
quence classification, which takes the network packets (converted to 2D im-
ages) as input.

– We create a dataset, AndroNetMnist , which includes 3,255,391 2D gray im-
ages in five classes for network traffic classification.

– We evaluate the accuracy of our approach using real-world datasets.

2 Related Work

With the increasing popularity of Android smartphones in recent years, the
topic of detecting Android malware and categorizing its families attracts sev-
eral researchers’ and engineers’ attention. As with every malware detection sys-
tem, Android malware detection can be classified into two types: the traditional
feature-codes-based method and the machine/deep-learning-based methods. Re-
garding the conventional feature-codes-based approach, the detector checks the
classic malicious behaviors. For machine/deep-learning-based methods, there are
also multiple features based frameworks. Permission-based malware detection
extract several types of permission features that are highly relevant to the man-
ifest file and source code of each mobile application, including API calls and
permissions [14,21,30].

Program-code-based malware detection methods extract features from the
code itself. Technically those features include the API calls, N-gram, and control
flow graph (CFG) based methods. API call based malware detection uses API
calls to detect Android malware [1,3,14,21,30]. In general, this type of method
first constructs two ranked lists of popular Android APIs. One is benign API list
that contains the top popular APIs commonly used in benign apps, and the
other malicious API list that contains the top popular APIs commonly used in
malicious apps. N-gram-based Malware Detection is based on the n-gram opcode
to detect Android malware [12,18,24]. Last but not least, Graph-based malware
detection systems use graph structure to perform their detection [10,19,31].

Machine learning and deep learning techniques are heavily introduced into
the network traffic analysis. Researchers use manual indicated features (e.g.,
port, deep packet inspection, statistical and behavior-based features) to recog-
nize network traffic application patterns with traditional machine learning al-
gorithms [2, 13, 17, 25, 28]. Finally, Gibert et al. [11] present a way to convert
the executable files to 2D images and achieve malware detection based on the
2D image classification, which is different compared to the 2D image sequence
classification problem.
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3 System Design and Implementation

In our work, we consider that network packets are composed of many network
flows. Those flows are counted as a binary representation and can be converted to
2D gray images. Therefore, we transform a malware detection and categorization
problem into a continuous 2D image classification and categorization problem.
For instance, randomly choosing one network packet from our dataset, it includes
3,329 network flows. Falcon converts those network flows to 3,329 2D gray images
and then to 3,329 vectors to represent those network flows. Finally, we take those
converted vectors into our classifier to accomplish the malware detection and
categorization tasks.

3.1 Overview

Fig. 1: The architecture of Falcon

The architecture of Falcon is presented in Figure 1. Our malware detection
and categorization framework includes a bi-directional LSTM to prepare the
feature vectors (F-V block in Figure 1) and a classifier to detect (DE block) and
categorize(CA block) Android application. We input the PCAP files and convert
each network flow contained in the PCAP file into a 2D image, and pre-train
a model on 2D images with CNN network.3 We use the pre-trained model to
convert each 2D image to a vector and process the continuous network flows
in a PCAP file as a 2D image sequence by a bi-directional LSTM network. We
present this part in Section 3.2 in detail.

3.2 Features from Network Traffic

This section presents our method to convert network traffic to vectors based on
image classification and transfer learning (see Figure 2). To compare to other
works in this field, we have two challenges. The first challenge (C1) is how to
classify each network flow (several network packets) efficiently, and the second
one (C2) is how to classify the whole network packets based on the split flows.

3 https://wiki.wireshark.org/SampleCaptures
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Fig. 2: Converting network traffic to vectors

Network Packets and Flows. For the network traffic analysis, there are three
different granularity, raw packet level, flow level, and session level [28]. In our
work, we take the network flow as our analysis target. All raw packets from the
PCAP files are defined as a set P ={p1, · · · , p|P |}, and every packet is defined as
pi = (xi, bi, ti), where i = 1, 2, · · · , |P | and xi stands for a 5-tuple, which includes
source IP, source port, destination IP, destination port, and the protocol types
(e.g., TCP, UDP), where bi and ti stand for the packet’s size and the starting
time of the packet, respectively. Network flow groups several packets that have
the same 5-tuple. In this way, we solve the challenge C1. Meanwhile, for the
network flow level analysis, it is shown as the flow generation in Figure 2. It is
worth mentioning that we arrange all raw packets in the same network flow in
time order.

Network Flows to Images. As we have previously mentioned, we split the
network flow from the raw network packets. After getting network flow files, we
convert them to 2D images like the image generation in Figure 2. Here we utilize
trimming and padding methods to normalize all network flows that have the
same size. If the network flow’s size is larger than 784 bytes, we trim it to 784
bytes. If those flow files’ size is smaller than 784 bytes, we pad them by 0x00 to
784 bytes. Finally, we convert those trimmed and padded files to 2D gray images.
Each byte of the original file represents a pixel, such as 0x80 is gray, and 0xff is
white. We also generate the class label in this step, which stands for the different
network traffic classes. We define five different labels in our work because we
have four various malware families and one benign group. That is reasonable
for our malware categorization task. We pre-train the model indirectly for our
malware detection task based on the previous malware categorization. In total,
for the malware categorization task, we label all samples with five classes (four
malware classes and one benign class) and label all samples with two classes for
the malware detection task (malware and benign).
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Transfer Learning and Feature Generation. In our work, we leverage an
8-layer convolution neural network to pre-train our converted 2D gray images.
Our model has 70,213 total parameters. After the previous step, we transform
our malware categorization and detection tasks into a 5-category classification
problem.

Y
1
= MaxPooling2∗2(Relu(conv2d3∗3(X28∗28)))

Y
2
= MaxPooling2∗2(Relu(conv2d3∗3(Y

1
)))

Y
3
= FC128,32(Y

2
)

Y = FC32,5(Y
3
)

(1)

We use our 5-categories classification task to train the model. After getting the
pre-train model, we take Y 3 that has a 32-bit vector as our features for the next
step. We use sparse categorical crossentropy loss and Adam optimizer and set
the learning rate as 0.001 and epoch as 50. We use one dropout layer between
MaxPool2 and FC1, and we set the dropout rate as 0.5.

Continuous Network Traffic Processing. So far, we have converted the
network flows to images and pre-train the 2D gray image-based multi-class clas-
sification model. However, we cannot classify those malware or benign samples
based on each 2D gray image for our malware detection and categorization task.
Typically, each PCAP file includes hundreds or thousands of raw network pack-
ets and network flows. Therefore, the malware classification issue converts to
a continuous 2D image classification task. In other words, that is a 2D image
sequence classification or sequential image classification [4, 15]. Most sequential
image classification works combine the RNN and CNN and put RNN focusing on
the sequential task and CNN for the image features. Meanwhile, in the natural
language processing (NLP) field, in order to process the sequential issues with
the pre-trained model, BERT [9], GPT (v2, v3) [6, 23] and other transformers
(e.g., ELMo [22], Transformer [27]) are introduced into to capture the sequence
relationship by leveraging the LSTM or RNN networks. Therefore, in our work,
to capture the network traffic’s continuous characteristics, we introduce a bidi-
rectional LSTM network on top of the pre-trained 2D-image classification model,
which helps to extract image features from the converted network flows. This
method can solve the C2 effectively. Figure 3 presents our sequential image clas-
sification structure. The steps mentioned above prepare the image sequences
and img2vec model, which replace each 2D gray image with a 32-bit vector. We
take the 32-bit vectors from the second to last layer of the pre-trained CNNC
model. We use a bidirectional LSTM network, and the input of LSTM has con-
verted vectors with (1, 32) shape. Both inputs for the forward and backward
direction LSTM are the same. Furthermore, we concatenate the last hidden sta-
tus fv, v ∈ N as our final output vectors, where N stands for the number of all
PCAP files. After getting the fv vectors for N PCAP files (N different Android
samples), we use a full connection layer followed by a softmax layer to classify
those raw network traffic into five different categories.
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Fig. 3: 2D sequential image classification with bidirectional LSTM

3.3 Model Training and Prediction

After preparing the feature vectors by the bi-directional LSTM, we train and
test our model by using the sparse categorical crossentropy loss function like
Equation 2.

Loss = −
i=1∑
N

yilabel
∗ log(yipred

)

= −
i=1∑
N

yilabel
∗ log(< (< fv, wi1 > +bi1), wi2 > +bi2)

(2)

where wi1, wi2 ∈ Rp is the weight of the classifier and bi1, bi2 ∈ Rp is the offset
from the origin of the vector space. In this setting, a converted vector fv is
classified into five categories.

4 Evaluation

4.1 Experimental Setup

We set up our experiments on our Euklid server, which runs on a Linux X86 64
platform and has 128 GB RAM and 16 GB GPU. Further, we trained our model
with Tensorflow 2.0.0-beta0, Keras 2.2.4, and Sklearn 0.20.0. We also
used the SplitCap tool to split the PCAP files.4 Additionally, we used the
pillow 6.1.0 imaging library when we convert the network flows to images. Fi-
nally, we used other assistant libraries, such as numpy 1.16.4 and matplotlib 3.1.1.

4.2 Dataset

For the train and evaluation dataset, we used the Android Malware CICMal2017
dataset [13, 25]. It includes 426 malware and 1700 benign samples and their

4 https://github.com/Master-13/SplitCap
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Table 1: Dataset explanation

Name Description Number

PCAP files All the raw network traffic files 2,126
Network flows All network flows in Section 3.2 3,255,391
Adware Adware network flows partition 580,170
Ransomware Ransomware network flows 382,279
Scareware Scareware network flows 517,954
SMSmalware SMSmalware network flows 245,691
Benign Network flows for benign applications 1,529,297

corresponding network traffic raw files. Table 1 illustrates the number of various
categories in detail. For the network traffic, we extracted 3,255,391 network flows
in total from 2,216 PCAP files. Here, to pre-train our 2D gray image classification
task, we created our dataset, AndroNetMnist , which provides a benchmark to
network traffic analysis with the convolution neural network. We split the dataset
with 80% training and 20% testing in our experiment.

4.3 Results Comparison

This section compares our results with other related works, both from the pro-
gram code and network traffic-based field. We reimplemented (Droidmat [30]
and CICMal2017 [25]) and reproduced (Drebin [3]5, Adagio [10]6) other related
works and compared them with our framework. We should mention here that
the results of those frameworks differ a little from the original works because of
the different datasets.

For Falcon, after preparing the dataset as CSV files, we used the Random
Forest (RF) classifier by default to perform our malware detection and malware
categorization. Our RF is defined as 1,400 trees in the forest and 80 as the tree’s
maximum depth. We set min samples split as five and the number of features to
consider when looking for the best split as sqrt. Table 2 illustrates the malware
detection (binary classification) performance.

Table 2 shows that Falcon-CNN gets the best performance, which catches up
to 98% accuracy. However, this experiment processes the malware classification
on AndroNetMnist similar to the digital handwriting classification on the MNIST
dataset, which indirectly did the classification. That means we firstly extract and
convert all network flows to images and then classify all images that belong to one
class. For example, for a PCAP file, we extracted and converted network flows
to images and got 3,329 samples. The 98% accuracy means 98% of 3,329 samples
are classified correctly. However, we cannot determine the whole network flows
characteristics because most malicious behaviors are hidden in a few network
flows by sophisticated attackers. Even if we get a high performance of over 98%,

5 https://github.com/alisakhatipova/Drebin
6 https://github.com/hgascon/adagio
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Table 2: Malware detection comparison

Classifier Accuracy Precision Recall F1

Drebin [3] 96.58 95.37 97.85 96.59
Adagio [10] 89.32 91.27 95.28 93.23
Droidmat [30] 89.87 90.89 88.28 89.56

CICAndMal2017 [13] 87.52 87.14 87.73 87.18
Falcon-CNN 98.04 98.09 98.05 98.06
Falcon 97.16 97.13 97.16 97.09

we cannot infer that this malware detection system can accurately determine
the malware’s network traffic. Therefore, we introduced Falcon, which converts
all 2D images to a 2D image sequence for each PCAP file. With this method,
Falcon gets 95.39% accuracy. The results are illustrated in Table 2 in detail.

In our experiment, the malware categorization task is a multi-class clas-
sification issue. Similar to the malware detection (binary classification) task,
Falcon-CNN on AndroNetMnist gets the best performance on the image classi-
fication task indirectly. Take the same example with malware detection above;
97.23 accuracy means that 97.23% of images from the same PCAP file are clas-
sified to Adware class. However, we cannot determinedly infer that this PCAP is
Adware network traffic. Additionally, we compared our results only with CICAn-
dMal2017 [13] because most Android malware detection works, such as Drebin,
Adagio, and Droidmat did not consider the malware categorization problem.
Although FM [14] considers the malware categorization task, it converts the
multi-class task to binary-class (i.e., if one malware sample belongs to a specific
malware family, then the label is 1; otherwise, that is 0). Falcon on the multi-
class classification task gets better results than CICAndMal2017. The primary
reason is that essential patterns for various malware families represent the man-
ually indicated features by CICAndMal2017 that lose some information. Our
method can catch up with better malware families’ features by representation
learning. Table 3 shows the performance results of malware categorization.

Table 3: Malware categorization comparison (the average is weighted)

Classifier Accuracy Precision Recall F1

CICAndMal2017 [13] 86.85 85.92 86.85 84.82

Falcon-CNN 97.23 97.28 97.23 97.24
Falcon 84.70 80.22 84.70 82.39

Last but not least, besides the Random Forest (RF) classifier, we also consider
the other four classifiers by Sklearn implementation for malware detection and
categorization. The classifiers are described in Table 4. Besides the settings in



10 Peng Xu , Claudia Eckert, and Apostolis Zarras

Table 4: Various classifiers settings

Classifier Settings

RF n estimators=1400, min sample split=5, max features=“sqrt”, max depth=80
AdaBoost All default values
GradientBoost lr=0.01, n estimators=1500, max depth=4, min samples split=40, max features=4
MLP sover=“sgd”, alpha=1e-5, hidden layers sizes=(400,400,200,100,10)
DecisionTree min samples split=10, max features=“sqrt”, max depth=20

Table 5: Falcon’s performance with various classifiers

Classifier Accuracy Precision Recall F1

RF 97.16 97.13 97.16 97.09
AdaBoost 93.13 92.81 93.13 92.85
GradientBoost 96.88 96.83 96.88 96.80
MLP 91.01 90.48 91.01 90.02
DecisionTree 93.66 93.64 93.66 93.65

Table 4, we used all default parameters. Due to the limited space, we only present
results in Table 5 for the malware detection (binary classification) task. Table 5
shows that the RF classifier gets the best performance and then is followed by
the GradientBoost classifier. MLP gets the worst in our framework.

5 Limitations

In contrast with other machine and deep learning based works in the malware
detection field, Falcon can catch up with the dynamic information of the An-
droid application. Our work has more time consumption than port-matching or
permission matching systems to contrast with other rule-based methods, such as
port-based malware detection with network traffic and permission-based Android
malicious program detection. On the other hand, in contrast to other Android
malware detection works, the dataset, especially the dynamic network-traffic
dataset, is too small. Although our evaluation demonstrates better performance
than its precedent, we need to increase the number of samples in the future.

6 Conclusion

In this work, we present Falcon, a network-traffic-pattern-based malware de-
tection and categorization framework. We use the transfer learning method to
extract features from the network traffic with pre-trained models. We treat the
network-traffic-based classification as a 2D gray image sequence classification
task and use a bi-directional LSTM to process image sequences. For the 2D gray
image, we use an 8-layer CNN to pre-train the gray images, which stand for the
network flows.
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