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Abstract. Machine learning has yield significant advances in decision-making
for complex systems, but are they robust against adversarial s®t&wk gener-
alize the evasion attack problem to the multi-class linear classifiers, anehpres
an efficient algorithm for approximating the optimal disguised instancpefx
ments on real-world data demonstrate the effectiveness of our method.

1 Introduction

Researchers and engineers of information security haveessfully deployed systems
using machine learning and data mining for detecting simyscactivities, filtering
spam, recognizing threats, etc. [2, 12]. These systemedlypicontain a classifier that
flags certain instances as malicious based on a set of featundortunately, evaded
malicious instances that fail to be detected are inevit&dri@any known classifier. To
make matters worse, there is evidence showing that adiesdaave investigated sev-
eral approaches to evade the classifier by disguising maidnstance as normal in-
stances. For example, spammers can add unrelated wortlncesor even paragraphs
to the junk mail for avoiding detection of the spam filter [1EUrthermore, spammers
can embed the text message in an image. By adding varied foaridyand distorting
the image, the generated junk message can be difficult for §G®Rms to identify but
easy for humans to interpret [7]. As a reaction to adverkatiampts, authors of [5]
employed a cost-sensitive game theoretic approach to ptéesty adapt the decision
boundary of a classifier by computing the adversary’s ogtstrategy. Moreover, sev-
eral improved spam filters that are more effective in adveanvironments have been
proposed [7, 3].

The ongoing war between adversaries and classifiers pesssuachine learning
researchers to reconsider the vulnerability of classifi@dversarial environments. The
problem of evasion attack is posed and a query algorithmvadiag linear classifiers
is presented [10]. Given a malicious instance, the goal efativersary is finding a
disguised instance with the minimal cost to deceive thesifilas Recently, the evasion
problem has been extended to the binary convex-inducirsgifiers [13].

We continue investigate the vulnerability of classifiersthie evasion attack and
generalize this problem to the family of multi-class linekassifiers; e.g. linear support
vector machines [4, 6, 9]. Multi-class linear classifiersehecome one of the most
promising learning techniques for large sparse data withgemumber of instances
and features. We propose an adversarial query algorithmsefarching minimal-cost



disguised instances. We believe that revealing a scar omtfieclass classifier is the
only way to fix it in the future. The contributions of this paee:

1. We generalize the problem of evasion attack to the mldssclinear classifier,
where the instance space is divided into multiple convex set

2. We prove that effective evasion attack based on the limexdning is feasible under
certain assumption of the adversarial cost. A descriptibthe vulnerability of
multi-class linear classifiers is presented.

3. We propose a query algorithm for disguising an adversagéance as any other
classes with minimal cost. The experiment on two real-wddth set shows the
effectiveness of our algorithm.

2 Problem Setup

LetX = {(z1,...,2p) € RP|L < x4 < U forall d} be thefeature spaceEach
component of afinstancex € X is afeaturebounded byl andU which we denote
asry. A basis vector of the forn0,...,0,1,0,...,0) with a1 only at thed*® feature
termséd,;. We assume that the feature space representation is knothie tmversary,
thus the adversary can query any poingin

2.1 Multi-Class Linear Classifier

The target classifief is a mapping from feature space to its response spad€;
ie. f : X — K. We restrict our attention tonulti-class linear classifierand use
K=A{1,...,K},K > 2sothat

f(x) = argmax wpx" + by, Q)

k
wherek = 1,..., K andw;, € R” b, € R. Decision boundaries between clasand
other classes are characterizedvwy andb,. We assume that, ..., wg are linearly

independent. The classifigrpartitionsX into K sets; i.e X}, = {x € X'| f(x) = k}.

2.2 Attack of Adversary

As a motivating example, consider a text classifier thatgmatees incoming emails
into different topics; e.g. sports, politics, lifestylgasn, etc. An advertiser of pharma-
cological products is more likely to disguise the spam &stifle rather than politics in
order to attract potential consumers while remaining ispicuous.

We assume the adversary'’s attack will be against a ffxgalthe learning method of
decision boundaries and the training data used to estahkstlassifier are irrelevant.
The adversary does not know any parametef @iut can observe (x) for any x by
issuing amembership queryn fact, there are a variety of domain specific mechanisms
that an adversary can employ to observe the classifiersnsgpto a query. Moreover,
the adversary is only aware of an adversarial instatitén some class, and has no
information about instances in other classes. This diffesm previous work which
require at least one instance in each binary class [10,A}dcticex® can be seen as
the most desired instance of adversary; e.g. the origireahsfghe adversary attempts
to disguisex® so that it can be recognized as other classes.



2.3 Adversarial Cost

We assume that the adversary has the access @darsarial cost function(x,y) :
X x X — Ry4. An adversarial cost function measures the distance betive® in-
stancex,y in X from the adversary’s prospective. We focus on a linear aosttfon
which measures the weightéddistance so that

D
a(x,y) = Z€d|$d — Yal, 2
d=1

where0 < e; < oo represents the cost coefficient of the adversary associaties
the d'" feature, allowing that some features may be more importsan bthers. In
particular, given the adversarial instanc®, functiona(x, x*) measures different costs
of using some instances as compared to others. MoreoverseB(y,C) = {x €
X |a(x,y) < C} to denote the cost ball centeredyatvith cost no more thag'.

In generalizing work [10], we alter the definitionminimal adversarial cogtMAC).
Given a fixed classifief and an adversarial cost functiarwe define the MAC of class
k with respect to an instangeto be the value

MAC(k,y) = min a(x,y), k# f(y).
XEX}

X

2.4 Disguised Instances

We now introduce some instances with special adversaritltbat the adversary is
interested in. First of all, instances with cost of MBCy) are termednstances of
minimal adversarial cosfiMAC), which is formally defined as

IMAC (k’Y) = {X € X |a’(X7Y) = MAC<k’y)7k # f(Y)}

Ideally, the adversary attempts to find IMAGx?) for all k& # f(x*). The most
naive way for an adversary to find the IMAC is performing a brfdrce search. That
is, the adversary randomly samples pointstirand updates the best found instance
repetitively. To formulate this idea, we further extend treginition of IMAC. Assume

X is the set of adversary’s sampled or observed instances aada&’ C X, we define
instance of sample minimal adversarial cgs$MAC) of classk with respect to an
instancey to be the value

ISMAC(k,y) = argmin a(x,y), k # f(y)-
x:x€X~ﬁXk
Note, that in practice the exact decision boundary is unknmthe adversary, thus

finding exact value of IMAC becomes an infeasible task. Noelesss, it is still tractable
to approximate IMAC by finding-IMAC, which is defined as follows

e-IMAC (k,y) = {x € Xk |a(x,y) < (1 +¢€) - MAC(k,y),k # f(y),e > 0}.

That is, every instance ierMAC (k,y) has the adversarial cost no more than a fac-
tor of (1 + €) of the MAC(k,y). The goal of the adversary now becomes finding
e-IMAC (k,x*) for all classes: # f(x*) while keeping: as small as possible.



3 Theory of Evasion Attack

We discuss the evasion attack from a theoretical point af.\&pecifically, by describ-
ing the feature space as a set of convex polytopes, we shoWMA& must be attained
on the convex surface. Under a reasonable assumption ofsaaliaé cost function, ef-
fective evasion attack can be performed by linear probingally, we derive bounds
for quantitatively studying the vulnerability of multiass linear classifiers to linear
probing.

Lemmal. Let X, = {x € X| f(x) = k}, where the classifief is defined in (1).
ThenX}, is a closed convex polytope.

Proof. Letx be a point inX};. Asx € X it follows that

xT'>L-1p and —x'>U-1p, 3)
wherelp is a D-dimensional unit vecto(l,...,1). Moreover, sincef(x) = k, it
follows that

Wi — W1 bl - bk
xt > . 4)
Wi — Wi br — by

Thus, the foregoing linear inequalities define an intefeaatf at most(K + 2D — 1)
half-spaces. Denot®;” = {x € X' |w;xT > b;}, wherel <i < (K +2D —1). We
haveX), =, Hj , Which establishes a half-space representation of cornlgigpe [8,
14]. O

Lemma 1 indicates that the classifitdecompose®” into K convex polytopes.
Following the notations and formulations introduced in 8¢ represent a hyperplane
H,; as the boundary of a haIf-spa@eHj; ie. H; = 8H,jr = {x € X|wxT =
bi}. Let X, = (%, H;Y, where{H ... H} } is iredundang to X;. Let Hj, =
{H{,...,Hf, } be an irredundant set that defin&s, thenX), C int X provided that
none half-space i, is defined by (3). Moreover, we define tp& facetof X}, as
Fy, = H, N X}, and theconvex surfacef X, asoX), = Ufil Fip.

Theorem 1. Lety be an instance it andk € K\ f(y). Letx be an instance in
IMAC(k,y) as defined in Section 2.3. Thenmust be attained on the convex surface
OX.

Proof. We first show the existence of IMAE, y). By Lemma 1}, defines a feasible
region. Thus minimizing.(x, y) on X} is a solvable problem. Second#; is bounded
in each direction of the gradient afx, y), which implies that IMAG#L, y) exists.

We now prove thak must lie ondX); by contrapositive. Assume thatis not on
00X, thus is an interior point; i.ex € int Xy. Let B(y, C) denote the ball centered at
y with cost no more than(x,y). Due to the convexity oft;, andB(y, C), we have
int X, Nint B(y, C) # 0. Therefore, there exists at least one instanc&jmwith cost
less tharu(x, y), which implies thatk is not IMAC(k,y). O

% Let C be a convex polytope such th@t= (', H;". The family {H;,..., H,\} is called
iredundantto C provided tha{, ., ;., H;” # C foreachj = 1,...,n.



Theorem 1 restricts the searching of IMAC to the convex serfdn particular,
when cost coefficients are equal, &g= - - - = ep, we can show that searching in all
axis-aligned directions gives at least one IMAC.

Theorem 2. Lety be an instance iit’ such that¥ () C int X'. LetP be the number of
facets ofY}(y) and F), be thep™ facet, where = {1,..., P}. LetGy = {y +08,|0 €
R}, whered € {1,...,D}.LetQ = {G4NF,|d=1,...,D,p=1,..., P} inwhich
each element differs from on only one dimension. If the adversarial cost function
defined in (2) has equal cost coefficients, then there exissist onex € Q such that

x is IMAC(f(x),y).

Proof. Let H,, be the hyperplane defining thé" facet F,,. Consider all the points
of intersection of the lineg?,; with the hyperplanedi,; i.e.Z = {Gqa N H,|d =
1,....,D,p=1,...,P}. Letx = argmin .7 a(x,y). Thenx is our desired instance.

We prove thaix € Q by contrapositive. Suppose ¢ Q , due to the convexity of
Xy, the line segmeriik, y| intersect$) X,y at a point on another facet. Denote this
point asz, thenz differs fromy on only one dimension ani(z,y) < a(x,y).

Next, we provex is IMAC(f(x),y) by contrapositive. LeB(y, C') denote theeg-
ular cost ball centered at with cost no more than(x,y). That is, each vertex of the
cost ball has the same distance@fwith y. Supposex is not IMAC(f(x),y), then
there existsz € Ay N int B(y,C). By Theorem 1z andx must lie on the same
facet, which is defined by a hyperplafig. Let Q* be intersection points off * with
linesGy,...,Gp;i.e.Q* ={GyN H*|d=1,...,D}. Then there exists at least one
pointv € Q* such thatv € int B(y, C). Due to the regularity oB3(y,C), we have

a(v,y) < a(x,y). O

We now define special convex sets for approximatiilylAC near the convex sur-
face. Giverx > 0, the interior parallel body ok}, isP_.(k) = {x € &}, | B(x,¢) C A%}
and the corresponding exterior parallel body is define®agk) = U, x, B(x,¢).
Moreover, the interior margin of}, is M_.(k) = &, \ P_.(k) and the corresponding
exterior margin isM . (k) = P,.(k) \ Xx. By relaxing the searching scope from the
convex surface to a margin in the distarcdheorem 1 and Theorem 2 immediately
imply the following results.

Corollary 1. Lety be an instance ilt andk € K \ f(y). For all e > 0 such that
M_.(k) # 0, eIMAC(k,y) C M_(k).

Corollary 2. Lety be aninstance itk ande be a positive number such that . (f(y)) C
int X. Let P be the number of facets &,.(f(y)) and F, be thep*® facet, where
p={1,...,P}. LetG, = {y + 0d,]|0 € R}, whered € {1,...,D}. LetQ =
{Ga4NF,|d=1,...,D,p=1,..., P}, inwhich each element differs frognon only
one dimension. If adversarial cost function defined in (23 bgual cost coefficients,
then there exists at least otec Q such thatx is in e-IMAC( f (x),y).

Corollary 1 and Corollary 2 point out an efficient way of apgmating e-IMAC
with linear probing, which forms the backbone of our progbalgorithm in Section 4.

Finally, we consider the vulnerability of a multi-classdar classifier to linear prob-
ing. The problem arises of detecting convex polytope¥ with a random line. As one



can easily scale any hypercube to a unit hypercube with eslygth 1, our proof is
restricted to the unit hypercube .

Definition 1 (Vulnerability to Linear Probing). LetXx = [0,1]”, andX}, ..., Xk be
the sets that tilet’ according to the classifief : X — {1,..., K}, with K > 2. LetG
be a random line ilR? that intersectst. DenoteZ the number of sets interseGt the
vulnerability of classifierf to linear probing is measured by the expectatior¥of

WhenE Z is small, a random line intersects small number of deciségions and
not much information is leaked to the adversary. Thus, agbbwlti-class classifier
that resists linear probing should have a small valug &f

Theorem 3. Let f be the multi-class linear classifier defined in (1), then tkgeetation

of Z is bounded by < E Z < 1+%.

Proof. By Lemma 1, we havé< convex polytopesty, ..., Xk . Let F be the union of
all facets of polytopes. Observe that each time the lineles@ convex polytope, it
only touches its surface twice. The exit point is the entegoaint for a new polytope,
except at the end-point. Thus, the variable that we aredsted in can be represented
as

Z=|FNG|,

where| - | represents the cardinality of a set. Obviou#ly; is bounded byl < E Z <
K. We will give a tighter bound in the sequel.

Let G be the class of all lines dR”, andy be the measure a. Following the
notation introduced in [15], we denote the measurejdhat meet a fixed bounded
convex set asu(G; G NC # (). Considering aindependent Poisson point process
g intensity measurg, let N be the number of lines intersectig We emphasize that
N is a finite number, so that one can label them independéntly. . , G . It follows
thatG,,n =1,..., N arei.i.d.. Given a fixed classifief, we have

N N n
EY |FNGu|=E) |P(N=n)> |FNG
=1

n=1 n=1

[P(N =n)-n-E|JFNGi]]

I
WE

1
N-(EZ). (5)

3
I

Remark thatGy, ..., G follow the Possion point process, we hdtév = n(G;G N
X # (). Therefore we can rewrite (5) as,

CEXN IF NGyl

BZ=GonxZ0)

(6)




Next, we computét EnN:1 |F NG| Let M = |F|. Due to the convexity ofty,
any given line can hit a facet no more than once. Therefordhave

N M

N
EY |FNGu=EY > |Fnn Gl

n=1 n=1m=1
A

=

1E’{n€ {1,...,N}|FmﬂGn7é®}‘

m

w(G;GNE,, #0). (7)

-

3
I

By substituting (7) into (6) we obtain

SN (GG N Fy #0)
w(G;GNX £0)

Assume thaj is translation invariant, by Cauchy-Crofton formula we cawrite (8)

as
EZ = T,

EZ = 8)

()

where A(-) denotes the surface afe&lote, that the numerator of (9) depends on the
shape of each polytope and relates to the training methddsditier. Thus, it is difficult

to compute the exact value BfZ. Nonetheless, we can bound the expectation by using
the factA(X) < Z%:l A(F,,) < A(X) +V2(K — 1) (see [1] for the upper bound).
Remark that the surface ardd.X’) of a unit hypercube i2D. We yield

V2(K —1)

1<EZ <1
<<+2D,

which concludes our proof. ad

We remark that Theorem 3 implies a way to construct a robassdier that resists
evasion algorithm based on linear probing, e.g. by jointigimizing (9) and the error
function in the training procedure.

4 Algorithm for Approximating e-IMAC

Based on theoretical results, we present an algorithm foeidieg the multi-class linear
classifier by disguising the adversarial instaréeas other classes with approximately
minimal cost, while issuing polynomially many queries inetnumber of features, the
range of feature, the number of classes and the number afides.

An outline of our searching approach is presented in Algorg 1 to 3. We use
a K x D matrix ¥ for storing ISMAC of K classes and an arrdy of length K for

* The surface area iR” is the(D — 1)-dimensional Lebesgue measure.



the corresponding adversarial cost of these instancessdddar valudl represents

the maximal cost of all optimum instances. Additionally, meed a x I matrix T’

for storing the searching path of optimum instances in ethtion. Thekt" row of
matrix ¥ is denoted a9 [k, :]. We considel, T, C, W as global variables so they are
accessible in every scope. After initializing variablest main routineM_CEvadi ng
(Algorithm 1 line 4) first invokesvDSear ch (Algorithm 2) to search instances that is
close to the starting point® in all classes and saves them®o Then it repetitively
selects instances froM as new starting points and searches instances with lower ad-
versarial cost (Algorithm 3 line 6—7). The whole proceduegdtes! times. Finally, we
obtain¥ [k, :] as the approximation @EIMAC (k, x*) .

We begin by describingRBSear ch in Algorithm 3, a subroutine for searching
instances near decision boundaries along dimensi&ssentially, given an instanse
an upper bound and a lower bound we perform a recursive binary search on the line
segmenfx+604d,|1 < 6 < u} throughx. The effectiveness of this recursive algorithm
relies on the fact that it is impossible to hav&andx! in the same class white™ is in
another class. In particular, if the line segment meets &eriex marginM . (k) and
e-IMAC (k, x) is the intersection, theRBSear ch finds ane-IMAC. Otherwise, when
the found instanceg yields lower adversarial cost than instanceidoes, Algorithm 4
is invoked to updat&. The time complexity oRBSear ch is O(“T‘l).

We next describe Algorithm 2. Giveawhich is known as ISMACE, x*) and the
current maximum costV, the algorithm iterate¢D — 1) times onP (X)) for
finding instances with cost lower tha#r. Additionally, we introduce two heuristics to
prune unnecessary queries. First, the searched dimendioaprevious iteration of is
omitted. Second, we restrict the upper and lower bound ofélaeching scope on each
dimension. Specifically, knowing’ anda(x,x*) = ¢, we only allowRBSear ch to
find instance ifz, — Wd S xq+ W ‘} since any instance lying out of this scope gives
adversarial cost higher thaW Th|s pruning is significant when we have obtained
ISMAC for every class. Special attention must be paid todead dimensions ok
(see Algorithm 2 line 5-7). Namely, if is a searched dimension before {lie- 1)t"
iteration, then we relax the searching scopgrtb — =<, 27 + =] so that no low-
cost instances will be missed.

Algorithm 1: Query algorithm for evasion of multi-class linear clags#i
(U,C) +M.CEvadi ng(x*,e,D,L,U, K, I,e€):
for k + 1to K do
| Y[k, ]« 0, T[k,:] 0, C[k]  +o00
C[1]«0
MDSear ch( x*,x*,e,1,0,D,L,U, 1,¢)
for i+ 2toIdo

for k + 2to K do
| MDSear ch( W[k, :],x*, e, k,C[k], D, L,U,i,e)

N o g b~ WO NP




Algorithm 2 : Multi-dimensional search from ISMAE, x*)

MDSear ch( x,x*, e, k,c, D, L,U,i,¢):
1 ford<+ 1to D do

2 if d # T[k,i— 1] then

3 &« We—;c

4 w=min{U,zq + 6}, | = max{L,xq — 6}

5 ifd e {T[k,1],...,T[k,i— 2]} then

6 if x4 > x4 thenl = max{L, x4 — 6}

7 L elseu = min{U, 2} + d}

8 XU x, x —x

9 oY, |

10 if f(x")# kthenRBSear ch( zq4,u,x,d,1,e€)
11 | if f(x') # k then RBSear ch(l,z4,x,d, i, €)

Algorithm 3: Recursive binary search on dimensidn

RBSear ch(l,u,x,d,1,¢€) :
X" ¢ x
if u—1<ethen
T u
k+ f(x*), ¢+ a(x¥)
if ¢ < C[k] then Updat e(x",k,c,d,1)
XU x, x e x, x™ —x
m§<—u,mli<—l,acdm<—%
if £(x™) = f(x") then
‘ RBSear ch(m,u,x,d, ,€)
10 elseif f(x™) = f(x") then
11 | RBSearch(l,m,x,d,i,¢)
12 else
13 RBSear ch(l,m,x,d,1i,¢)
L RBSear ch(m,u,x,d,1,¢€)

a b~ W NP

Algorithm 4 : Update ISMAGk, x*)

(v,C, T, W) «<Updat e( x*, k,c,d,i) :

1 Uk, :] + x*

2 Clk]«+c

3 Tlk,i] < d

4 W« max{C[1],...,C[K]}

Theorem 4. The asymptotic time complexity of our algorithnti$“=LDKT).



Proof. Follows from the correctness of the algorithm and the faat the time com-
plexity of RBSear ch is O(“=). O

5 Experiments

We demonstrate the algoritnon two real-world data sets, ti#-newsgroup’ and

the 10-Japanese female faceOn the newsgroups data set, the task of the adversary is
to evade a text classifier by disguising a commercial spamragssage in other top-
ics. On the face data set, the task of adversary is to dededvelassifier by disguising

a suspect’s face as an innocent. We employ LIBLINEAR [6] gaekto build target
multi-class linear classifiers, which return labels of dgeeinstances. The cost coeffi-
cients are sette; = --- = ep = 1 for both tasks. For the groundtruth solution, we
directly solve the optimization problem with linear cowrétits (3) and (4) by using the
models’ parameters. We then measure the average empificdlK —1) classes, which

is defined a8 = 19 >4 r(xa) m — 1{, whereC[k] is the adversarial cost

of disguised instance of clags Evidently, smalle indicates better approximation of
IMAC.

5.1 Spam Disguising

The training data used to configure the newsletter classifiasists of7, 505 docu-
ments, which are partitioned evenly acr@dsdifferent newsgroups. Each document
is represented as@, 188-dimensional vector, where each component is the number
of occurrences of a word. The accuracy of the classifier anitig data is100% for
every class. We set the category “misc.forsale” as the advat class. That is, given

a random document in “misc.forsale”, the adversary attenptdisguise this docu-
ment as from other category; e.g. “rec.sport.basebalfarmeaters of the algorithm are

K =20,L =0,U =100,1 = 10,e¢ = 1. The adversary is restricted to query at most
10, 000 times. The adversarial cost of each class is depicted inlKigft).

5.2 Face Camouflage

The training data contain&l0 gray-scaled images df facial expressions (each with
3 images) posed by0 Japanese female subjects. Each image is representediy a
dimensional vector using principal components. The aayuoéthe classifier on train-
ing data is100% for every class. We randomly pick a subject as an imaginaspestt.
Given a face image of the suspect, the adversary camouflégyéatie to make it be
classified as other subjects. Parameters of the algoriteritar 10, L = —10°,U =
105, = 10,¢ = 1. The adversary is restricted to query at mbst000 times. The
adversarial cost of each class is depicted in Fig. 1 (riditreover, we visualize dis-
guised faces in Fig. 2. Observe that many disguised facesimiar to the suspect’s
face by humans interpretation, yet they are deceptive &cldssifier. This visualization
directly demonstrates the effectiveness of our algorithm.

5 A Matlab implementation is available at http://home.in.tumdéaoh/pakdd2012-code.zip
5 http://people.csail.mit.edu/jrennie/20Newsgroups/
7 http://www.kasrl.org/jaffe.html
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Fig. 1. Box plots for adversarial cost of disguised instance of each cl(asft) On the 20-
newsgroups data set, we consider “misc.forsale” as the adverdasal Note, that feature values

of the instance are non-negative integers as they represent the mofmlzerds in the document.
Therefore, the adversarial cost can be interpreted as the numbsodified words in the dis-
guised document comparing to the original document from “mis@afetsThe value of for 19
classes i9.79. (Right) On thel0-Japanese female faces data set, we randomly select a subject as
the suspect. The box plot shows that the adversarial cost of cameusilspicious faces as other
subjects. The value @ffor 9 classes i9.51. A more illustrative result is depicted in Fig. 2.
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It has not escaped our notice that an experienced adverstmceartain domain
knowledge can reduce the number of queries by careful ssgecost function and
employing heuristics. Nonetheless, the goal of this pape@ot to design real attacks
but rather examine the correctness and effectiveness afganithm so as to understand
vulnerabilities of classifiers.

6 Conclusions

Adversary and classifier aMin and Yangof information security. We believe that un-
derstanding the vulnerability of classifiers is the only wagevelop resistant classifiers
in the future. In this paper, we showed that multi-classdmdassifiers are vulnerable
to the evasion attack and presented an algorithm for disguike adversarial instance.
Future work includes generalizing the evasion attack gmobio the family of general
multi-class classifier with nonlinear decision boundaries
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