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Abstract—Sequence prediction is a key task in machine learn-
ing and data mining. It involves predicting the next symbol in a
sequence given its previous symbols. Our motivating application is
predicting the execution path of a process on an operating system
in real-time. In this case, each symbol in the sequence represents
a system call accompanied with arguments and a return value.
We propose a novel online algorithm for predicting the next
system call by leveraging both context and side information.
The online update of our algorithm is efficient in terms of time
cost and memory consumption. Experiments on real-world data
sets showed that our method outperforms state-of-the-art online
sequence prediction methods in both accuracy and efficiency, and
incorporation of side information does significantly improve the
predictive accuracy.

I. I NTRODUCTION

Online sequence prediction is the problem of observing a
sequence of symbols one at a time and predicting the next sym-
bol before it is revealed. This technique has been successfully
applied in a large variety of disciplines, such as stock market
analysis, natural language processing and DNA sequencing.
The problem of sequence prediction has received considerable
attention throughout the years in information theory, machine
learning and data mining. Typically, theMarkov propertyis
assumed when modeling a sequence. That is, a finite history
of the past, i.e. thecontext, can be useful in predicting the
future. The length of the context is called theorder of Markov
models. Previous work shows ample evidence of the fact that
making such an assumption is often reasonable in a practical
sense [1], [2]. For instance in natural language processing, it
is often well-enough to describe text by a fixed order Markov
models (e.g. bigram, trigram), though the next word is not
necessarily related to its previous words.

Our motivating application is modeling the execution path
of a process on a desktop/mobile system in real-time. Each
process produces an ordered sequence of system calls which
request different services from the operating system. An illus-
trative example is depicted in Fig. 1.

Three remarks are in order. First, some system calls have
a long range dependency. For instance, after creating a file
the process may produce hundreds of system calls before it
finally closes the file. In this case, the dependency between
creat andclose can not be observed from a short context
of close. Although one can increase the order of Markov
models to capture information from a long distant context, it
is often difficult in practice due to the requirement of vast
amounts of training data and more sophisticated smoothing

algorithms [3]. In general, the length of context needed to make
an accurate prediction is not constant, but rather depends on the
recently executed system calls. Second, the information from
the arguments and return values (e.g. file descriptor, memory
address and signal) may be also indicative in predicting the
next system call. Considering a process repetitively readsdata
from the file1 and writes data to the file2. A resulting system
call sequence may look like

open(1), read(1), close(1), open(2),
write(2), close(2), open(1), ...

Assume that we have observed the above sequence with
seven system calls; the goal is to predict the next system call.
Without using the knowledge of the arguments, a bigram model
based merely on the name of adjacent system call will predict
read andwrite with even chance. However, as the file2 has
been closed, the correct prediction should beread. Although
one can solve this problem by extending Markov models
with more sophisticated graphical models, incorporating side
information is in general not straightforward for probabilis-
tic Markov models. Third, a process may exhibit different
behaviors at various points during its lifetime, dependingon
user’s input and the status of the system. In other word, the
sequence is usually not stationary and no prior assumption on
its distribution should be made. This suggests the necessity of
an online model that can be continuously updated, preserving
information from a long distant context while giving more
emphasis to recent data, so that the stationarity is not required.

We focus on the problem of predicting the next system
call given an observed sequence. The solution of this problem
can be extremely useful in a wide range of applications, such
as anomaly detection [4], [5], buffer cache management in
operating system [6], power management in smartphones [7]
and sandbox systems [8]. We leverage both context and side
information of each system call and model a sequence in an
online fashion. The proposed algorithm performs prediction in
real-time and can quickly update the model when a prediction
error is made.

The rest of the paper is organized as follows. Section II
briefly reviews previous work on sequence prediction. Sub-
sequently, our novel contribution is highlighted. SectionIII
describes the problem formulation. We next cast sequence
prediction as a linear separation problem in Section IV. The
proposed method is presented in Section V. Experimental
results are demonstrated in Section VI. Section VII concludes
the paper and points out some future directions.
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Call Argument Return

open ("/lib/librt.so", O_RDONLY) = 3

read (3, "\177ELF\2\1\1") = 832

fstat (3, {st_mode=S_IFREG, st_size=317}) = 0

mmap (NULL, 4096, PROT_READ|PROT_WRITE) = 0x7f2f7

mmap (NULL, 2129016, PROT_READ) = 0x7f2fc

mprotect (0x7f2f7, 2093056, PROT_NONE) = 0

mmap (0x7f2fa, 8192, PROT_READ) = 0x7f2fb

close (3) = 0

Fig. 1. Left panel shows a circular plot of a system call tracewhen runningls on Linux, which was collected usingstrace. System calls are plotted
clockwise, starting withexecve and ending withexit on top. A time stamp is labeled in front of each system call. A curve connects two system calls if the
return value of the former was used as an argument of the latter. On the right panel, a sample segment of this sequence is detailed, with argument defined within
the parentheses. For the sake of clarity, some long arguments (e.g. string) are omitted. The dependencies between the return value and argument are highlighted
with arrow lines.

II. RELATED WORK

The problem of sequence prediction has a fairly long
history and has received much attention from the field of
game theory [9], [10], [11], information theory [12], [13],[14],
[15], and machine learning [16], [17], [18], [19], [20], [21].
One of the most useful tools is context trees, which store
informative histories and the probability of the next symbol
given these [15], [22]. Context trees use only a few recently
observed symbols for prediction. The number of symbols
that are used depends on the specific context in which the
prediction is made. The motivation for exploring context tree
strategies stems from their simplicity and their success in
lossless data compression applications [23]. Another family
of approach based on Bayesian nonparametric models has
generated considerable recent research interest [24], [19], [20].
It is assumed that the distribution of the current symbol is
determined by some random process (e.g. Dirichlet process,
Pitman-Yor process) governed by its context. The hierarchy
is defined recursively to the first symbol in the sequence, on
which a global base distribution is defined. These models give
state-of-the-art performance in language modeling, however,
inference in such models is not straightforward. It often
relies on repeated random sampling (e.g. Markov chain Monte
Carlo), which can be time-consuming in practice.

Another related line of work is online learning, which takes
place in a sequence of consecutive rounds. On each round,
the learner is given a question and is required to provide an
answer to this question. The performance of an online learning
algorithm is measured by the cumulative loss suffered by the
prediction along the run on a sequence of question-answer
pairs. The Perceptron algorithm [25], [26], [27] is perhaps
the first and simplest online learning algorithm designed for
answering yes/no questions. Adaptations of the Perceptron
for multiclass categorization tasks include [28], [29]. Asthe
Perceptron algorithm is essentially a gradient descent (first-
order) method, recent years have seen a surge of studies on
the second-order online learning [30], [31], [32]. For example,
the confidence-weighted algorithm [32] maintains a Gaussian

distribtuion over some linear classifier hypotheses and employs
it to control the online update of parameters. Several work
has followed this idea and showed that parameters’ confidence
information can significantly improve online learning perfor-
mance [32], [33], [34], [35].

The system call sequence was mainly studied by computer
security researchers in the early days [36], [37], [4]. Theyused
patterns in the sequence to identify misuses and intrusionsin
systems. To contain the attack preemptively, plan recognition
was developed, aiming at recognizing and predicting goals
based on observed system call sequences [38], [39]. Recently,
the problem of system call prediction attracted much attention
due to its importance in many applications. For example, in a
sandbox the amount of time that a process must suspend for a
security check can be eliminated when the current system call
is correctly predicted, yielding a more efficient sandbox im-
plementation [8]. On mobile devices it has been demonstrated
that system calls prediction can be used to design user-oriented
prefetching techniques [6] and reduce power consumption [7].
However, most of these studies are over-simplistic in the sense
that they focused only on the names of system calls and
overlooked the arguments and return values. One possible
reason is the difficulty in representing this side information,
which requires a different modeling technique, such as rule
learning [40], [41]. Hence, it can not be incorporated into a
sequence prediction model in a straightforward manner.

In this paper we introduce a novel online algorithm for
predicting system calls in a sequence. Our algorithm combines
the ideas from both context trees [18], [42] and second-order
online learning algorithms [32], [33], [34], [35]. Unlike previ-
ous work on system call prediction that only uses context infor-
mation, we also consider side information such as arguments,
return values and structures into learning and prediction.The
side information can be straightforwardly incorporated into our
model, giving a further boost to the accuracy of prediction.
Furthermore, we propose several techniques to improve the
efficiency (in terms of both time and memory) of our algorithm
on long sequences, yielding a good scalabilty on big data.



III. PROBLEM FORMULATION

We denote the alphabet of the observed symbols asΣ :=
{1, . . . ,K}. Let Σ∗ be the set of all finite length sequences
over the alphabetΣ. Specifically, the empty sequenceǫ is
included inΣ∗. We focus on the online learning framework,
where learning is performed in rounds. Letx[t] ∈ Σ be the
tth symbol in a sequence. Denotex[1:t−1] ∈ Σ∗ be thecontext
of x[t], i.e. x[1:t−1] := x[1], . . . , x[t−1]. For completeness, let
x[t:t−1] := ǫ. On roundt, the algorithm first predictŝx[t] ∈ Σ
according to its current prediction rule and the contextx[t:t−1].
After that, the true symbolx[t] is revealed and the algorithm
suffers a loss which reflects the degree to which its prediction
was wrong. The algorithm then has the option to modify
its prediction rule, with the explicit goal of improving the
accuracy of its predictions for the rounds to come.

Assume that any symbol in the sequence is determined
by its context, the problem of sequence prediction can be
formulated as finding a functionf : Σ∗ → Σ. To predict
the tth symbol one can simply set̂x[t] := f(x[1:t−1]). We
generalize this definition and allow the algorithm to output
predictions from a real-valued setY . Specifically, letY := R

K

andf : Σ∗ → Y , where a predictiony ∈ Y is interpreted as
a degree of confidence for each of the symbols inΣ. Conse-
quently, the mapping from a score vectory to an actual symbol
in Σ is via x̂ := argmaxk∈Σ yk. On roundt, the loss off is
measured by a zero-one loss functionℓ1

(
f ; (x[1:t−1], x[t])

)
.

That is, ℓ1 is zero if x̂[t] = x[t]. Therefore, our ultimate goal
is to incrementally learn a functionf which minimizes

1

T

T∑

t=1

ℓ1

(

f ; (x[1:t−1], x[t])
)

,

whereT is the length of the sequence.

IV. SEQUENCEPREDICTION AS L INEAR SEPARATION

Having described a general scheme for sequence predic-
tion, we now focus on determining the form off to obtain
a concrete algorithm. In what follows we cast the sequence
prediction problem as the problem of linear separation in a
Hilbert space, which is a popular topic in machine learning.We
shall see that by doing so one can harness powerful machine
learning tools such as the Perceptron algorithm [26], [27] and
online convex programming [43] to our purpose.

As it was suggested in the Section I, the number of previous
symbols needed to make an accurate prediction is usually not
constant, but rather depends on the identity of those symbols.
With this consideration in mind, we define asuffix-closedset
V ⊂ Σ∗ such that for everys ∈ V , every suffix ofs (including
ǫ) is also contained inV . To allow the algorithm to look as far
back as needed, we can setV to be large enough. Specifically,
let H be the Hilbert space of square integrable functionsψ :
V → R endowed with the inner product

〈ζ, ψ〉 =
∑

s∈V

ζ(s)ψ(s),

and the induced norm‖ζ‖ =
√

〈ζ, ζ〉. Note that if we
can bound|V | by a constant, then the Hilbert spaceH is
isomorphic to the|V |-dimensional vector space, i.e.R|V |.

On roundt the contextx[1:t−1] is observed, we map this
sequence to the functionψ ∈ H as follows

ψ(s[1:i]) :=







1 if s[1:i] = ǫ
e−ρi if s[1:i] ∈ suf(x[1:t−1])
0 otherwise

, (1)

wheresuf(x[1:t−1]) denotes the set of all suffixes ofx[1:t−1].
The decay factorρ > 0 is a predefined hyperparameter
and mitigates the effect of long contexts on the functionψ.
It is noticed from Eq. (1) that all suffixes ofx[1:t−1] are
mapped to non-zero values; the value tends to decrease as the
length of suffix increases. This idea expresses the assumption
that symbols appearing earlier in a sequence have the least
importance in modeling the current symbol. As we shall see
in Section V-C, this assumption can be infringed to some extent
by incorporating side information into our model.

We have mapped sequences to functions inH. The next
step is to create separating hyperplanes inH for prediction.
We employ amulti-class context tree. A multi-class context
tree is aK-ary tree, each node of which represents one of the
sequences inV . Specifically, the root of the tree represents the
empty sequenceǫ. The node that represents the sequencex[i:j]

is the child of the node representing the sequencex[i+1:j]. An
observed sequence thus defines a path from the root of the tree
to one of its nodes. Note that this path can either terminate at
an inner node or at a leaf. We associate each node with aK-
dimensional vector. In other words, a multiclass context tree
can be represented as a functionτ : V → R

K . An illustrative
example is given in Fig. 2. In particular, if we only look at
the kth element of the vector on every node and denote the
corresponding context tree asτk : V → R, then it is easy to
verify that τk is embedded inH.

To construct the context tree on rounds, we initializeτ [1] to
be a tree of a single (the root) node which assigns a weight of
zero to the empty sequence, i.e.V [1] := {ǫ}. After receiving
x[1:t−1], a trivial solution is adding all sequences in the set
suf(x[1:t−1]) to V [t] and associate each of which with an
undetermined vector inRK . The method for determining the
value of these vectors will be presented in Section V-A. For a
long sequence adding all suffixes to the tree can impose serious
computational problems, as the required memory for storing
the tree grows quadratically witht. We shall resolve this issue
in Section V-B.

Returning to our sequence prediction problem, letx[1:t−1]

be the sequence of observed symbols on roundt, and letψ[t] be
its corresponding function inH defined by Eq. (1). Denoteτ [t]k

as the current context tree subject to the classk. By following
the description in Section III, the prediction problem can be
formulated as

x̂[t] := argmax
k∈Σ

〈

ψ[t], τ
[t]
k

〉

︸ ︷︷ ︸

f(x[1:t−1])

. (2)

Geometrically, we can considerH as a space partitioned
by K hyperplanes, whose normal are given byτ1, . . . , τk,
respectively. Thetth symbol is then predicted by picking the
hyperplane that gives the maximum (signed) distance to the
vectorψ[t].



ǫ

1

(−1, 0.4, 1)

“a”
2

(0, 0.2, 2)
“b”

3

(1, 0.2, 0)
“b”

4

(0.6, 0.5,−1)

“a”

5

(−0.3, 0.8, 0.1)

“c”

6

(0.2, 0.9, 0.2)

“c”
7

(−1,−1, 0.3)

“b”

8

(0.3, 0.5,−1)

“a”

9

(0.1, 0.6,−0.2)

“b”

Fig. 2. An example of a multi-class context tree, whereK = 3 andV = {ǫ,a,ba,b,ab,cb,c,bc,abc,bbc}. The label on each node represents the index.
Notice how the index matches the element inV . The context associated with each node is indicated on the edges of the tree along the path from the rootǫ to
that node. The vector associated with each node is provided above each node. This context tree can be parameterized as a10× 3 matrix, with the first column
(0, 0, 0)⊤ corresponds to the empty sequenceǫ. Considering the context tree as a function, given an input sequence “aabbc”, the output from this context tree
is (0.1, 0.6,−0.2), whose path is plotted with double lines.

V. ONLINE LEARNING ALGORITHM

It can be seen in Section IV, our predictor is fully specified
by a multi-class context treeτ , which can be represented by
τ1, . . . , τK . Given a fixedV , we can parameterizeτk by a
vectorwk ∈ R

|V |. DenoteW := [w1, . . . ,wK ], in which rows
correspond to vectors associated with each node as depictedin
Fig. 2. The size ofW is thus|V |×K. Note that a context tree
is now fully specified by its weight vectorW and structureV .
That is, every{W, V } represents a uniqueτ and vice versa.
Therefore, the problem of learning an accurate predictor can
be reduced to the problem of determiningW andV . Denote
ψ[t] ∈ R

|V | a vector corresponding to the sequencex[1:t−1].
To constructψ[t] we simply follow Eq. (1) and only assign
values to the sequences inx[1:t−1] ∩ V . Elements ofψ[t] are
indexed in the same order asw[t]

k . Thus, the score vectory
described in Section III amounts to(W[t])⊤ψ[t].

This section describes our online learning algorithm in four
parts. We first describe the method to learnW, subsequently,
we present an approach for constructingV in a memory-
efficient way. Extension for incorporating side information
is described towards the end. Finally, several implementation
issues are highlighted.

A. Learning Weight Vectors

We first show how the update ofW can be performed
in rounds. Our method is closely related to the family of
confidence-weighted linear classifiers [32], [33], [34], [35].
Following the idea of previous work, we maintain a Gaussian
distribution for every column ofW with a mean vector
µk ∈ R

|V | and a diagonal covariance matrixΛk ∈ R
|V |×|V |,

i.e. wk ∼ N (µk,Λk). Notice that by restrictingΛk to a

diagonal matrix, the weights become independent1. This is
not true in real-world, yet it is necessary due to the large
value of |V |. For the sake of efficiency, the predicted symbol
is simply approximated byargmax

k∈Σ
µk · ψ

[t] instead of using

weight vectors sampled fromN (µk,Λk). In other words, the
information captured byΛk does not influence the decision.
This is analogous to Bayes point machines [44].

On each round, we update the model by minimizing the
Kullback-Leibler divergence between new distribution and
the old one while ensuring that the probability of correct
prediction ontth symbol is not smaller than the confidence
hyperparameterη ∈ [0, 1]. After revealing the true symbol
r := x[t], we need to update(µk,Λk) to the solution of the
following optimization problem
(

µ
[t+1]
k ,Λ

[t+1]
k

)

= argmin
µ,Λ

DKL

(

N (µ,Λ)
∥

∥N
(

µ
[t]
k ,Λ

[t]
k

))

s.t. Prw∼N (µ,Λ)

[

wr · ψ
[t] ≥ w · ψ[t]

]

≥ η. (3)

Notice that the optimization problem in Eq. (3) needs to
be solvedK − 1 times for everyk ∈ Σ \ r on each round,
which can be computationally expensive. We therefore provide
a simplified algorithm, where only two updates is required on
each round. The intuition was to ensure that the true symbol is
more likely to be predicted than the symbol that is its closest
competitor. Specifically, lets be the highest ranked wrong
symbol on roundt. That is,

s := arg max
k∈Σ\r

µ
[t]
k ·ψ[t]. (4)

In each round only(µr,Λr) and (µs,Λs) are updated as

1One may considerW as a random variable from a matrix normal
distribution, i.e.W ∼ MN (M,U,V), where U and V represents the
correlation among-row and among-column, respectively. However, under the
assumption of independent weights and independent symbols, U andV are
simply diagonal matrices. This results an equivalent formulation to ours.



follows
(

µ
[t+1]
r ,Λ

[t+1]
r

)

= argmin
µ,Λ

DKL

(

N (µ,Λ)
∥

∥N
(

µ
[t]
r ,Λ

[t]
r

))

s.t. Prw∼N (µ,Λ)

[

w ·ψ[t] ≥ ws ·ψ
[t]
]

≥ η. (5)
(

µ
[t+1]
s ,Λ

[t+1]
s

)

= argmin
µ,Λ

DKL

(

N (µ,Λ)
∥

∥N
(

µ
[t]
s ,Λ

[t]
s

))

s.t. Prw∼N (µ,Λ)

[

wr ·ψ
[t] ≥ w ·ψ[t]

]

≥ η. (6)

Notice how the constraint of Eq. (5) and Eq. (6) differs from
each other. We follow the derivation in [33] and obtain the
closed-form update as

µ[t+1]
r =µ[t]

r + αΛ[t]
r ψ

[t] (7)

µ[t+1]
s =µ[t]

s − αΛ[t]
s ψ

[t] (8)

Λ[t+1]
r =

((

Λ[t]
r

)−1

+ 2αφdiag2
(

ψ
[t]
))−1

(9)

Λ[t+1]
s =

((

Λ[t]
s

)−1

+ 2αφdiag2
(

ψ
[t]
))−1

, (10)

wherediag2
(

ψ[t]
)

is a diagonal matrix made from the squares

of the elements ofψ[t] on the diagonal. The inverse of diagonal
matrix can be computed element-wise. The coefficientα is
calculated as follows

α =
−(1 + 2φm) +

√

(1 + 2φm)2 − 8φ(m− φv)

4φv
,

where

m =
(

µ[t]
r − µ[t]

s

)

·ψ[t] (11)

v =
(

µ[t]
r

)⊤

Λrµ
[t]
r −

(

µ[t]
s

)⊤

Λsµ
[t]
s (12)

φ =Φ−1(η), (13)

andΦ−1(·) is the inverse of the normal cumulative distribution
function.

For initialization we setµ[1]
k

:= 0 andΛ[1]
k

:= I for all k,
whereI is the identity matrix. It is noticed from Eq. (7) and
Eq. (8) that during online learning the mean weight vector
is updated in a similar fashion as in the Perceptron. The
confidence of all observed suffixes is increased by shrinking
the corresponding value on the diagonal ofΛk (see Eq. (9)
and Eq. (10)), which leads to the update of weight vector in
the next round more focusing on low confidence features.

B. Memory-Efficient Update of Suffix Set

Having described the method for learning the weight
vectors of the context tree, we now focus on determining its
structure, i.e.V . Instead of adding all suffixes of the context to
V on each round, we introduce three strategies for constructing
V in a memory-efficient way.

First of all, we only updateV if the probability constraint

Prwr∼N (µ
r
,Λr)

ws∼N (µ
s
,Λs)

[

wr · ψ
[t] ≥ ws · ψ

[t]
]

≥ η (14)

is violated. Note that Eq. (14) can be rewritten as

(µr − µs) ·ψ
[t] ≥ φ

√
(

ψ[t]
)⊤

(Λr +Λs)ψ
[t],

whereφ = Φ−1(η). Further, we introduce a loss function as

ℓφ

(

{(µk,Λk)}
K
k=1; (x

[1:t−1]
, x

[t])
)

:=

max

(

0, φ

√

(

ψ[t]
)⊤

(Λr +Λs)ψ
[t] − (µr − µs) · ψ

[t]

)

. (15)

It is easy to verify that satisfying the probability con-
straint Eq. (14) is equivalent to satisfyingℓφ = 0. In this
case, we simply setV [t+1] to be equal toV [t]. Otherwise we
add all sequences insuf(x[1:t−1]) to V [t]. Note thatρ and
φ can be tuned as a trade-off between the passiveness and
aggressiveness of the update.

Second, when a sequence is extremely long, adding all
suffixes of a long context can impose serious memory growth
problem. Hence, it is not a practical solution. To limit the
maximum depth of the context tree, we prune the context
x[1:t−1] to a certain lengthκ[t] before adding its suffixes to
V , whereκ[t] is given by

κ[t] = min

(⌊
1

ρ
log ℓ1(t)

⌋

, t− 1

)

,

with ℓ1(t) denoting the number of prediction mistakes made
by the algorithm so far. The intuition behind is to limit
the depth of the context tree by the number of prediction
mistakes, which is inspired by [18]. As a consequence, one can
straightforwardly translate the mistake bound of confidence
weighted classifier (Theorem 4 in [33]) into a bound on the
growth-rate of the resulting context tree [18], [42].

Finally, we limit the size ofV by removing the elements
giving smallest

∑

k µ
2
k,i when |V | exceeds the maximum

allowed sizeQ, where µk,i is the ith element ofµk and
i ∈ [1, Q]. This criterion has been shown effective in recur-
sive feature elimination [45] and has a good theoretical sup-
port [46], [47]. Alternatively, one can also use the

∑

k 1/λk,i
or

∑

k |µk,i|/λk,i as the criterion, whereλk,v is the vth

element on the diagonal ofΛk. By employing the above three
strategies the context tree grows at a much slower pace and the
algorithm can utilize memory more conservatively. Finally, the
pseudo-code of our algorithm is summarized in Algorithm 1,
which is called EOSP in the sequel for short.

C. Incorporation of Side Information

Thus far we augment only context information from the
sequence. As we highlighted in Section I side information
of system calls can support the prediction of the next sym-
bol. Apart from that, in language modeling grammars (e.g.
part-of-speech tags), topics, styles are helpful to predict the
next word [48], [49]. Comparing to then-gram models and
Bayesian nonparametrics models [24], [19], a key advantage
of our approach is its simplicity of leveraging side information.
Specifically, if side information on roundt can be given in the
form of a vectorb[t] ∈ R

B, we can directly incorporate it into
the prediction via a linear combination as follows

x̂[t] := argmax
k∈Σ

µ
[t]
k ·ψ[t] + γ

[t]
k · b[t].

This corresponds to replacingψ[t] in Algorithm 1 as a(Q+B)-
dimensional vector[ψ[t],b[t]]. The dimension of the mean
vector and confidence matrix associated with each symbol is



Algorithm 1: Efficient online sequence prediction
(EOSP).

Input : Damping factor:ρ > 0; confidence
parameter:η ∈ [0, 1]; maximum allowed size
of V : Q > 0.

Output : Mean vectors and confidences matrices:
{(µk,Λk)}Kk=1; set:V .

Initialize : ∀k ∈ Σ, (µ
[1]
k ,Λ

[1]
k ) = (0, I), φ = Φ−1(η),

V [1] = {ǫ};
1 for t = 1, 2, . . . do
2 Constructψ[t] from x[1:t−1]; /* Eq. (1) */

3 Rank all symbols byµ[t]
k · ψ[t];

4 Receive the true symbolr;
5 Computes; /* Eq. (4) */
6 Suffer lossℓφ; /* Eq. (15) */
7 if ℓφ > 0 then
8 while |V [t]| > Q− κ[t] do
9 i = arg min

j=1,...,Q

∑

k∈Σ µ
2
k,j ;

10 ∀k ∈ Σ, µk,i = 0;
11 Remove theith sequence fromV [t];

12 V [t+1] = V [t] ∪ {x[t−i:t−1] | 1 ≤ i ≤ κ[t]};
13 Set (µ[t+1]

r ,Λ
[t+1]
r ) and (µ[t+1]

s ,Λ
[t+1]
s );

/* Eqs. (7) to (10) */

extended accordingly. Note that an ineffective representation
of side information can adversely affect the prediction perfor-
mance as well, hence there has to be some mechanism for
selecting features that really contribute to prediction. In our
algorithm, this can be done by constantly settingµk,i+b to
zero if

∑

k |µk,i+b|/λk,i+b is too small. In addition, one can

also initializeΛk :=

(
I|V |×|V |

γIB×B

)

with 0 < γ < 1

to balance the learning rate of the weights on the context and
side information. Specifically, whenγ = 1 the side information
shares the same learning rate with context information; when
γ = 0 the side information does not contribute the learning
and prediction at all.

The side information used in this work is summarized
in Table I. The idea of using these attributes is mainly
based on our experiences and observations. For instance, we
observed that system calls with similar functionality tendto
occur together, which could be due to some sub-task of the
process. Thus, if a particular group of system calls is frequently
observed in the recent context, then the next system call is very
likely from the same group. In present work, system calls are
grouped manually by their documentation, which is partially
based on [50]. It is also possible to automatically group system
calls by using topic models [51]. Another observation is that
a block of system calls repeats themselves especially when
some of them return an error. This was probably attributed to
the exception handling (e.g. restart mechanism) of a process.
Thus, a simple statistic of the error codes is maintained
and considered as one of the evidences for predicting the
next system call. In practice, the side information listed in
Table I can be easily extracted from the context with negligible
computational cost.

D. Efficient Implementation

It can be observed from Eqs. (7) to (10) that most of the
entries ofψ, µk andΛk are zero, which implies a possibility
to improve the efficiency by storing them in a compact way. In
the implementation, we storeµk, Λk andψ in sparse vectors.
The algorithms of addition and dot product for sparse vectors
can be found in [52]. Moreover, as the updates of(µr,Λr) and
(µs,Λs) are independent to each other, line 13 Algorithm 1
can be implemented in a parallel manner. Furthermore, the
operations onV can be implemented efficiently using a data
structure calledsuffix trie. Finally, removing one element at
a time (line 8 to 11 Algorithm 1) is time consuming and in
practice we remove as much as half ofQ when |V [t]| > Q−
κ[t].

VI. EXPERIMENTAL RESULTS

Two sets of experiments were carried out to validate our
algorithm. First, we compared the accuracy and efficiency of
EOSP with state-of-the-art sequence prediction methods. Sec-
ond, we investigated several factors that affect the performance
of EOSP in order to gain more insights of it.

The experiments were conducted on three groups of data.
The first set of data is from BSM (Basic Security Module)
data portion of 1998 DARPA intrusion detection evaluation
data set created by MIT Lincoln Labs2. We used a subset of
training data, which contained four-hour BSM audit data of all
processes running on a Solaris machine. Each system call was
recorded with its corresponding arguments and return value.
The second group of data was obtained from University of
New Mexico [4], in which system call traces of several process
were generated in either “synthetic” or “live” manner3. Our
experiment was conducted on their “live” normal data, where
traces of programs were collected during normal usage of real
users. Unlike DARPA data set, a trace in UNM data set is just
a list of system call names; no arguments and return values
are available. Therefore, for UNM data set only the functional
group in Table I was available as side information. The third
data set was collected by ourselves4. By usingstrace and a
prepared script, we collected system call sequences with their
corresponding arguments and return values from all executable
programs on an Ubuntu system. The program options were
chosen solely for the purpose of exercising the program, and
not to meet any real user’s requests. From these three sources
we selected a total of8 data sets, and their characteristics are
summarized in Table II.

TABLE II. C HARACTERISTICS OF DATA SETS USED IN THE

EXPERIMENT.

Data set # calls # seq. Min. len. Max. len. Avg. len.

darpa 243 200 2 3, 074 57
lpr1 182 2, 766 82 59, 565 1, 080
lpr2 182 1, 232 74 39, 306 449
sendmail1 190 8, 000 8 173, 664 669
sendmail2 190 8, 000 8 149, 616 648
stide1 164 8, 000 225 146, 695 1, 055
stide2 164 8, 000 108 174, 401 1, 255
ubuntu 458 1, 218 2 53, 247 952

2http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/
data/

3http://www.cs.unm.edu/∼immsec/systemcalls
4URL is masked for blind review.



TABLE I. SIDE INFORMATION USED IN OUR ALGORITHM FOR SYSTEM CALL PREDICTION.

Feature set Size Description

File descriptor 2 The number of opened files and the number of closed files, respectively.

File type 9 Each element represents the number of opened files of a particular type, such asRDONLY, WRONLY, APPEND, etc.

Functional group 9 Each element represents the number of occurrences of systemcalls associated with a group given a context. The groups
were built in advance by categorizing similar system calls together, resulting9 groups in total. For instance, the “file”
group includescreat, open, close, read, etc. The “process” group includesfork, wait, exec, etc. The “signal”
group includessignal, kill, alarm, etc.

Access location 12 Each element represents the number of accesses to a particular directory, such as/usr/bin, /usr/lib, /usr/tmp,
etc.

Error code 124 Each element represents the number of caught errors of each code, such asENOENT, EAGAIN, EBGDF, etc.

POSIX signal 28 Each element represents the number of sent signals of each type, such asSIGSEGV, SIGABRT, SIGBUS etc.

String character 256 Each element represents the frequency value of a string character. Achar is considered as an8-bit value, resulting
256 possible characters. We only count characters in the stringthat is not file path.

Four sequence prediction methods were employed in the
experiment. They were interpolated Kneser-Ney (IKN) [3],
online prediction suffix tree (PST) [18], sequence memoizer
(SM) [20], and learning experts (LEX) [21]. We restricted the
maximum length of context to50 for all algorithms except for
SM, which was designed for modeling context with infinite
length. Specifically, we used a50-gram IKN in our experiment.
For LEX the number of experts was set to one andd := 50,
resulting an individual sequence predictor trained with the log
loss. The maximum depth of the context tree for PST was set
to 50. These four methods were compared with the proposed
EOSP, and the algorithm with side information denoting as
EOSPs . The confidence parameterη was 0.8; the damping
factor ρ was0.1; the maximum length of the context was50
and the maximum size ofV was20, 000.

A. Comparison of Predictive Performance

The comparison of predictive performance between dif-
ferent methods is summarized in Table III, where the online
error rate and perplexity were used as evaluation metrics. The
online error rate of an algorithm on a given input sequence is
defined to be the number of prediction mistakes the algorithm
makes on that sequence normalized by the length of the
sequence. The perplexity reflects an algorithm’s performance
when taking its probabilistic output into account. For EOSP
we just normalized the score vector to obtain the prediction
probabilityPr[x̂[t] |x1:t−1]. The reported results were averaged
over all sequences in each data set respectively.

It is evident from the results that, EOSP and EOSPs gave a
considerably better prediction than other baseline algorithms.
In particular, EOSPs achieved the best performance on the
majority data sets (seven out of eight in terms of perplexity),
which indicates the effectiveness of incorporating side infor-
mation into the model. On five out of six UNM data sets, we
observed an improvement by just incorporating the functional
group information. Ondarpa andubuntu data sets where
side information are fully available, a striking improvement of
EOSPs over EOSP was observed. In general, we found SM is
a strong competitor in terms of online error rate. However,
EOSP and EOSPs still outperformed SM with appreciable
lower perplexity on all data sets. This suggests a potentially
valuable property for our method, e.g. for combining it with
other probabilistic model in a big system. Moreover, SM is
much slower than EOSP on long sequence, as we shall see in
the next experiment.

TABLE III. E XPERIMENTAL RESULTS ON DIFFERENT DATA SETS.
SMALLER VALUE INDICATES BETTER PERFORMANCE.

(a) Online error rate (%) of different algorithms.
Data set EOSP EOSPs IKN PST SM LEX

darpa 50.11 48.17 52.14 49.25 49.75 51.11
lpr1 41.63 41.53 41.09 46.24 40.88 42.27
lpr2 47.44 47.03 47.61 48.52 47.24 51.15
sendmail1 33.47 34.26 35.62 33.65 33.06 36.81
sendmail2 33.11 33.91 33.52 34.17 32.19 38.96
stide1 8.34 8.29 8.54 8.59 8.41 9.06
stide2 7.75 7.75 8.09 7.95 7.78 8.51
ubuntu 40.90 36.13 38.90 39.23 75.26 52.72

(b) Online perplexity of different algorithms.
Data set EOSP EOSPs IKN PST SM LEX

darpa 48.98 40.23 78.34 98.97 63.07 82.36
lpr1 9.82 9.23 16.14 17.05 14.75 11.71
lpr2 12.94 11.08 21.43 16.34 19.94 22.19
sendmail1 8.31 8.17 11.48 30.34 9.23 11.90
sendmail2 8.33 7.96 11.50 30.38 9.17 12.46
stide1 1.42 1.41 2.08 3.42 1.92 4.06
stide2 1.39 1.41 1.98 3.23 1.67 4.51
ubuntu 33.13 31.65 42.81 35.35 68.25 35.62

B. Comparison of Efficiency

The comparison of computation speed and memory con-
sumption for all algorithms is shown in Fig. 3 and Fig. 4,
respectively. We concatenated all traces insendmail1 to
obtain a long sequence, and tested different methods on this
sequence with increasing length. The setup of each method
was same as in the last experiment. For the sake of fair
comparison, all algorithms were implemented in C/C++. We
only plotted the curve for EOSP as EOSPs took almost same
amount of time and memory in our experiment. As can be
seen in Fig. 3, EOSP showed a substantial reduction of time
comparing to other baseline algorithms. Moreover, the time
cost of EOSP only increased at a very low pace with respect
to the length of the sequence. As we expected, LEX and SM
were extremely slow especially on long sequences, since on
each round they require gradient descent and Gibbs sampling,
respectively. On contrary, in EOSP one only need to compute
dot products of sparse vectors on each round, which can
be done efficiently. On the other hand, though the memory
consumption of EOSP is higher than other baselines at the
beginning, it remained almost constant with increasing length
of the sequence. Methods such as IKN and LEX, however,
consume more and more memory as the sequence becomes
longer. This demonstrates the effectiveness of our update
strategies described in Section V-B.
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C. Exploration of Model Parameters

In order for EOSP to be a practical tool in real-world appli-
cations, it is necessary to make decisions about the detailsof
its specification. Our exploration focused on three parameters
that mainly govern the performance of EOSP. Namely, the
confidence parameterη, the maximum length of the context,
and the maximum size ofV . We focused only on EOSP and
ignored all side information in this set of experiments.

The performance of EOSP with respect to different settings
of confidence parameterη is summarized in Table IV. We fixed
the maximum length of the context to50 and maximum size
of V to 20, 000. On the majority of data sets, the online error
rate hit the bottom whenη is around0.9. However, the lowest
perplexity was often observed whenη := 0.8; the perplexity
slightly increased after that. In general, bigger value ofη

allows the algorithm to perform a more confident update on
each round, which generally leads to higher predictive accuracy
when the data is noise-less.

TABLE IV. PERFORMANCE OFEOSPW.R.T. DIFFERENT SETTINGS OF

CONFIDENCE PARAMETERη. SMALLER VALUE INDICATES BETTER
PERFORMANCE.

(a) Online error rate (%) of EOSP
Data set 0.6 0.7 0.8 0.9

darpa 50.41 50.52 50.11 50.39
lpr1 41.61 41.55 41.63 41.43

lpr2 47.21 47.02 47.44 46.56
sendmail1 34.25 34.12 33.47 33.12

sendmail2 33.32 33.10 33.11 33.74
stide1 8.21 8.25 8.34 8.13
stide2 7.79 7.79 7.75 7.64

ubuntu 44.77 44.76 40.90 44.60

(b) Perplexity of EOSP
Data set 0.6 0.7 0.8 0.9
darpa 48.82 49.05 48.98 49.03
lpr1 9.74 9.73 9.82 9.72
lpr2 12.62 12.57 12.94 12.33

sendmail1 8.67 8.64 8.31 8.44
sendmail2 8.69 8.67 8.33 8.47
stide1 1.43 1.44 1.42 1.42
stide2 1.40 1.41 1.39 1.39
ubuntu 32.93 33.02 32.93 32.29

Table V summarizes the results of EOSP with respect to
different maximum length of the context, whereη := 0.8
andQ := 20, 000. Although one may expect an improvement
of the predictive accuracy by allowing the algorithm to look
back long distant context, we found that the optimal length
of the context varies with data sets. Ondarpa, lpr1 and
stide1, for example, the context length of40 was sufficient
for a good prediction; increasing this length did not improve
the prediction. Onubuntu, the online error rate decreased
with increasing context length up to100. In general, we found
that the prediction of EOSP is not adversely affected by the
overlength context, though its efficiency can be degraded due
to more memory consumption.

TABLE V. PERFORMANCE OFEOSPW.R.T. DIFFERENT MAXIMUM
LENGTH OF CONTEXT.

(a) Online error rate (%) of EOSP
Data set 20 40 60 80 100

darpa 50.21 50.10 50.10 50.10 50.10
lpr1 41.66 41.63 41.63 41.65 41.65
lpr2 47.45 47.45 47.45 47.45 47.45
sendmail1 35.70 33.48 33.47 33.47 33.47
sendmail2 33.67 33.60 33.11 33.11 33.11
stide1 8.45 8.27 8.27 8.27 8.27
stide2 8.02 7.75 7.75 7.75 7.75
ubuntu 41.84 41.23 40.90 40.75 40.69

(b) Perplexity of EOSP
Data set 20 40 60 80 100

darpa 48.97 48.97 48.98 48.98 48.98
lpr1 9.78 9.82 9.82 9.82 9.82
lpr2 12.94 12.93 12.94 12.94 12.94
sendmail1 8.36 8.31 8.31 8.31 8.31
sendmail2 8.38 8.32 8.32 8.33 8.33
stide1 1.43 1.42 1.42 1.42 1.42
stide2 1.40 1.39 1.40 1.40 1.40
ubuntu 33.15 33.13 33.12 33.11 33.10

Finally, to study the performance with respect to different
sizes ofV , we fixed η := 0.8 and the maximum length of
context to 50. Results are summarized in Table VI. It was



found that on the majority of data sets predictive performance
can be improved by allowingV to contain more suffixes,
which can be expected. However, ondarpa data set having
at most4, 000 suffixes in V was sufficient for obtaining a
good result; increasing the upper bound of|V | did not improve
the performance but raised the memory consumption. This
is probably due to that most sequences indarpa are short
(with average length of57) and hence there are not many
combinations for frequently occurred subsequences. In general,
if the patterns in a sequence are simple (especially with some
periodicity), then one can set a small size forV .

TABLE VI. PERFORMANCE OFEOSPW.R.T. DIFFERENT MAXIMUM

SIZE (×103) OFV .

(a) Online error rate (%) of EOSP.
Data set 1 2 4 8 16

darpa 50.39 50.21 50.13 50.13 50.13
lpr1 42.45 42.18 41.83 41.68 41.65
lpr2 48.21 48.00 47.56 47.45 47.45
sendmail1 38.01 36.57 35.92 35.24 34.63

sendmail2 34.98 33.55 32.88 32.60 32.43
stide1 9.23 8.99 8.62 8.32 8.27

stide2 8.74 8.57 8.28 7.90 7.85

ubuntu 42.73 42.20 41.97 41.51 41.21

(b) Perplexity of EOSP.
Data set 1 2 4 8 16

darpa 48.97 48.98 48.98 48.98 48.98
lpr1 10.37 10.15 9.93 9.82 9.82
lpr2 13.54 13.44 13.01 12.94 12.94
sendmail1 9.46 8.84 8.47 8.31 8.31
sendmail2 9.49 8.88 8.49 8.33 8.33
stide1 1.50 1.47 1.45 1.43 1.43
stide2 1.46 1.45 1.42 1.40 1.40
ubuntu 33.53 33.30 33.19 33.15 33.11

VII. C ONCLUSIONS

Motivated by the problem of system call prediction, this
work has proposed a novel method for predicting the next
symbol in a sequence. Unlike previous methods our algorithm
does not rely on a fixed length context during learning and can
be easily incorporated with side information. The algorithm
maintains a set of distributions over parameters. On each
round, the distributions are updated to satisfy a probabilistic
constraint. The update can be computed in closed-form and
implemented using sparse vectors. Moreover, we proposed
several strategies to reduce the memory consumption, allow-
ing a good scalability on long sequences. An improvement
of accuracy and efficiency over existing methods has been
demonstrated in the experiments.

Our method can serve as a backbone in a wide range
of real-time applications, such as intrusion detection and
power consumption modeling on mobile devices. Comparing
to previous methods in this area, our algorithm allows one
to incorporate the domain knowledge as side information
to improve prediction. Besides, our framework can be also
adopted to perform other tasks, such as language modeling
and structure prediction. An important question for future
studies is to explore theoretical properties of our algorithm,
such as the convergence rate under different noise settings. In
particular, it would be interesting to develop a robust algorithm
for predicting sequence with adversarial noise.
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