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Abstract—Sequence prediction is a key task in machine learn-
ing and data mining. It involves predicting the next symbol h a
sequence given its previous symbols. Our motivating applation is
predicting the execution path of a process on an operating sgem
in real-time. In this case, each symbol in the sequence repents
a system call accompanied with arguments and a return value.
We propose a novel online algorithm for predicting the next
system call by leveraging both context and side information
The online update of our algorithm is efficient in terms of time
cost and memory consumption. Experiments on real-world dat
sets showed that our method outperforms state-of-the-art @ine
sequence prediction methods in both accuracy and efficiencgnd
incorporation of side information does significantly improve the
predictive accuracy.
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algorithms [3]. In general, the length of context needed éden

an accurate prediction is not constant, but rather depemtteeo
recently executed system calls. Second, the informatiom fr
the arguments and return values (e.g. file descriptor, mgmor
address and signal) may be also indicative in predicting the
next system call. Considering a process repetitively rekads
from the file1 and writes data to the fil2. A resulting system
call sequence may look like

read(1l), close(l),
cl ose(2), open(1l),

open(1),

open(2),
wite(2), .

Assume that we have observed the above sequence with
seven system calls; the goal is to predict the next system cal
Without using the knowledge of the arguments, a bigram model
based merely on the name of adjacent system call will predict

Online sequence prediction is the problem of observing a ead andwr i t e with even chance. However, as the fldas
sequence of symbols one at a time and predicting the next synbeen closed, the correct prediction should lead. Although
bol before it is revealed. This technique has been sucdssfu one can solve this problem by extending Markov models
applied in a large variety of disciplines, such as stock miark with more sophisticated graphical models, incorporatiiig s
analysis, natural language processing and DNA sequencinmformation is in general not straightforward for probail
The problem of sequence prediction has received consilderaktic Markov models. Third, a process may exhibit different
attention throughout the years in information theory, niaeh behaviors at various points during its lifetime, dependimy

learning and data mining. Typically, thdarkov propertyis

user’s input and the status of the system. In other word, the

assumed when modeling a sequence. That is, a finite histogequence is usually not stationary and no prior assumption o
of the past, i.e. theeontext can be useful in predicting the its distribution should be made. This suggests the negessit

future. The length of the context is called theler of Markov

an online model that can be continuously updated, presgrvin

models. Previous work shows ample evidence of the fact thanformation from a long distant context while giving more
making such an assumption is often reasonable in a practicamphasis to recent data, so that the stationarity is notnestju

sense [1], [2]. For instance in natural language processing
is often well-enough to describe text by a fixed order Markov
models (e.g. bigram, trigram), though the next word is not

necessarily related to its previous words.

We focus on the problem of predicting the next system
call given an observed sequence. The solution of this pnoble

can be extremely useful in a wide range of applications, such
as anomaly detection [4], [5], buffer cache management in

Our motivating application is modeling the execution pathoperating system [6], power management in smartphones [7]
of a process on a desktop/mobile system in real-time. Eachnd sandbox systems [8]. We leverage both context and side
process produces an ordered sequence of system calls whictiormation of each system call and model a sequence in an

request different services from the operating system. Rs-il
trative example is depicted in Fig. 1.

online fashion. The proposed algorithm performs prediciio
real-time and can quickly update the model when a prediction
error is made.

Three remarks are in order. First, some system calls havé
a long range dependency. For instance, after creating a file The rest of the paper is organized as follows. Section Il
the process may produce hundreds of system calls before hiriefly reviews previous work on sequence prediction. Sub-
finally closes the file. In this case, the dependency betweesequently, our novel contribution is highlighted. Sectidin
creat andcl ose can not be observed from a short contextdescribes the problem formulation. We next cast sequence
of cl ose. Although one can increase the order of Markov prediction as a linear separation problem in Section IV. The
models to capture information from a long distant context, i proposed method is presented in Section V. Experimental
is often difficult in practice due to the requirement of vastresults are demonstrated in Section VI. Section VIl conetud
amounts of training data and more sophisticated smoothinthe paper and points out some future directions.
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open ("/1ib/librt.so", O _RDONLY) =3
S
read (3, "\177ELR\ 2\1\1") = 832
 E——
fstat (3, {st_npde=S_| FREG, st_size=317}) =0
I
mrap (NULL, 4096, PROT_READ| PROT_WRITE) = 0x7f2f7
X et r
mrap (NULL, 2129016, PROT_READ) = Ox7f2fc
nprot ect|| (0x7f2f7, 2093056, PROT_NONE) =0
nmep (Ox7f2fa, 8192, PROT_READ) = Ox7f2fb
cl ose (3) =0
: =

Fig. 1. Left panel shows a circular plot of a system call tradeen runningl s on Linux, which was collected usingt r ace. System calls are plotted

clockwise, starting wittexecve and ending withexi t on top. A time stamp is labeled in front of each system call.ufve connects two system calls if the
return value of the former was used as an argument of the. |&tethe right panel, a sample segment of this sequenceaseatktwith argument defined within

the parentheses. For the sake of clarity, some long argenferg. string) are omitted. The dependencies between tine realue and argument are highlighted
with arrow lines.

II. RELATED WORK distribtuion over some linear classifier hypotheses and@ysp
o ) it to control the online update of parameters. Several work
_ The problem of sequence prediction has a fairly 10nghas followed this idea and showed that parameters’ confadenc
history and has received much attention from the field ofinformation can significantly improve online learning pe
game theory [9], [10], [11], information theory [12], [131L4], mance [32], [33], [34], [35].
[15], and machine learning [16], [17], [18], [19], [20], [R1
One of the most useful tools is context trees, which store The system call sequence was mainly studied by computer
informative histories and the probability of the next symbo security researchers in the early days [36], [37], [4]. Thegd
given these [15], [22]. Context trees use only a few recentlypatterns in the sequence to identify misuses and intrusions
observed symbols for prediction. The number of symbolsystems. To contain the attack preemptively, plan recimmit
that are used depends on the specific context in which theas developed, aiming at recognizing and predicting goals
prediction is made. The motivation for exploring contexetr based on observed system call sequences [38], [39]. Rgcentl
strategies stems from their simplicity and their success irhe problem of system call prediction attracted much attant
lossless data compression applications [23]. Another Ifami due to its importance in many applications. For example, in a
of approach based on Bayesian nonparametric models haandbox the amount of time that a process must suspend for a
generated considerable recent research interest [24],[R09. security check can be eliminated when the current systeim cal
It is assumed that the distribution of the current symbol isis correctly predicted, yielding a more efficient sandbox im
determined by some random process (e.g. Dirichlet procesplementation [8]. On mobile devices it has been demonstrate
Pitman-Yor process) governed by its context. The hierarchyhat system calls prediction can be used to design usantede
is defined recursively to the first symbol in the sequence, oprefetching techniques [6] and reduce power consumptipn [7
which a global base distribution is defined. These models givHowever, most of these studies are over-simplistic in thesse
state-of-the-art performance in language modeling, hewev that they focused only on the names of system calls and
inference in such models is not straightforward. It oftenoverlooked the arguments and return values. One possible
relies on repeated random sampling (e.g. Markov chain Monteeason is the difficulty in representing this side inforroati
Carlo), which can be time-consuming in practice. which requires a different modeling technique, such as rule
learning [40], [41]. Hence, it can not be incorporated into a

place in a sequence of consecutive rounds. On each round,

the learner is given a question and is required to provide an In this paper we introduce a novel online algorithm for
answer to this question. The performance of an online lagrni predicting system calls in a sequence. Our algorithm coesbin
algorithm is measured by the cumulative loss suffered by théhe ideas from both context trees [18], [42] and second+orde
prediction along the run on a sequence of question-answemline learning algorithms [32], [33], [34], [35]. Unlikergvi-
pairs. The Perceptron algorithm [25], [26], [27] is perhapsous work on system call prediction that only uses contextrinf
the first and simplest online learning algorithm designed fo mation, we also consider side information such as arguments
answering yes/no questions. Adaptations of the Perceptramturn values and structures into learning and predicfidre

for multiclass categorization tasks include [28], [29]. k& side information can be straightforwardly incorporatetd iour
Perceptron algorithm is essentially a gradient descerst<fir model, giving a further boost to the accuracy of prediction.
order) method, recent years have seen a surge of studies &arthermore, we propose several techniques to improve the
the second-order online learning [30], [31], [32]. For exden  efficiency (in terms of both time and memory) of our algorithm
the confidence-weighted algorithm [32] maintains a Gaussiaon long sequences, yielding a good scalabilty on big data.



I1l. PROBLEM FORMULATION On roundt the contextx!'*=1l is observed, we map this

We denote the alphabet of the observed symbol¥ as sequence to the function € 7 as follows

{1,...,K}. Let ¥* be the set of all finite length sequences 1 if sl — ¢

over the alphabek. Specifically, the empty sequeneeis [L:]y . —pi e 1] - Lit—1

included in>*. We focus on the online learning framework, YT = e it st € suf(x! @
where learning is performed in rounds. Lef! € ¥ be the
tth selmbol in a sequence. Denaté*~1l € ©* be thecontext

of zlf e xt=1 .= 21 21 For completeness, let
xtt=1l .= ¢, On roundt, the algorithm first predicts!!! € &
according to its current prediction rule and the contet—/.
After that, the true symbat!! is revealed and the algorithm
suffers a loss which reflects the degree to which its preaficti
was wrong. The algorithm then has the option to modify
its prediction rule, with the explicit goal of improving the
accuracy of its predictions for the rounds to come.

0 otherwise

wheresuf (x!**~11) denotes the set of all suffixes af'*~1].
The decay factorp > 0 is a predefined hyperparameter
and mitigates the effect of long contexts on the function
It is noticed from Eq. (1) that all suffixes of!'*~1 are
mapped to non-zero values; the value tends to decrease as the
length of suffix increases. This idea expresses the assompti
that symbols appearing earlier in a sequence have the least
importance in modeling the current symbol. As we shall see
in Section V-C, this assumption can be infringed to somergxte
Assume that any symbol in the sequence is determinelly incorporating side information into our model.
by its context, the problem of sequence prediction can be
formulated as finding a functiorf : ¥* — . To predict
the t** symbol one can simply setl!l = f(x[**~1). we
generalize this definition and allow the algorithm to output
predictions from a real-valued sgt Specifically, lety” := R¥
and f : ¥* — Y, where a predictiory € Y is interpreted as
a degree of confidence for each of the symbol&inConse-
guently, the mapping from a score vecgoto an actual symbol
in ¥ is via & = arg maxy, yx. On roundt, the loss off is
measured by a zero-one loss function( f; (x!%=1, z[t)).
That is, ¢y is zero if 1 = 2!}, Therefore, our ultimate goal
is to incrementally learn a functiofi which minimizes

We have mapped sequences to functiong{inThe next
step is to create separating hyperplaneg-irfor prediction.
We employ amulti-class context treeA multi-class context
tree is aK -ary tree, each node of which represents one of the
sequences ifY. Specifically, the root of the tree represents the
empty sequence The node that represents the sequedté
is the child of the node representing the sequetite!/l. An
observed sequence thus defines a path from the root of the tree
to one of its nodes. Note that this path can either terminate a
an inner node or at a leaf. We associate each node wih a
dimensional vector. In other words, a multiclass contese tr
can be represented as a functionV — R¥. An illustrative

T example is given in Fig. 2. In particular, if we only look at
1 Zgl (f; (X[l:t—ll,x[t})) ’ the kth element of the vector on every node and denote the
T~ corresponding context tree ag : V — R, then it is easy to

) verify that 7, is embedded .
whereT is the length of the sequence.

To construct the context tree on rounds, we initiatizé to
be a tree of a single (the root) node which assigns a weight of
zero to the empty sequence, i¥!Y .= {¢}. After receiving

Having described a general scheme for sequence predisi’**~), a trivial solution is adding all sequences in the set
tion, we now focus on determining the form gfto obtain  suf(x*~1)) to V!l and associate each of which with an
a concrete algorithm. In what follows we cast the sequencendetermined vector iR. The method for determining the
prediction problem as the problem of linear separation in avalue of these vectors will be presented in Section V-A. For a
Hilbert space, which is a popular topic in machine learnifyg.  long sequence adding all suffixes to the tree can imposeuserio
shall see that by doing so one can harness powerful machir@mputational problems, as the required memory for storing
learning tools such as the Perceptron algorithm [26], [2if] a the tree grows quadratically with We shall resolve this issue
online convex programming [43] to our purpose. in Section V-B.

IV. SEQUENCEPREDICTION AS LINEAR SEPARATION

As it was suggested in the Section |, the number of previous Returning to our sequence prediction problem xét:—?!
symbols needed to make an accurate prediction is usually nbie the sequence of observed symbols on rauadd let;)[*! be

constant, but rather depends on the identity of those sysnbolits corresponding function i defined by Eq. (1). Denotét]
With this consideration in mind, we definesaffix-closedset  as the current context tree subject to the clasBy following

V' C ¥ such that for everg € V, every suffix ofs (including  the description in Section IIl, the prediction problem can b
€) is also contained iv. To allow the algorithm to look as far formulated as

back as needed, we can $&to be large enough. Specifically,
let H be the Hilbert space of square integrable functigns #1 = argmax <¢[t],71£t]> ) (2)
V — R endowed with the inner product kex

€)= 3 Ces) e
) = S S )
v Geometrically, we can considel as a space partitioned
by K hyperplanes, whose normal are given hy ..., g,
and the induced norm|¢|| = +/{(¢,¢). Note that if we respectively. Thet™ symbol is then predicted by picking the

can bound|V| by a constant, then the Hilbert spag@é is  hyperplane that gives the maximum (signed) distance to the
isomorphic to theV|-dimensional vector space, i.B!V!. vector [,
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Fig. 2.  An example of a multi-class context tree, whéfe= 3 andV = {e¢,a,ba,b,ab,cb,c,bc,abc,bbc}. The label on each node represents the index.
Notice how the index matches the elementlin The context associated with each node is indicated on tgesedf the tree along the path from the redb
that node. The vector associated with each node is providedeaeach node. This context tree can be parameterized @& matrix, with the first column
(0,0,0)T corresponds to the empty sequerc€onsidering the context tree as a function, given an inpgtience 4abbc”, the output from this context tree

is (0.1,0.6, —0.2), whose path is plotted with double lines.

V. ONLINE LEARNING ALGORITHM diagonal matrix, the weights become independenthis is
not true in real-world, yet it is necessary due to the large

It can be seen in Section IV, our predictor is fully specified Value of [V|. For the sake of efficiency, H}‘e predicted symbol
by a multi-class context tree, which can be represented by is simply approximated bﬁrggleag kg, - 9t instead of using

71,..., 7K. Given a fixedV, we can parameterize; by a  \yeight vectors sampled fromV'(s;,, Ax). In other words, the

14 — i i . . K ..
vectorw), € RIVl. DenoteW = [w1, ..., wk],inwhichrows  jnformation captured by\,, does not influence the decision.
correspond to vectors associated with each node as depictedTps is analogous to Bayes point machines [44].

Fig. 2. The size oW is thus|V| x K. Note that a context tree S
is now fully specified by its weight vectdiV and structurd’ . On each round, we update the model by minimizing the
Therefore, the problem of learning an accurate predictar cath® 0ld one while ensuring that the probability of correct

-~ th . ;
be reduced to the problem of determiniki and V. Denote prediction ont** symbol is not smaller than the confidence
w1 e RVI a vectopr corresponding to tg sequendt—1 hyperparameter, € [0,1]. After revealing the true symbol

— [t] ;

To constructy!”! we simply follow Eq. (1) and only assign ?ojgv\ﬁné gvg’ti,f‘n?ffﬁé?, ‘;,?gﬁ‘,f#f""“) to the solution of the

values to the sequences it~ N V. Elements ofy!*! are

mdext_ad m_the same order asf]. Thus, the score vector (MEHJ,AE“]) — argmin  Dxr (/\/ (1, A) | N (ME},AE]))

described in Section 11l amounts W) T !, ol

s.t. Prwn(u,A) [w7- - ’(/J[t] >w- w[ﬂ] >n. (3)

This section describes our online learning algorithm irrfou

parts. We first describe the method to ledM, subsequently,

we present an approach for constructingin a memory- Notice that the optimization problem in Eq. (3) needs to

efficient way. Extension for incorporating side informatio be solvedK — 1 times for everyk € ¥\ r on each round,

is described towards the end. Finally, several implemimtat which can be computationally expensive. We therefore gi@vi

issues are highlighted. a simplified algorithm, where only two updates is required on
each round. The intuition was to ensure that the true synsbol i
more likely to be predicted than the symbol that is its closes
competitor. Specifically, lets be the highest ranked wrong
symbol on round. That is,

A. Learning Weight Vectors s = arg klggf HE:] '¢m. @)

We first show how the update & can be performed

in rounds. Our method is closely related to the family of!n each round only(x,,A;) and (g, As) are updated as

confidence-weighted linear classifiers [32], [33], [34]5]3

Following the idea of previous work, we maintain a Gaussian_One may considertW as a random variable from a matrix normal

s trilag - distribution, i.e. W ~ MAN (M, U, V), where U and V represents the
distribution for every column ofW with a mean vector correlation among-row and among-column, respectivelywél@r, under the

By € RIVI"and a diagonal Qovariance matm(_k € RIVIXIVI, assumption of independent weights and independent symbiolnd V' are
i.e. wi ~ N(ug, Ar). Notice that by restrictingA, to a  simply diagonal matrices. This results an equivalent fdation to ours.




follows where¢ = ®~1(n). Further, we introduce a loss function as
(u[rt+1]7A£-t+1]) = argmin D (N (1, A) ||V (u[f]7A£-t]))

st Pruoa(en [W'w[t] > w, 'd’[ﬂ > . (5)
(“Lt+1]7ALt+1]) = arg 1;1111\1 Dxr (N (1 A) | NV (HLt]7ALt]))

Ly ({(le\k)}f:l; (x[litfl]“r[t])) o

max <07 ¢\/ (W)T (Ar + AP — (p, — pa,) - W) . (15)

It is easy to verify that satisfying the probability con-
[#) [t
st Prwenun) [WT Yrzwey ] zn ) graint Eq. (14) is equivalent to satisfying, = 0. In this

Notice how the constraint of Eq. (5) and Eq. (6) differs from case, we simply set " to be equal toV’!l. Otherwise we

each other. We follow the derivation in [33] and obtain theadd all sequences isuf(x**~1) to V. Note thatp and
closed-form update as ¢ can be tuned as a trade-off between the passiveness and

aggressiveness of the update.

it =pl! - oAyl M g : .

(1] ] Al _econd, when a sequence is extremely long, adding all
py T =pgt — aA P (8)  suffixes of a long context can impose serious memory growth
(1] ) ! YL -1 problem. Hence, it is not a practical solution. To limit the
AT = ((Ar ) + 2a¢ diag (¢ )) (99  maximum depth of the context tree, we prune the context

X . x[1*=1 to a certain length:[!! before adding its suffixes to
Al — ((A[St])_ + 206 diag? (w[t])) 7 (10) V, wherex!t! is given by

1
o [ 1 . . . &l = min <{— 1og£]1(t)J b — 1> ,
wherediag (1/:[ ]) is a diagonal matrix made from the squares p

of the elements ofs[) on the diagonal. The inverse of diagonal with ¢;(¢) denoting the number of prediction mistakes made
matrix can be computed element-wise. The coefficienis by the algorithm so far. The intuition behind is to limit

calculated as follows the depth of the context tree by the number of prediction
B T — mistakes, which is inspired by [18]. As a consequence, one ca
o= (1+2¢m) + /(1 +2¢m)? — 8¢ (m m), straightforwardly translate the mistake bound of configenc
4¢v weighted classifier (Theorem 4 in [33]) into a bound on the
where growth-rate of the resulting context tree [18], [42].
m= (H t_ u[tl) -l (11) Finally, we limit the size ofl” by removing the elements
" . * . giving smallest)", u7, when |V| exceeds the maximum
v = (H[Tt]) Al — (H[St]) Agpl! (12) allowed sizeQ, where i, ; is the i element ofu; and
. i € [1,Q]. This criterion has been shown effective in recur-
¢ =2""(n), (13)  sive feature elimination [45] and has a good theoretical sup

n Port [46], [47]. Alternatively, one can also use the, 1/\; ;
or >, |ukil/Ak: as the criterion, where\;, is the pth
element on the diagonal &,;. By employing the above three
For initialization we setugl =0 and AL” =1TIforall k, strategies the context tree grows at a much slower pace and th
wherel is the identity matrix. It is noticed from Eq. (7) and algorithm can utilize memory more conservatively. Finalhe
Eqg. (8) that during online learning the mean weight vectorpseudo-code of our algorithm is summarized in Algorithm 1,
is updated in a similar fashion as in the Perceptron. Theavhich is called EOSP in the sequel for short.
confidence of all observed suffixes is increased by shrinking

the corresponding value on the diagonalf (see Eq. (9) C. Incorporation of Side Information
and Eqg. (10)), which leads to the update of weight vector in

and®~!(.) is the inverse of the normal cumulative distributio
function.

the next round more focusing on low confidence features. Thus far we augment only context information from the
sequence. As we highlighted in Section | side information
B. Memory-Efficient Update of Suffix Set of system calls can support the prediction of the next sym-

bol. Apart from that, in language modeling grammars (e.g.
Having described the method for learning the Weightpart-of-speech tags), topics, styles are helpful to ptettiie
vectors of the context tree, we now focus on determining itshext word [48], [49]. Comparing to the-gram models and
structure, i.eV . Instead of adding all suffixes of the context to Bayesian nonparametrics models [24], [19], a key advantage
V on each round, we introduce three strategies for constigicti of our approach is its simplicity of leveraging side infottioa.
V' in a memory-efficient way. Specifically, if side information on roundcan be given in the
form of a vectorb! € RE, we can directly incorporate it into

First of all, we only updaté/ if the probability constraint L . i o
y up P y the prediction via a linear combination as follows

P, ni(u, ) [Wr 0 2 we 9] 2 (04)
WSNN(/J‘S7AS)

is violated. Note that Eq. (14) can be rewritten as

St . L IA 13 VI L i N1
2 = argmax P+, - b

This corresponds to replacing®! in Algorithm 1 as aQ+ B)-

” i ” dimensional vectofs!!, bl*l]. The dimension of the mean
(b =) 47 20 (1/’ ) (Ar +As)y™, vector and confidence matrix associated with each symbol is




Algorithm 1: Efficient online sequence prediction
(EOSP).
Input  : Damping factor;p > 0; confidence

parametern € [0, 1]; maximum allowed size
of V:@Q > 0.
Output : Mean vectors and confidences matrices:

{(/JkaAk)}kK:]l; set: V.
Initialize : Vk € X, (qu ,AE]) =(0,I), 6 = ®~1(n),
VI = {e};

D. Efficient Implementation

It can be observed from Egs. (7) to (10) that most of the
entries ofy, u;, and A are zero, which implies a possibility
to improve the efficiency by storing them in a compact way. In
the implementation, we stope,, A andt in sparse vectors.
The algorithms of addition and dot product for sparse vector
can be found in [52]. Moreover, as the update§of, A,) and
(1, As) are independent to each other, line 13 Algorithm 1
can be implemented in a parallel manner. Furthermore, the

1 fort=1,2,...do operations orlV can be implemented efficiently using a data
2 Constructyy™ from x[1:t—1: I+ Eq. (1) =/ structure calledsuffix trie Finally, removing one element at
[t .. a time (line 8 to 11 Algorithm 1) is time consuming and in
j S:Qgi\ﬂ tsr]yenl[r)L?(less?/yr#B@tqp ’ p[rgctice we remove as much as half@fwhen|V| > Q —
5 | Computes; [+ Eq. (4) */ R
6 Suffer lossly; [+ Eq. (15) =/
7 | if £, >0 then VI. EXPERIMENTAL RESULTS
8 while [VI| > Q — !l do _ _ .
9 i=arg min 3, 52 Two sets of experiments were carried out to validate our
j=1,...,Q —HREX Tk algorithm. First, we compared the accuracy and efficiency of
10 Vk€X, uri =0; EOSP with state-of-the-art sequence prediction methoets. S
11 Remove the'*" sequence fronv1*; ond, we investigated several factors that affect the peréoice
1 Vit =yl {X[t_i:t_l] <i< n[t]}; of EOSP in order to gain more insights of it.
13 set (p! ™ ATy and (Y, ALY The experiments were conducted on three groups of data.
I+ Eqs. (7) to (10) =/ The first set of data is from BSM (Basic Security Module)

L data portion of 1998 DARPA intrusion detection evaluation
data set created by MIT Lincoln LabsWe used a subset of
training data, which contained four-hour BSM audit datalbf a

ded dinalv. N h ineffecti ) processes running on a Solaris machine. Each system call was
extended accordingly. Note that an inefiective repres@ma o.4rded with its corresponding arguments and return value

of side information can adversely affect the predictiorfqngr The second group of data was obtained from University of
mance as well, hence there has to be some mechanism fQfe\, Mexico [4], in which system call traces of several praces
selec_tlng fea_tures that really contribute to pred_lctl(m.oUr were generated in either “synthetic” or “live” manfeOur
algorithm, this can be done by constantly settingi+» ©  gxperiment was conducted on their “live” normal data, where
zero if 3., [pk,ib|/Ak.i+o 18 too small. In addition, one can yaces of programs were collected during normal usage of rea
Livixv users. Unlike DARPA data set, a trace in UNM data set is just
_ V1BxB a list of system call names; no arguments and return values
to balance the learning rate of the weights on the context angye ayailable. Therefore, for UNM data set only the funaiion
side information. Specifically, when= 1 the side information  4yoyp in Table | was available as side information. The third
shares the same learning rate with context information;nwhe 45t5 set was collected by ourseleBy usingst r ace and a
vy=20 thg §ide information does not contribute the |eami”9prepared script, we collected system call sequences wéin th
and prediction at all. corresponding arguments and return values from all exbtaita
programs on an Ubuntu system. The program options were
chosen solely for the purpose of exercising the program, and

not to meet any real user’s requests. From these three source

2222?\/83 tcf)1l:';\l:£ ('asxgglrﬁng:l?savr\]/i(tjhogisrr?irl\;?t:‘aﬂiﬁgr?;lilglsg?)(ée, \(X/% selected a total of data sets, and their characteristics are
y summarized in Table II.

occur together, which could be due to some sub-task of thé
process. Thus, if a particular group of system calls is fesly
observed in the recent context, then the next system cadiris v
likely from the same group. In present work, system calls are [z ser

also initialize A, = with 0 < v <1

The side information used in this work is summarized

in Table I. The idea of using these attributes is mainly

CHARACTERISTICS OF DATA SETS USED IN THE
EXPERIMENT.

TABLE II.

[ #calls [ #seq. | Min.Ten. | Max.len. | Avg.len. |

grouped manually by their documentation, which is pastiall darpa 513 500 3 3,071 =
based on [50]. It is also possible to automatically groupesys Tpri 182 | 2,766 82 | 59,565 1,080
calls by using topic models [51]. Another observation ist tha Lg;gm O o It e P
a block of system calls repeats_themselves especially when| sendnail 2 190 | 8. 000 8 | 149 616 648
some of them return an error. This was probably attributed to | sti ge; 164 | 8,000 225 | 146,695 | 1,055

H H H stide 164 8,000 108 174,401 1,255
the exception handling (e.g. restart mechanism) of a psoces == T 5T 53247 553

Thus, a simple statistic of the error codes is maintained
and considered as one O.f the eVIC.IenC.eS for predlptlng e 2http://www.|l.mit.edu/mission/communications/cyl@8Tcorpora/ideval/
next system call. In practice, the side information listed i qatay

Table | can be easily extracted from the context with nelglegi 3http:/iwww.cs.unm.ede/immsec/systemcalls

computational cost. 4URL is masked for blind review.




TABLE I. SIDE INFORMATION USED IN OUR ALGORITHM FOR SYSTEM CALL PREDICION.

Feature set | Size | Description

File descriptor 2 | The number of opened files and the number of closed files, ctgply.

File type 9 Each element represents the number of opened files of ayartiype, such aRDONLY, WRONLY, APPEND, etc.
Functional group 9 Each element represents the number of occurrences of sgsiemassociated with a group given a context. The groyips

were built in advance by categorizing similar system caltgether, resulting groups in total. For instance, the “file]
group include<r eat , open, cl ose, r ead, etc. The “process” group includé®r k, wai t , exec, etc. The “signal”

group includessi gnal , ki | |, al ar m etc.

Access location 12 Each element represents the number of accesses to a partielctory, such asusr/ bin,/usr/lib,/usr/tnp,
etc.

Error code 124 | Each element represents the number of caught errors of ealeh such a&ENOENT, EAGAI N, EBGDF, etc.

POSIX signal 28 Each element represents the number of sent signals of epehdych asl GSEGV, SI GABRT, SI GBUS etc.

String character | 256 Each element represents the frequency value of a stringctear Achar is considered as a8-bit value, resulting
256 possible characters. We only count characters in the sthiagis not file path.

TABLE III. E XPERIMENTAL RESULTS ON DIFFERENT DATA SETS

Four sequence prediction methods were employed in the SMALLER VALUE INDICATES BETTER PERFORMANCE

experiment. They were interpolated Kneser-Ney (IKN) [3],

online prediction suffix tree (PST) [18], sequence memoizer (&) Online error rate (%) of different algorithms.

(SM) [20], and learning experts (LEX) [21]. We restricte@th ~DXaset | EOSP| EOSR | KN | PST[ SW | LEX |
f . dar pa 50.11 48.17 52.14 49.25 49.75 51.11
maximum length of context t60 for all algorithms except for Tpri o3 T aiss Tar0o 1691 4088 T 1207
SM, which was designed for modeling context with infinite | 1pr2 47.44 | 47.03 | 47.61 | 4852 | 47.24 | 51.15
length. Specifically, we usedi®-gram IKN in our experiment. zgggg: : ; gg‘ﬂ gggf gggg gi‘f? gg»gg gggé
For LEX the number of experts was set to one ang- 50, stidel s34 | 829 | 854l 859l 841 | 906
resulting an individual sequence predictor trained with libg stide2 7.75 7.75 | 8.09 | 7.95 7.78 | 851
loss. The maximum depth of the context tree for PST was setl_ubuntu 4090 | 36.13 | 38.90 | 39.23 | 75.26 | 52.72
to 50. These four methods were compared with the proposed (b) Online perplexity of different algorithms.
EOSP, and the algorithm with side information denoting as[ Dataset [ EOSP] EOSR [ KN [ PST] SM [ LEX |
EOSR . The confidence parameterwas 0.8; the damping dar pa 48.98 | 40.23 | 78.34 | 98.97 | 63.07 | 82.36
factor p was0.1; the maximum length of the context was :g:; B I S el B I
and the maximum size df was 20, 000. sendmai |1 | 8.31 817 | 11.48 | 30.34 | 9.23 | 11.90
sendmai | 2 8.33 7.96 11.50 30.38 9.17 12.46
. o stidel 1.42 1.41 2.08 3.42 1.92 4.06
A. Comparison of Predictive Performance stide2 1.39 141 | 198 | 3.23 | 1.67 | 4.51
ubunt u 33.13 31.65 42.81 35.35 68.25 35.62

The comparison of predictive performance between dif-
ferent methods is summarized in Table Ill, where the online
error rate and perplexity were used as evaluation metrics. T
online error rate of an algorithm on a given input sequence i8. Comparison of Efficiency
defined to be the number of prediction mistakes the algorithm Th : f . d and
makes on that sequence normalized by the length of the '€ comparison of computation speed and memory con-
sequence. The perplexity reflects an algorithm’s perfogaan SUmPtion for all algorithms is shown in Fig. 3 and Fig. 4,
when taking its probabilistic output into account. For EOSPrESpECt'Vely' We concatenated all tracessiandmai | 1 to

we just normalized the score vector to obtain the predictior?btaln a Iong sequence, and tested different methods on this
probabilityPr[2[* | x'*~1]. The reported results were averagedsequence with increasing Iength._ The setup of each methc_)d
over all sequences in each data set respectively was same as in the last experiment. For the sake of fair

comparison, all algorithms were implemented in C/C++. We

It is evident from the results that, EOSP and EQ§&ve a  only plotted the curve for EOSP as EQ3Bok almost same
considerably better prediction than other baseline algms. amount of time and memory in our experiment. As can be
In particular, EOSP achieved the best performance on theseen in Fig. 3, EOSP showed a substantial reduction of time
majority data sets (seven out of eight in terms of perplgxity comparing to other baseline algorithms. Moreover, the time
which indicates the effectiveness of incorporating siderin  cost of EOSP only increased at a very low pace with respect
mation into the model. On five out of six UNM data sets, weto the length of the sequence. As we expected, LEX and SM
observed an improvement by just incorporating the funetion were extremely slow especially on long sequences, since on
group information. Ordar pa andubunt u data sets where each round they require gradient descent and Gibbs sampling
side information are fully available, a striking improvemi@f  respectively. On contrary, in EOSP one only need to compute
EOSR over EOSP was observed. In general, we found SM iglot products of sparse vectors on each round, which can
a strong competitor in terms of online error rate. Howeverpe done efficiently. On the other hand, though the memory
EOSP and EOSPstill outperformed SM with appreciable consumption of EOSP is higher than other baselines at the
lower perplexity on all data sets. This suggests a potdyntial beginning, it remained almost constant with increasingtien
valuable property for our method, e.g. for combining it with of the sequence. Methods such as IKN and LEX, however,
other probabilistic model in a big system. Moreover, SM isconsume more and more memory as the sequence becomes
much slower than EOSP on long sequence, as we shall seelonger. This demonstrates the effectiveness of our update
the next experiment. strategies described in Section V-B.



10* : : —

Time cost [s]
T
o

—8— EOSP
—A— KN
PST
—O6— SM
—+— LEX

100 L L L

2 4 8 16 20
Length of the sequence (x 104)

Fig. 3. Time cost in second (averaged o¥6érruns) of different algorithms.

Both axes are in logarithmic scale.

40

10°

=
o
(I
T

Memory used [MB]

100 Lo T

10 L . .
2 4 8

Length of the sequence (x 104)

Fig. 4. Memory consumption (averaged owé€rruns) of different algorithms.

Both axes are in logarithmic scale.

C. Exploration of Model Parameters

16 20 40

allows the algorithm to perform a more confident update on
each round, which generally leads to higher predictive magu
when the data is noise-less.

TABLE IV. PERFORMANCE OFEOSPW.R.T. DIFFERENT SETTINGS OF

CONFIDENCE PARAMETERY. SMALLER VALUE INDICATES BETTER
PERFORMANCE

(a) Online error rate (%) of EOSP

[ Data set [ 0.6 ] 0.7 ] 0.8 ] 0.9 ]
dar pa 50.41 50.52 50.11 50.39
Iprl 41.61 41.55 41.63 41.43
| pr2 47.21 47.02 47.44 46.56
sendmai | 1 34.25 34.12 33.47 33.12
sendnai | 2 33.32 33.10 33.11 33.74
stidel 8.21 8.25 8.34 8.13
stide2 7.79 7.79 7.75 7.64
ubunt u 44.77 44.76 40.90 44.60

(b) Perplexity of EOSP
Data set 0.6 0.7 0.8 0.9
dar pa 48.82 | 49.05 | 48.98 49.03
Ipril 9.74 9.73 9.82 9.72
| pr2 12.62 12.57 12.94 12.33
sendnai | 1 8.67 8.64 8.31 8.44
sendnai | 2 8.69 8.67 8.33 8.47
stidel 1.43 1.44 1.42 1.42
stide2 1.40 1.41 1.39 1.39
ubuntu 32.93 33.02 32.93 32.29

Table V summarizes the results of EOSP with respect to
different maximum length of the context, wherg := 0.8
and @ := 20, 000. Although one may expect an improvement
of the predictive accuracy by allowing the algorithm to look
back long distant context, we found that the optimal length
of the context varies with data sets. @ar pa, | pr 1 and
sti del, for example, the context length df was sufficient
for a good prediction; increasing this length did not impgrov
the prediction. Onubunt u, the online error rate decreased
with increasing context length up 1®0. In general, we found
that the prediction of EOSP is not adversely affected by the
overlength context, though its efficiency can be degraded du
to more memory consumption.

In order for EOSP to be a practical tool in real-world appli-
cations, it is necessary to make decisions about the dethils
its specification. Our exploration focused on three paramset
that mainly govern the performance of EOSP. Namely, the
confidence parameter, the maximum length of the context,
and the maximum size df. We focused only on EOSP and
ignored all side information in this set of experiments.

The performance of EOSP with respect to different settings
of confidence parameteris summarized in Table V. We fixed
the maximum length of the context i) and maximum size
of V to 20,000. On the majority of data sets, the online error
rate hit the bottom when is around0.9. However, the lowest
perplexity was often observed when:= 0.8; the perplexity

TABLE V. PERFORMANCE OFEOSPW.R.T. DIFFERENT MAXIMUM
LENGTH OF CONTEXT
(a) Online error rate (%) of EOSP

[ Data set [ 20 ] 40 ] 60 ] 80 ] 100 |
dar pa 50.21 [ 50.10 | 50.10 | 50.10 | 50.10
Ipri 41.66 | 41.63 | 41.63 | 41.65 41.65
I pr2 47.45 | 47.45 47.45 | 47.45 47.45
sendnai | 1 35.70 33.48 33.47 | 33.47 33.47
sendmai | 2 33.67 | 33.60 | 33.11 | 33.11 33.11
stidel 8.45 8.27 8.27 8.27 8.27
stide2 8.02 7.75 7.75 7.75 7.75
ubuntu 41.84 | 41.23 40.90 | 40.75 | 40.69

(b) Perplexity of EOSP

[ Data set [ 20 ] 40 ] 60 ] 80 ] 100 |
dar pa 48.97 | 48.97 | 48908 | 48.98 | 48.98
Tpri 9.78 9.82 9.82 9.82 9.82
| pr2 12.94 | 12.93 | 12.94 | 12.94 12.94
sendnai | 1 8.36 8.31 8.31 8.31 8.31
sendnai | 2 8.38 8.32 8.32 8.33 8.33
stidel 1.43 1.42 1.42 1.42 1.42
stide2 1.40 1.39 1.40 1.40 1.40
ubuntu 33.15 33.13 | 33.12 | 33.11 | 33.10

Finally, to study the performance with respect to different
sizes of V, we fixedn := 0.8 and the maximum length of
slightly increased after that. In general, bigger valuenof context to50. Results are summarized in Table VI. It was
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