
Efficient Data-Race Detection with Dynamic

Symbolic Execution

Andreas Ibing

Chair for IT Security, TU München

Boltzmannstrasse 3, 85748 Garching, Germany

Abstract—This paper presents data race detection using dy-
namic symbolic execution and hybrid lockset / happens-before
analysis. Symbolic execution is used to explore the execution tree
of multi-threaded software for FIFO scheduling on a single CPU
core. Compared to exploring the joint scheduling and execution
tree, the combinatorial explosion is drastically reduced. An SMT
solver is used to control a debugger’s machine interface for adap-
tive dynamic instrumentation to drive program execution into
desired paths. Data races are detected in concrete execution with
available static binary instrumentation using hybrid analysis.
State interpolation using unsatisfiable cores is employed for path
pruning, to avoid exploration of paths that do not contribute to
increasing branch coverage. An implementation in Eclipse CDT
is described and evaluated with data race test cases from the
Juliet C/C++ test suite for program analyzers.

Index Terms—race detection; symbolic execution; interpola-
tion; branch coverage.

I. INTRODUCTION

A data race means, that there are concurrent accesses from

different threads to the same variable, of which at least one

is a write. Data race bugs are introduced in multi-threaded

software when the developer forgets to lock a resource, that

is shared between threads. Because races are observed only

for certain thread interleavings depending on the scheduler’s

decisions, they are difficult to reproduce and sometimes called

’Heisenbugs’. Exactly locating feasible data races is known to

be NP hard [1].

Data race detection is typically implemented as dynamic

analysis with binary instrumentation. It follows happens-

before analysis with vector clocks [2], or lockset analysis [3],

or a hybrid algorithm [4]. These algorithms introduce some

false positive and / or false negative detections. A prominent

example is ThreadSanitizer [5], which is integrated with the

GNU and Clang C compilers. It is reported to slow down

execution speed by at least a factor of ten. Therefore, it is

typically applied as dynamic analysis with a manually written

test-suite. The achievable code coverage is then limited to

execution coverage of the test suite. Therefore, data race

detection in this approach also depends on the size of the

available test suite, which is limited by cost constraints.

Symbolic execution [6] automatically performs a systematic

program path exploration and enables program coverage inde-

pendent of a test suite. Program input is treated as symbolic

variables, and operations on the variables are translated into

logic equations. The feasibility of program paths (feasible

with any program input) is then decided with a Satisfiability

Modulo Theories (SMT, [7]) solver. Symbolic execution is

often applied as dynamic analysis in the form of ’concolic’

(concrete and symbolic) execution [8], [9]. The program is

executed with concrete input, while symbolic constraints are

collected on the program path. The input for the next path is

generated by the SMT solver, so that the program takes the

desired path. Concolic execution offers the possibility for con-

sistent concretization of formulas (fallback to concrete value).

This is useful if certain constructs can not be handled with

the solver. Concretization does not introduce false positive

path satisfiability decisions or error detections, but in general

introduces false negatives.

The prominent symbolic execution tools DART [8], CUTE

[9] and KLEE [10] currently do not feature data race detection.

Symbolic execution tools that do support race detection are

jCUTE [11], Con2colic [12] and LCT [13]. They use a solver

to search paths through the program’s joint execution and

scheduling tree, i.e., the solver determines both program input

and thread scheduling. The combinatorial explosion can be

partly mitigated with partial order reduction [14]. The resulting

race detection with symbolic execution is considerably more

complex and slower compared to symbolic execution of single-

threaded code.

This paper presents data race detection using dynamic sym-

bolic execution and hybrid lockset / happens-before analysis.

Symbolic execution is used to explore the execution tree

of multi-threaded software for FIFO scheduling on a single

CPU core. Complexity and scaling of symbolic execution are

improved by interpolation based path pruning.

The remainder of this paper is organized as follows: Section

II motivates and describes the algorithm, Section III depicts

its implementation. In Section IV, the implementation is

evaluated with data race test cases from the Juliet test suite

[15]. Related work is reviewed in Section V. Results of the

experiments are discussed in Section VI.

II. ALGORITHM

A. Motivation

The algorithm is motivated by the following aspects:

• The operating system scheduler can be used in concolic

execution for speed-up. Code execution is faster than

interpretation. Symbolic execution needs a reproducible

execution tree, also for multi-threaded software. This can

be achieved by restricting the scheduling to one CPU core

and to reproducible scheduling independent of system

load.

• Race detection works faster during concrete execution.

Event tracing and instrumentation do not need a symbolic

interpreter.

• The analysis of a program path should continue after the

detection of a potential data race, in order to detect further

errors along path extensions. This means, that actual races

should be avoided while still detecting them. Program

behaviour without races is independent of scheduling.

Data races can be prevented by using FIFO scheduling

on one CPU core. With this scheduling, potential data

races can still be detected (using happens-before, lockset

or hybrid analysis).

• State interpolation can be used to improve scaling of

symbolic execution. Unsatisfiable branches can be inter-

polated by computing unsatisfiable equation cores [16].

The interpolation can be used to prune paths, that are

redundant with respect to coverage. Unsatisfiable cores

can be backtracked by approximate weakest-precondition

computation. This requires depth-first path exploration.

An advantage of this approach is that bugs other than races

(e.g., buffer overflows) can be found just like with symbolic

execution of single-threaded code. Only one representative

thread interleaving is analyzed per executed program path.

With FIFO scheduling on one CPU core, there is also the

possibility to apply standard code coverage criteria like in

single-threaded execution.

B. Dynamic Symbolic Execution

Code execution is faster than interpretation, and especially

faster than translation into logic formulas. Therefore, only as

few code locations as needed are interpreted symbolically, oth-

erwise the code is executed concretely. These locations are the

definition of input-dependent variables (symbolic variables)

and input-dependent branch decisions (dependent on a sym-

bolic variables). Because it is context-sensitive which variables

are symbolic, adaptive dynamic instrumentation is used. The

program under analysis is executed concretely. If a program

location needs formula generation, the analysis switches to

symbolic interpretation and generates the constraint formula.

Then, further dependent locations are marked for symbolic

interpretation, and the concrete execution is continued.

1) Reproducible Execution Tree for Multi-Threaded Pro-

grams: Multi-threaded software can be described as state

transistion system with a combined scheduling and execution

tree. Considering a deterministic scheduling algorithm without

outside parameters (independent of system load etc.), the

execution tree for this scheduling is yielded. Here, FIFO

scheduling on one CPU core is used. This avoids data races

because only one thread at a time is active, and it is not

preempted. Computations in a thread between calls to the

scheduler become atomic. Data race detection is still possible.

The execution further becomes reproducible: when restarted

with the same program input, the identical thread interleaving

is yielded.

2) Execution Tree Exploration: Symbolic program input is

configurable. It can comprise command line parameters and

system call return values. In the execution of the first program

path, pre-configured stardard return values (that are always

valid) from the symbolic system calls are used for concrete

execution. Then, the solver is used to generate concrete input

values for the next path from the collected constraints of the

previous path. The last symbolic branch condition is negated,

if the negation is not yet covered in this context. If the

resulting equation system is unsatisfiable, the branch decision

is backtracked. This path exploration is depth-first search.

Without state interpolation and path pruning, it explores all

satisfiable program paths.

3) Interpolation Based Path Pruning: The state interpo-

lation uses unsatisfiable core (unsat-core) computation with

serial constraint elimination as described in [16]. Given an

unsatisfiable conjunction of formulas, an unsat-core is a subset

of the formulas whose conjunction is still unsatisfiable. If input

generation for a path is unsatisfiable, an unsat-core is com-

puted from the path constraint. Unsat-cores are backtracked

during depth-first path exploration. A constraint is removed

from the unsat-core when the control flow graph (CFG) node

is backtracked, for which the constraint was generated.

a) Pruning: Prune formulas are the backtracked unsat-

cores. When a control flow decision node is backtracked, the

conjunction of the branch prune formulas is used. Branch

targets are used as potential prune points. When symbolic

execution reaches a branch for that a prune formula has been

computed, then the solver is used to decide whether the current

path is redundant and can be pruned. If the current path’s

path constraint implies the prune formula, then the path is

pruned. This approach can prune paths from different contexts

[16]. The implication means that all branches, that were

unsatisfiable in the previous context, are also unsatisfiable in

the current context. Extensions of the path would therefore not

contribute to increasing branch coverage [17].

C. Dynamic Race Detection

Data races are detected with hybrid dynamic analysis during

concrete execution, using the ThreadSanitizer algorithm [5].

This subsection shortly reviews the algorithm. Happens-before

analysis with vector clocks is combined with lockset analysis

to reduce the number of false negative detections. The hybrid

detection has false positive detections. False positives can

be eliminated by adding annotations to the program. Binary

instrumentation is used to trace the relevant events [5]:

• memory access events: read and write

• synchronization events: locking and happens-before arcs.

Locking events are write lock, read lock, write unlock

and read unlock. Happens-before events are signal and

wait.

The events are traced as state machines in shadow memory.

The state machines can be run as pure happens-before or as

hybrid analysis, with configurable context tracing information

(speed versus information).

Fig. 1. Overview

III. IMPLEMENTATION

An overview of the main components is shown in Figure

1. These comprise the Eclipse runtime with plug-ins for

the C/C++ development tools (CDT). CDT contains a code

analysis framework (Codan) and debugger services framework

(DSF). The instrumented program under test is controlled

through DSF using a debugger (here the GNU debugger gdb).

The debug inferior process is scheduled by the operating sys-

tem scheduler. Symbolic execution is implemented as Eclipse

plug-in on top of CDT. Logic formulas are decided using the

Z3 SMT solver [18].

A. Debugger based concolic execution of multi-threaded code

The implementation extends the dynamic symbolic execu-

tion engine for single-threaded code presented in [17]. It uses

the C/C++ parser from Eclipse CDT and the control flow

graph builder from Codan. The debugger services framework

is an abstraction layer over debuggers’ machine interfaces. The

program under test is executed in a debugger.

a) Selective symbolic interpretation: Only when the de-

bugger hits a breakpoint, then a constraint is generated for

the respective code location. The breakpoints are updated so

that the debugger breaks on usage and definition of symbolic

variables, then the debugger continues. At a breakpoint, the

CFG node is resolved for the thread that stopped. Tree-

based translation is used to generate the logic constraint. The

debugger is queried for values of concrete variables where

needed. Variables can become symbolic (by assignment of a

symbolic value) and concrete (by assignment of a concrete

value).

b) Static pre-analysis: Initial breakpoint locations are

determined with static analysis before starting the symbolic

execution. These locations are the definition of symbolic

program input and input-dependent branches (branch locations

that are input-dependent on any branch). In addition, the

analysis overapproximates the set of pointers that might on

any program path point to a symbolic target. If a target

becomes symbolic during symbolic execution, a breakpoint

is set on usage and definition of all pointers, that might point

to this target. The static pre-analysis could be called ’maybe

symbolic’ analysis.

c) Single-core FIFO scheduling: The implementation

currently runs on Linux, which supports different scheduling

algorithms at the same time for different processes. Differing

from the standard scheduler SCHED_OTHER, for the program

under test the FIFO scheduler (SCHED_FIFO) is used. The

CPU affinity is restricted to one CPU core. The correspond-

ing Linux commands are chrt (to set the scheduling) and

taskset (for CPU affinity).

d) Translation into SMT logic: The tree-based translation

is implemented with CDT’s abstract syntax tree (AST) visitor

class. A control flow graph node references an AST subtree,

that is traversed to generate a logic constraint. The translation

uses bit-vectors and arrays. The solver is neither aware of mul-

tiple threads, nor of any scheduling. It just gets a conjunction

of constraints that were collected along the program path.

e) Backtracking unsat-cores and path pruning: Unsat-

cores are computed with serial constraint deletion as in [16].

There is one pass through the collected constraints on the path

beginning from program start. Each constraint is tested once:

if it can be removed and the rest remains unsatisfiable, then

it is removed. Backtracking considers only CFG nodes that

have been interpreted (where the debugger stopped). If a CFG

node is backtracked, then any constraint generated for this

node is removed. When a decision node is backtracked, the

conjunction of the formulas from the branches is used [16].

When backtracking reaches a branch node, a prune formula

is connected with this location. The prune formula is the

conjunction of backtracked unsat cores. When a branch target

is reached in (forward) symbolic execution, it is checked,

whether there is a prune formula. If yes, then it is checked

with the solver whether the path constraint implies the prune

formula (i.e., whether the negation of the implication is unsat-

isfiable). In this case, the path can not contribute to increase

branch coverage, and therefore is pruned.

B. Race detection in concrete execution using ThreadSanitizer

The implementation uses compiler instrumentation with

ThreadSanitizer [5], which is featured by the GNU C

compiler. The program under test is linked statically with the

ThreadSanitizer library, and a breakpoint is set on the

race detection error report function. If this breakpoint is hit,

1 # d e f i n e N ITERS 1000000

2 vo id CWE 366 Race Cond i t ion Wi th in T hread in t byre f 12 bad () {
3 i f (g l o b a l r e t u r n s t o r f ()) {
4 s t d t h r e a d t h r e a d a = NULL, t h r e a d b = NULL;

5 i n t v a l = 0 ;

6 i f (! s t d t h r e a d c r e a t e (h e l p e r b a d , (vo id∗)& va l , &t h r e a d a)) {
7 t h r e a d a = NULL;

8 }
9 i f (! s t d t h r e a d c r e a t e (h e l p e r b a d , (vo id∗)& va l , &t h r e a d b)) {

10 t h r e a d b = NULL;

11 }
12 i f (t h r e a d a && s t d t h r e a d j o i n (t h r e a d a)) s t d t h r e a d d e s t r o y (t h r e a d a) ;

13 i f (t h r e a d b && s t d t h r e a d j o i n (t h r e a d b)) s t d t h r e a d d e s t r o y (t h r e a d b) ;

14 p r i n t I n t L i n e (v a l) ;

15 } e l s e {
16 s t d t h r e a d t h r e a d a = NULL, t h r e a d b = NULL;

17 i n t v a l = 0 ;

18 i f (! s t d t h r e a d l o c k c r e a t e (& g good lock)) { re turn ; }
19 i f (! s t d t h r e a d c r e a t e (he lpe r good , (vo id∗)&va l , &t h r e a d a)) {
20 t h r e a d a = NULL;

21 }
22 i f (! s t d t h r e a d c r e a t e (he lpe r good , (vo id∗)&va l , &t h r e a d b)) {
23 t h r e a d b = NULL;

24 }
25 i f (t h r e a d a && s t d t h r e a d j o i n (t h r e a d a)) s t d t h r e a d d e s t r o y (t h r e a d a) ;

26 i f (t h r e a d b && s t d t h r e a d j o i n (t h r e a d b)) s t d t h r e a d d e s t r o y (t h r e a d b) ;

27 s t d t h r e a d l o c k d e s t r o y (g good lock) ;

28 p r i n t I n t L i n e (v a l) ;

29 } }
30 s t a t i c vo id h e l p e r b a d (vo id ∗ a r g s) {
31 i n t ∗p v a l = (i n t ∗) a r g s ;

32 f o r (i n t i = 0 ; i < N ITERS ; i ++) {
33 ∗p v a l = ∗p v a l + 1 ;

34 } }
35 i n t g l o b a l r e t u r n s t o r f () {
36 re turn (rand () % 2) ;

37 }

Fig. 2. Example ’bad’ function from [15] that contains a data race in line 33

the stack is traced back to a source file location, where the

race is reported.

ThreadSanitizer supports dynamic annotations (C

makros), which can be used if standard Posix threads are

not used. They can also be used to eliminate false positive

detections and to hide benign races [5]. Parts of the code can

be marked as safe by the tool user. ThreadSanitizer can

be run as happens-before or hybrid analysis. Also in pure

happens-before mode it can report the involved locks. The

slow-down by the instrumentation is reported as factor 20 – 50,

and up to several hundred MB can be consumed for shadow

memory [5].

IV. EXPERIMENTS

a) Test cases and test setup: The implementation is

evaluated with the data race test cases from the Juliet suite

[15] for common weakness CWE-366 ’race condition within

a thread’. The test cases are 38 small artificial programs with

5-7 threads each. They contain ’good’ functions (without data

race) as well as ’bad’ functions (that contain a data race) in

order to measure false positive and false negative detections.

There are two sets of 19 programs each. One set contains data

races on global variables, the other contains data races on stack

variables with access through pointers. Both sets cover the

same 19 different data and control flow variants, that include

conditional branches, loops, goto statements etc. The tests are

run as JUnit plug-in tests with Eclipse 4.5.1 and gdb version

Fig. 3. Example, FIFO scheduling on one CPU core

7.10 on Linux kernel 4.2.0, on a Core i7-4650U CPU. The

programs under test are run as unoptimized code with default

Fig. 4. Example, traversed part of execution tree

Fig. 5. Happens-before analysis, no data race for example ’bad’ function if the else branch is taken (Figure 2 line 16)

ThreadSanitizer settings without any annotations.

b) Example: An example ’bad’ function is shown in

Figure 2. It contains a data race on a stack variable with access

by reference in line 33. The control flow depends on random

input that is returned by a global function. The rand() call in

line 36 generates this program input, i.e., the debugger breaks

at this call, and the return value of rand() is treated as

unconstrained symbolic variable. Before this ’bad’ function,

the program executes a similar ’good’ function with proper

locking in both branches, that also executes a loop with 10
6

iterations. The test program contains many branches, but few

of them are input dependent. The loops in the ’good’ and ’bad’

functions are executed concretely. Because they contain only

input-independent variables and branches, there is no need

for symbolic interpretation. The symbolic execution finds four

satisfiable program paths that non-deterministically depend on

two rand() calls, and of which two paths exhibit the data

race. FIFO scheduling on one CPU core for this program

is illustrated in Figure 3. This figure looks the same for

any of the four paths. The part of the execution tree (under

this scheduling), that is traversed by symbolic execution, is

illustrated in Figure 4. It only shows the locations where

the debugger stopped. Two paths are followed to program

end, the other two are pruned as indicated in the figure. The

data race is accurately detected by ThreadSanitizer. An

example part of the happens-before analysis is illustrated in

Figure 5, for the else branch of the example function, where

proper locking is used. The shaded memory access events are

separated by a locking arc.

c) Results: All data races in the 38 test programs are

accurately detected without false positives or false negatives.

The (wall-clock) analysis runtimes are shown in Figure 7. The

horizontal axis indicates the Juliet flow variant number. The

average analysis runtime is below 2s. Error reporting through

the Codan framework in the Eclipse GUI is shown in Figure

6.

V. RELATED WORK

Exactly locating feasible data races is known to be NP

hard [1]. The main approaches for practical race detection

are usage of the happens-before relation with vector-clocks

[2], or usage of locksets [3], or a combination of them. These

approaches detect races when they might occur, i.e., not only

with the current thread interleaving, but also with different

interleavings. Main analysis methods are static analysis, model

checking, dynamic analysis and symbolic execution.

a) Static Analysis: offers a possibility to detect races

without false negatives. A method that requires programmer

annotations and is based on type inference is described in [19].

The tools RELAY [20] and LOCKSMITH [21] apply lockset

Fig. 6. Error reporting

analysis statically with data flow analysis. According to Pals-

berg [22], ”the best existing static technique” is implemented

in Chord [23], but it ”reports a large number of false positives

that would be daunting to examine by hand”.
b) Model Checking: In symbolic model checking, a

program is translated into a logic formula, and properties

are checked with an SMT solver. In theory, model checking

allows for accurate race detection. It explores the symbolic

state-space, that is the combined execution and scheduling

tree. In practice, model checking does not scale well due to

combinatorial explosion. One practical approach is bounded

model checking [24], [25], [26], where the combined execution

and scheduling tree is pruned with limits for the number of

context switches and loop unrollings. Another way of pruning

the tree is partial order reduction [27], [28], [14], [29], which

prunes away irrelevant thread interleavings. Dynamic partial

order reduction [14] traces the happens-before relation for

thread interactions to find backtracking points for branching

[14]. Optimal dynamic partial order reduction [29] explores a

minimum number of representative thread interleavings.
c) Dynamic detection at runtime: is a practical way

for race detection. It does not need a constraint solver. One

technique is to instrument memory accesses and thread inter-
action with binary instrumentation and check for races using

the happens-before relation [2] with vector-clocks. Happens-

before analysis may have false negative detections depending

on the scheduling. It is more sophisticated than lockset anal-

ysis, but scales worse with an increasing number of threads.

LiteRace applies sampling, i.e., it monitors only a subset

of all memory accesses. It can detect a majority of races by

monitoring a small number of accesses [30]. FastTrack is

an optimized implementation of happens-before analysis with

reduced complexity [31]. Pacer [32] combines sampling with

FastTrack. DataCollider [33] implements memory ac-

cess sampling with hardware breakpoints and watchpoints and

applies it to kernel code. Lockset analysis is used in Eraser

[3]. It instruments memory accesses and traces thread locksets

and variable locksets. If a variable access is not protected by a

lock, then a warning is issued. Lockset analysis is lightweight

and scales well. On the downside, it leads to more false

positive detections than happens-before analysis. Hybrid race

detection is presented in [4] as a two-pass solution. First,

locksets are used to find problematic variables. Then, happens-

before analysis is applied only to those variables. In [34], the

DJIT algorithm is presented, which is a variation of happens-

before analysis. MultiRace [35] combines DJIT with lock-

sets to reduce false positives. A location’s lockset is reset

Fig. 7. Analysis runtime for data race tests from Juliet suite

at synchronization barriers. ThreadSanitizer [5] applies

static binary instrumentation for happens-before and lockset

analysis and is integrated with several current C compilers.

Dynamic race detection is integrated in the managed runtime

environments RaceTrack [36] and Goldilocks [37]. In

[38], [39], it is proposed to integrate hardware acceleration for

race detection into CPUs.
d) Symbolic execution: The prominent symbolic exe-

cution tools DART [8], CUTE [9] and KLEE [10] currently

do not feature race detection. jCute [11] determines pro-

gram input and thread schedule with the solver to explore

different paths and interleavings, and it detects races when

they occur. Con2colic also determines input and schedule

with the solver. It implements a heuristic to first achieve

branch coverage, and then explore an increasing number of

context switches. Also Con2colic can detect a race when

it occurs (no happens-before or lockset analysis). LCT [13]

implements concolic execution with dynamic partial order

reduction. In [22], the tool Racageddon is described. It starts

with race candidates that have been found with an existing

hybrid technique. It then uses concolic execution to search for

input and schedule that lead to a real race (to remove false

positives). WHOOP [40] considers races between pairs of entry

points to driver code and runs a symbolic lockset analysis with

SMT solver. In [16], [41], it is described that a program path

can be pruned if the context implies a previously computed

interpolant for the same program location. A combination of

partial order reduction with interpolation based path pruning

is described in [42].
e) This paper: differs from previous work on race de-

tection with symbolic execution both in that it factors out the

scheduling, and in that it applies hybrid data race detection

during concrete execution. It extends own prior work [17]

(on dynamic symbolic execution of single-threaded code with

interpolation based path pruning) with support for multi-

threaded execution and with data race detection.

VI. DISCUSSION

Symbolic execution with FIFO scheduling on one core is

used to automatically drive concrete execution into program

paths of interest. The scheduling effectuates a reproducible ex-

ecution tree for multi-threaded code. FIFO scheduling avoids

triggering data races. Races are detected during concrete

execution by instrumenting the program under test with the

available ThreadSanitizer. The analysis is comparatively

fast through concrete scheduling and concrete race detection.

Path pruning is used based on interpolation of unsatisfiable

branches with unsatisfiable cores. Implication checking with

SMT solver assures that only paths are pruned, that can not

contribute to increasing branch coverage. It is also possible to

run the analysis in a virtual machine like qemu, that contains

a gdb server.

ACKNOWLEDGEMENT

This work was funded by the German Ministry for Educa-

tion and Research (BMBF) under grant 01IS13020.

REFERENCES

[1] R. Netzer and B. Miller, “What are race conditions?: Some issues and
formalizations,” ACM Letters on Programming Languages and Systems,
pp. 74–88, 1992. [Online]. Available: http://dx.doi.org/10.1145/130616.
130623

[2] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
1978. [Online]. Available: http://dx.doi.org/10.1145/359545.359563

[3] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multi-threaded programs,”
ACM Trans. Computer Systems, vol. 15, no. 4, pp. 391–411, 1997.
[Online]. Available: http://dx.doi.org/10.1145/268998.266641

[4] R. O’Callahan and J. Choi, “Hybrid dynamic data race detection,” in
ACM Symposium on Principles and Practice of Parallel Programming,
2003. [Online]. Available: http://dx.doi.org/10.1145/966049.781528

[5] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: data race
detection in practice,” in Workshop on Binary Instrumentation

and Applications, 2009, pp. 62–71. [Online]. Available: http:
//dx.doi.org/10.1145/1791194.1791203

[6] J. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, pp. 385–394, 1976. [Online]. Available:
http://dx.doi.org/10.1145/360248.360252

[7] L. de Moura and N. Bjorner, “Satisfiability modulo theories: Introduction
and applications,” Communications of the ACM, vol. 54, no. 9, 2011.
[Online]. Available: http://dx.doi.org/10.1145/1995376.1995394

[8] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Conference on Programming Language Design

and Implementation, 2005, pp. 213–223. [Online]. Available: http:
//dx.doi.org/10.1145/1064978.1065036

[9] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in European Software Engineering Conference and

International Symposium on Foundations of Software Engineering,
2005, pp. 263–272. [Online]. Available: http://dx.doi.org/10.1145/
1095430.1081750

[10] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
USENIX Symp. Operating Systems Design and Implementation, 2008.

[11] K. Sen and G. Agha, “CUTE and jCUTE: concolic unit testing
and explicit path model-checking tools,” in Int. Conf. Computer

Aided Verification, 2006, pp. 419–423. [Online]. Available: http:
//dx.doi.org/10.1007/11817963 38

[12] A. Farzan, A. Holzer, N. Razavi, and H. Veith, “Con2colic testing,”
in ESEC/FSE Joint Meeting on Foundations of Software Engineering,
2013, pp. 37–47. [Online]. Available: http://dx.doi.org/10.1145/2491411.
2491453

[13] K. Kähkönen, O. Saarikivi, and K. Heljanko, “LCT: A parallel dis-
tributed testing tool for multithreaded Java programs,” Electronic Notes

in Theoretical Computer Science, pp. 253—259, 2013.
[14] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for

model checking software,” in ACM Symposium on Principles of

Programming Languages, 2005, pp. 110–121. [Online]. Available:
http://dx.doi.org/10.1145/1047659.1040315

[15] T. Boland and P. Black, “Juliet 1.1 C/C++ and Java test suite,”
IEEE Computer, vol. 45, no. 10, 2012. [Online]. Available:
http://dx.doi.org/10.1109/MC.2012.345

[16] J. Jaffar, A. Santosa, and R. Voicu, “An interpolation method
for CLP traversal,” in Int. Conf. Principles and Practice of

Constraint Programming (CP), 2009, pp. 454–469. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04244-7 37

[17] A. Ibing, “Dynamic symbolic execution with interpolation based path
merging,” in Int. Conf. Advances and Trends in Software Engineering,
2016.

[18] L. deMoura and N. Bjorner, “Z3: An efficient SMT solver,”
in Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), 2008, pp. 337–340. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-78800-3 24

[19] M. Abadi, C. Flanagan, and S. Freund, “Types for safe locking:
Static race detection for Java,” ACM Trans. Programming Languages

and Systems, vol. 28, no. 2, pp. 207–255, 2006. [Online]. Available:
http://dx.doi.org/10.1145/1119479.1119480

[20] J. Voung, R. Jhala, and S. Lerner, “RELAY: static race detection
on millions of lines of code,” in ACM Symp. Foundations of

Software Engineering (ESEC-FSE), 2007. [Online]. Available: http:
//dx.doi.org/10.1145/1287624.1287654

[21] P. Pratikakis, J. Foster, and M. Hicks, “LOCKSMITH: Practical static
race detection for C,” ACM Trans. Programming Languages and

Systems, vol. 33, 2011. [Online]. Available: http://dx.doi.org/10.1145/
1889997.1890000

[22] M. Eslamimehr and J. Palsberg, “Race directed scheduling of
concurrent programs,” in ACM Symposium on Principles and Practice

of Parallel Programming, 2014, pp. 301–314. [Online]. Available:
http://dx.doi.org/10.1145/2692916.2555263

[23] M. Naik, “Effective static race detection for java,” Ph.D. dissertation,
Stanford University, 2008.

[24] S. Qadeer and J. Rehof, “Context-bounded model checking of
concurrent software,” in TACAS, 2005. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-31980-1 7

[25] I. Rabinovitz and O. Grumberg, “Bounded model checking of
concurrent programs,” in Int. Conf. Computer Aided Verification (CAV),
2005. [Online]. Available: 10.1007/11513988 9

[26] L. Cordeiro and B. Fischer, “Verifying multi-threaded software
using SMT-based context-bounded model checking,” in ACM Int.

Conf. Software Eng., 2011, pp. 331–340. [Online]. Available:
http://dx.doi.org/10.1145/1985793.1985839

[27] P. Godefroid, “Partial-order methods for the verification of concurrent
systems - an approach to the state-explosion problem,” Lecture

Notes in Computer Science, vol. 1032, 1996. [Online]. Available:
http://dx.doi.org/10.1007/3-540-60761-7

[28] V. Kahlon, C. Wang, and A. Gupta, “Monotonic partial order reduction:
An optimal symbolic partial order reduction technique,” in CAV, 2009.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-02658-4 31

[29] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal
dynamic partial order reduction,” in ACM Symposium on Principles of
Programming Languages, 2014. [Online]. Available: http://dx.doi.org/
10.1145/2535838.2535845

[30] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace:
Effective sampling for lightweight data-race detection,” in ACM

Conf. Programming Language Design and Implementation, 2009.
[Online]. Available: http://dx.doi.org/10.1145/1542476.1542491

[31] C. Flanagan and S. Freund, “FastTrack: Efficient and precise
dynamic race detection,” in PLDI, 2009. [Online]. Available:
http://dx.doi.org/10.1145/1542476.1542490

[32] M. Bond, K. Coons, and K. McKinley, “PACER: proportional detection
of data races,” in ACM Conf. Programming Language Design and

Implementation, 2010. [Online]. Available: http://dx.doi.org/10.1145/
1806596.1806626

[33] J. Erickson, M. Musuvathi, S. Burchhardt, and K. Olynyik, “Effective
data-race detection for the kernel,” in USENIX Symposium on Operating

Systems Design and Implementation, 2010.
[34] A. Itzkovitz, A. Schuster, and O. Mordehai, “Towards integration of

data race detection in DSM systems,” J. Parallel and Distributed

Computing, vol. 59, pp. 180–203, 1999. [Online]. Available: http:
//dx.doi.org/10.1006/jpdc.1999.1574

[35] E. Pozniansky and A. Schuster, “MultiRace: Efficient on-the-fly data
race detection in multithreaded C++ programs,” J. Concurrency and

Computation: Practice and Experience, vol. 19, no. 3, pp. 327–340,
2007. [Online]. Available: http://dx.doi.org/10.1002/cpe.v19:3

[36] Y. Yu, T. Rodeheffer, and W. Chen, “RaceTrack: Efficient detection of
data race conditions via adaptive tracking,” in ACM Operating Systems

Review, 2005. [Online]. Available: http://dx.doi.org/10.1145/1095809.
1095832

[37] T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: a race-aware Jave
runtime,” Communications of the ACM, vol. 53, no. 11, pp. 85–92,
2010. [Online]. Available: http://dx.doi.org/10.1145/1839676.1839698

[38] P. Zhou, R. Teodorescu, and Y. Zhou, “HARD: Hardware-assisted
lockset-based race detection,” in Int. Symp. High-Performance Computer

Architecture, 2007. [Online]. Available: http://dx.doi.org/10.1109/
HPCA.2007.346191

[39] J. Devietti, B. Wood, K. Strauss, L. Ceze, D. Grossman, and S. Qadeer,
“RADISH: always-on sound and complete race detection in software
and hardware,” in Int. Symp. Computer Architecture, 2012, pp. 202–212.
[Online]. Available: http://dx.doi.org/10.1145/2366231.2337182

[40] P. Deligiannis, A. Donaldson, and Z. Rakamaric, “Fast and precise
symbolic analysis of concurrency bugs in device drivers,” in
Int. Conf. Automated Software Eng., 2015. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2015.30

[41] K. McMillan, “Lazy annotation for program testing and verification,”
in Int. Conf. Computer Aided Verification (CAV), 2010, pp. 104–118.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-14295-6 10

[42] D. Chu and J. Jaffar, “A framework to synergize partial order
reduction with state interpolation,” in Hardware and Software:

Verification and Testing, 2014, pp. 171–187. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-13338-6 14

