
Dynamic Symbolic Execution with Interpolation Based Path Merging

Andreas Ibing

Chair for IT Security

TU München

Boltzmannstrasse 3, 85748 Garching, Germany

Email: andreas.ibing@tum.de

Abstract—This paper presents a dynamic symbolic execution en-
gine for automated bug detection in C code. It uses path merging
based on interpolation with unsatisfiable cores to mitigate the
exponential path explosion problem. Code coverage can be scaled
by varying the interpolation. An algorithm for error and branch
coverage is described. The implementation extends Eclipse CDT.
It is evaluated on buffer overflow test cases from the Juliet test
suite in terms of speed-up through merging, reduction of the
number of analyzed program paths and proportion of merged
paths.

Keywords–Symbolic execution, interpolation, branch coverage,
error coverage.

I. INTRODUCTION

Symbolic execution [1] is a program analysis technique,
that can be used for automated bug detection. In order to
find bugs with arbitrary program input, the program input is
treated as symbolic variables. Operations on these variables
then yield logic equations. Satisfiability of program paths and
satisfiability of bug conditions are decided by an automated
theorem prover (constraint solver). The current state of au-
tomated theorem provers are Satisfiability Modulo Theories
(SMT) provers [2].

Symbolic execution can be applied both as static analysis
(without executing the progran under test) and as dynamic
analysis (using binary instrumentation) [3]. Dynamic symbolic
execution follows a program path with a complete concrete
program state, and additionally a partial symbolic program
state. The partial symbolic program state comprises the con-
straints on symbolic variables which have been collected on
the path (path constraint). The concrete program state satisfies
the constraints on the symbolic variables. Dynamic symbolic
execution is also known as concolic execution (concrete/sym-
bolic [4]). Dynamic symbolic execution has several advantages
compared to the static only approach. Complicated program
constructs can be concretized, i.e., executed only concretely by
dropping the relevant symbolic variables [3]. Concretization is
sound with respect to bug detection, i.e., while it does lead
to false negative detections, it does not lead to false positive
bug detections. Concretization also provides more flexibility in
handling library function calls. Function call parameters can
be concretized and the function executed concretely. Dynamic
symbolic execution with configurable concretization is also
called selective symbolic execution [5]. Another argument for
dynamic symbolic execution is that execution of concrete code
is much faster than symbolic interpretation.

The number of satisfiable program paths in general grows
exponentially with the number of branch decisions, for which

more than one branch is satisfiable. This bad scaling behaviour
is known as path explosion problem. In order to alleviate the
path explosion problem, it is shown in [6] that a live variable
analysis can be applied so that program paths, that only differ
in dead variables, can be merged. A more comprehensive
sound path merging approach is described in [7]. It is based on
logic interpolation (Craig interpolation [8]), i.e., on automated
generalization of constraint formulas. The interpolation uses
unsatisfiable cores (unsat-cores) and approximates weakest
precondition computation. Given an unsatisfiable conjunction
of formulas, an unsat-core is a subset of the formulas whose
conjunction is still unsatisfiable. This approach leads to bet-
ter scaling behaviour by finding more possibilities to merge
program paths.

The accuracy of bug detection tools is typically evaluated
as percentage of false positive and false negative bug detections
in a sufficiently large bug test suite. Currently the most
comprehensive test suite for C/C++ is the Juliet suite [9].
In order to systematically test a tool’s accuracy, it combines
’baseline’ bugs with different data and control flow variants.
The maximum context depth spanned by a flow variant is
five functions in five different source files. Each test case is
a program that contains ’good’ (bug-free) as well as ’bad’
functions (which contain a bug), so that both false positives
and false negatives can be measured.

This paper presents a dynamic symbolic execution engine
which uses unsat-core based interpolation of unsatisfiable
program paths and unsatisfiable bug conditions in order to
achieve scalability through merging as many program paths
as early as possible. The engine is applied to the problem of
automated bug detection (testing). This includes that with each
bug detection, the constraints for merging program paths are
automatically adapted.

The remainder of this paper is organized as follows: Section
II describes the motivation and details of the algorithm. Section
III describes scaling of code coverage by varying interpolation,
and puts the described algorithm for error and branch coverage
into context. The implementation as plug-in extension to the
Eclipse C/C++ development tools (CDT) is depicted in section
IV. Section V evaluates the tool in terms of speed-up through
path merging and of the number of completely and partly
analyzed program paths on buffer overflow test cases from
the Juliet test suite. Related work is described in section VI.
Evaluation results are discussed in section VII.



II. ALGORITHM

This section describes the motivation (in subsection II-A)
and details of the algorithm and gives an analysis example in
subsection II-E.

A. Motivation

Motivation for the algorithm are the following points:

• It is sufficient to detect each bug on one program path
only. It is not necessary to detect each bug on all
paths where this bug might be triggered. A program
path can therefore be pruned if it is impossible to
detect any new bugs on any extension of the path.
This information can be gained from backtracking
program paths, that were analyzed till program end.
This implies a depth-first traversal of the program
execution tree (the tree of satisfiable program paths).

• Since interpretation is much slower than execution
of code, as much code as possible should not be
interpreted. Execution should be interrupted only at
locations, that need to be interpreted symbolically.
Constraint-based analysis is needed only for the detec-
tion of input dependent bugs. In this paper, a debugger
is used for adaptive binary instrumentation, i.e., break-
points are path-dependent for efficiency. Variables can
become symbolic (through assignment of a symbolic
value) and concrete (through assignment of a concrete
value). Breakpoints are only set for locations where
symbolic variables are used.

B. Algorithm overview

The algorithm has two analysis steps. The first step is
a path-insensitive static analysis as preparation, in order to
determine locations that must be symbolically interpreted
(initial debugger breakpoints). Program input is treated as
symbolic. This includes the return values of certain standard
library functions (these functions can be configured). From
these starting points, the static analysis uses inference over
the data flow to find out which locations can be reached with
these variables. This is often called a taint analysis. Details are
described in subsection II-C.

The second step is dynamic symbolic execution, which is
a path-sensitive and context-sensitive analysis and therefore
needs a constraint solver as logic backend. For an efficient
dynamic analysis where variables path-sensitively can become
symbolic or concrete, the program locations that need to be
symbolically interpreted are also path-sensitive. Conceptually,
read/write breakpoints are needed for all symbolic variables.
This is implemented by setting breakpoints on all locations
where a symbolic variable is used. Breakpoints are adaptively
set and removed during analysis. A path can be merged
(pruned) during symbolic analysis when the path constraint
implies a merge formula for the same location. Merge formulas
are generated by backtracking unsat-cores for unsatisfiable
error conditions and unsatisfiable program paths. Locations
where path merging possibilities are checked (merge locations)
are branch nodes in control flow graphs (CFG). Details are
described in subsection II-D.

The algorithm overview is also listed as pseude-code in
Algorithm 1. The static pre-analysis corresponds to line 1. The
depth-first dynamic symbolic execution corresponds to lines 4-
37.

1 Set{Location} symlocs = findInitialBreakLocations();
2 debugger.setBreaks(symlocs);
3 direction = forward;
4 while (! (direction == exhausted) ) do
5 if (direction == forward) then
6 Location loc = debugger.continue();
7 if (isProgramEnd(loc)) then
8 direction = backtrack;
9 continue;

10 if (mergeLocs.contains(loc)) then
11 if (cansubsume(loc)) then
12 direction = backtrack;
13 continue;

14 cfgnode = getNode(loc);
15 interprete(cfgnode);

16 else if (direction == backtrack) then
17 foundNewInputVec = false;
18 while (!foundNewInputVec) do
19 backtrackErrorGuards(cfgnode);
20 if (cfgnode instanceof BranchNode) then
21 setNewMergeLocation(cfgnode);

22 cfgnode = backtrackLastNode(path);
23 if (isProgramStart(cfgnode)) then
24 direction = exhausted;
25 break;

26 if (cfgnode instanceof DecisionNode) then
27 if (hasOpenBranch(cfgnode)) then
28 boolean isSat = checkSat(path +

openBranch);
29 if (isSat) then
30 InputVector newInput =

getModel(path + openBranch);
31 foundNewInputVec = true;

32 else
33 uc = getUnsatCore(path +

openBranch);
34 setGuard(openBranch, uc);

35 if (foundNewInputVec) then
36 direction = forward;
37 debugger.restart();

Algorithm 1: Dynamic symbolic execution with interpola-
tion based path merging

C. Preparation: path-insensitive extended taint analysis

The static pre-analysis determines for all program loca-
tions:

• which variable definitions may reach the location
(reaching definitions [10])

• whether a symbolic variable might be used (read) at
the location; in the following this location property is
called ’maybe symbolic’

• whether the location is a potential bug location; This
property depends on the bug types that are to be
found. For the example of buffer overflow detection,
a location is considered a potential bug location when
it contains an array subscript expression or a pointer
dereference.

• whether the location is a control flow decision node



From this information, it is then determined, for which loca-
tions breakpoints must be set for all program paths. That is:

• input dependent bug locations: a potential bug location
where a symbolic variable might be used. These
locations must be symbolically interpreted in order to
detect the bugs with a solver satisfiability check or to
compute an unsat-core.

• input dependent control flow decisions: input depen-
dent branches must be symbolically interpreted for
correct merge formula generation during backtracking
and to avoid incorrect path merging. This is described
in more detail is subsection II-D.

The analysis is implemented as a monotoneous propagation
of changes and uses the worklist algorithm [10]. Source files
are parsed into abstract syntax trees (AST), and control flow
graphs are computed for all function definitions in the ASTs.
When the properties of a control flow node change, the change
is propagated to its children (which are then added to the
worklist). Since the propagation is monotoneous, the reaching
of a fixed-point (empty worklist) is guaranteed. The analysis
is not path-sensitive and does not need a constraint solver.
It therefore has a better scaling behaviour than symbolic
execution.

D. Selective symbolic execution with unsat-core based inter-
polation

The symbolic execution is essentially a depth-first traversal
of the execution tree. As such, it has a forward and a backtrack-
ing mode. The backtracking mode generates program input for
the next path. The current path is backtracked to the last input-
dependent control flow decision. If possible (satisfiable), the
last decision is switched to obtain a new path.

1) Forward symbolic execution: The forward symbolic
execution mode corresponds to lines 5-15 in Algorithm 1. The
debugger is run until it stops at a breakpoint. For this program
location, the corresponding CFG node is resolved (line 14).
This CFG node is then interpreted and translated into an
SMT logic equation. Values of concrete variables are queried
from the debugger when needed. More details regarding the
translation are provided in the implementation section (Section
IV). Functions from the standard library are wrapped, so that
input can be traced and forced as desired using debugger
commands.

a) Unsat-core interpolation for unsatisfiable bug con-
ditions: Another path can be merged if no new bug detection
is possible along any of its extensions, i.e., when potential bug
locations remain unsatisfiable for the new path. This is the case
when the new path’s path constraint implies the unsat-cores of
the potential bug locations.

b) Updating for bug detections: When a bug is de-
tected, any new detections of same bug (same type and loca-
tion) become irrelevant. Therefore, any unsat-cores that were
computed for this potential bug location before, can be deleted
and the constraints removed from merge formulas. Unsat-cores
are computed using the idea of serial constraint deletion from
[7]. A path constraint is a conjunction of a set of formulas. For
each of these formulas it is checked in turn with the solver,
whether the conjunction remains unsatisfiable if the formula is
removed. The function is only kept if the conjunction would
become satisfiable otherwise. In the following, a computed
unsat-core is also called an error guard.

Figure 1. Example function, from the Juliet test suite [9]

c) Path merging: Breakpoints are set during backtrack-
ing for branch locations, for which at least one merge formula
has been computed. When the current path constraint implies
the merge formula, the path is pruned. The implication check
uses the solver and corresponds to line 11 in Algorithm 1. The
implication is valid if its negation is not satisfiable.

2) Backtracking: The backtracking mode corresponds to
lines 16-37 in Algorithm 1. It generates program input for
the next path and backtracks error guards to generate merge
formulas. Backtracking is only concerned with the partial
symbolic program state along the current path, i.e., only with
locations which were symbolically interpreted.

a) Input generation: The symbolic program state is
backtracked to the last decision node. For child branches that
were not yet covered in the context of the current (backtracked)
path, it is checked with the solver whether or not this path
extension is satisfiable. If it is satisfiable, the solver’s model
generation functionality is used to generate corresponding
program input values for the next path. If not, an unsat-
core is computed and the symbolic program state is further
backtracked.

b) Unsat-core interpolation for unsatisfiable paths:
Because unsatisfiable paths are not further explored, any
potential error locations after the unsatisfiable branch are not



global_returns_t_or_f()

else then

fgets(input_buf, CHAR_ARRAY_SIZE, stdin) != NULL

else then

data = atoi(input_buf);

global_returns_t_or_f()

else then

data � 00 � data < 10

else thenelse then

Figure 2. Algorithm progress for the example function from Figure 1

evaluated in this context. Another path can therefore only be
merged as long as unsatisfiable branches remain unsatisfiable.
This means, that an unsat-core for an unsatisfiable path is also
treated as an error guard.

c) Backtracking error guards: Error guards are gen-
erated as unsat-cores in forward symbolic execution at the
locations of unsatisfiable bugs, or during backtracking at
unsatisfiable branch nodes. Backtracking also backtracks these
formulas. The conjunction of backtracked error guards for one
path (one execution tree node) is a merge formula. When a
node’s child is backtracked, then any formulas which were
generated in this child (as symbolic interpretation) are removed
from the node’s error guards. Because constraints are removed,
backtracking means a generalization of merge formulas. Deci-
sion nodes are the only control flow node type that has more
than one child node, i.e., several branch nodes. The childrens’
contribution to a decision node’s error guard is determined
during backtracking as the conjunction of the childrens’ error
guards. The reason is that path merging requires, that no new
bug detection becomes possible on any extension of the current
path. When backtracking reaches a branch node, a breakpoint
is set and associated with the merge formula.

E. Example

To illustrate the algorithm, it is applied to the example
function shown in Figure 1. The example is a ’bad’ function
from the Juliet suite [9], which contains a path-sensitive buffer
overflow in line 17. The standard library functions fgets(),
atoi() and rand() are treated as giving arbitrary (uncon-
strained) symbolic input. These functions are called in lines
5, 6 and 38. Static pre-analysis additionally yields breakpoints
for lines 3, 13, 16 and 27 as input-dependent control flow
decisions, and for lines 17 and 28 as input-dependent potential
error locations. Together, these lines are indicated as shaded
in the figure. Breakpoints are set on these lines, so that the

debugger stops there and they are symbolically interpreted.
The remaining not shaded locations are always just executed
concretely, the debugger is not stopped for them. For the
example, we assume that the function is called directly before
program end, i.e., there are no backtracked formulas from other
functions called later.

Algorithm progress is illustrated in Figure 2. The explored
satisfiable program paths are marked with green numbers 1-
8 in exploration order. Unsat-cores for unsatisfiable bugs are
shown as green formulas (on path 1 and 2). Unsatisfiable
branches are marked with a blue ’false’ symbol (⊥, four times).
Backtracked unsat-cores are shown as red formulas next to the
respective control flow nodes. Merge locations are the branch
nodes, i.e., ’then’ and ’else’. The merge formulas are shown
in red next to them. The ’true’ symbol (T) indicates an empty
backtracked unsat-core (7 times). Path merges occur during
the exploration of paths 5, 6, and 7. The respective merge
targets are marked ’A’ to ’C’. The bug is detected on path 8.
This potential bug was unsatisfiable on path 2. The respective
computed (backtracked) unsat-core is removed, because any re-
detection of this bug on another path would be irrelevant. By
removing constraints, more path merging can become possible
in general. The updated tree nodes are marked ’D’ and ’E’,
the removed constraints are crossed out in green.

Analysis results are also illustrated in Figure 1: merge lo-
cations and the corresponding merge conditions (implications)
are indicated in red on the right side of the figure. For any
further call of this function in the program under analysis, all
paths can be merged at latest in lines 15 or 26 (because the
respective implications are always valid).

III. A COVERAGE AND INTERPOLATION HIERARCHY

Interpolation is an automated generalization of formu-
las. Through interpolation, interpolated path constraints may
become equal. Here, interpolation by removing constraints



Figure 3. Coverage and interpolation hierarchy

from the path constraint during depth-first path exploration is
considered.

Code coverage can be scaled by varying interpolation.
Merge formulas are yielded from interpolation. With ’more’
interpolation it is meant here to remove more constraints from
the path constraint. With fewer constraints in merge formulas,
more paths imply the merge formula and are pruned from the
execution tree. The achieved coverage is given by the set of
remaining paths.

Figure 3 illustrates four interesting algorithms and corre-
sponding coverage. Unsat-cores are not unique. This corre-
sponds to different path sets that can achieve the same coverage
criterion. The annotation ’contains’ for interpolation constraint
sets on the right side of the figure assumes that unsat-cores are
computed in the same way with serial constraint deletion.

A. Branch coverage

(Backtracked) unsat-cores of unsatisfiable branches are
used as merge formulas. A path is only pruned if it implies
the previously computed backtracked unsat-cores. This means
that any extension of the (pruned) path can not cover any
yet uncovered branch. Therefore, this interpolation achieves
branch coverage. Branch coverage means that every branch in
the program that can be covered with any program input is
actually covered.

B. Error and branch coverage

This is the algorithm described in Section II. It uses unsat-
cores for unsatisfiable branches and additionally unsat-cores
of potential (and yet undetected) errors. This comprises unsat-
cores necessary to achieve branch coverage. The additional
constraints require to only prune a path when all previously
unsatisfiable error conditions remain unsatisfiable. This means
that any extension of the pruned path can not witness any yet
undetected error. Error coverage means that every error that

is satisfiable with any program input, and for whose potential
existence a constraint is generated, is actually witnessed on a
remaining (not pruned) path.

C. Context coverage

In backtracking, the sets of dead and live variables are
exactly known. Live variables are the ones that are read on at
least one extension of the current path. Only live variables can
contribute to unsat-cores in a path extension. This interpolation
therefore comprises the interpolation needed to achieve error
and branch coverage. By removing dead constraints, path
constraints can become identical. Context coverage means
that every program location is covered in every distinct (live)
context.

D. Path coverage

Complete path constraints (including constraints for dead
variables) are used, no interpolation is done. Every path
constraint is different, so no paths are pruned. Depth-first
traversal without path merging achieves path coverage, i.e., ev-
ery satisfiable program path is actually covered. This includes
context coverage.

IV. IMPLEMENTATION

The implementation extends previous work, that is de-
scribed in [11]. This previous work is a dynamic symbolic
execution engine for Eclipse CDT, that does not have any path
merging functionality.

A. Dynamic symbolic execution using Eclipse CDT

This subsection shortly review [11]. The engine is a plug-in
extension for CDT’s code analysis framework (Codan [12]). It
uses CDT’s C/C++ parser, AST visitor and debugger services
framework (DSF [13]). The DSF is an abstraction layer over
the debuggers’ machine interfaces that are supported by CDT.
The plug-in further uses Codan’s CFG builder.



Figure 4. Run-times with and without path merging

Initial breakpoints are set on function calls that are con-
figered to return unconstrained symbolic input values. Further
breakpoints are set during symbolic execution for locations,
where symbolic variables are used. Breakpoints are also set
on pointer assignments, because pointer targets might become
symbolic through assignment of a symbolic value.

When the debugger stops at a location, the corresponding
CFG node is resolved. The AST subtree that corresponds
to the CFG node is then interpreted according to the tree
based interpreter pattern [14]. The visitor pattern [15] is used
to traverse the AST subtree and translate it into an SMT
logic equation. SMT queries are formulated in the SMTlib’s
[16] sublogic of arrays, uninterpreted functions and bit-vectors
(AUFBV), and the Z3 SMT solver [17] is used to decide them.

B. Interpolation and path merging

Correct merging requires the ’maybe symbolic’ static pre-
analysis described in section II. Interpolation based path merg-
ing means that more breakpoints are set than without merging.
On a path that can not be merged, more locations are symboli-
cally interpreted than without merging. The implication check
for merging further requires variable projections as described
in the following. Single assignments are used in the translation
to logic to avoid destructive updates, i.e., single assignment
names are used for variables in the logic equations. Because
a merge formula was computed on a different path and the
translation into logic uses single assignment names, a subset
of variable names in both formulas (merge formula and path
constraint) has to be substituted. These variable names are the
last single assignment versions in both formulas of variables
whose definitions reach the merge location. These variables are
projected (substituted) to the corresponding syntax tree names
(names in the source code). Because branch nodes are not
necessarily explicit in the source node, the merge locations are
not exactly branch nodes, but rather the next following program
location where a debugger breakpoint can be set. This is
the following expression or declaration with initializer. Merge
location examples are given in Figure 1. The computation of
unsat-cores with serial constraint deletion is straight-forward.

V. EXPERIMENTS

The implementation is evaluated with 39 buffer overflow
test programs from the Juliet suite (buffer overflows with
fgets()) that cover Juliet’s different control and data flow

Figure 5. Number of analyzed paths with and without path merging

Figure 6. Breakdown of the number of analyzed paths with merging

variants for C. The test programs are analysed with the Eclipse
plug-in, as JUnit plug-in tests. Eclipse version 4.5 is used
on a i7-4650U CPU on 64-bit Linux kernel 3.16.0, with
GNU debugger gdb version 7.7.1. The presented algorithm for
error and branch coverage is compared with straight-forward
dynamic symbolic execution without any merging (i.e., path
coverage), as described in [11].

The results are shown in Figures 4, 5 and 6. The horizontal
axes show the flow variant number. Juliet’s flow variants are
not numbered consecutively, to allow for later insertions in
future test suite verions. Both the presented algorithm and
the path coverage algorithm accurately detect the contained
errors for all flow variants except for flow variant 21. In this
flow variant (control flow depends on a static global variable),
CDT’s CFG builder falsely classifies a branch node as dead
node, which leads to false negative detection.

A. Speedup with merging

The measured run-times both with and without path merg-
ing are shown in Figure 4. The figure’s time scale is logarith-
mic. Despite of the additional analyses for path merging, there
is a clear speed-up for all test cases. The biggest speed-up is
achieved for flow variant 12, which also contains the largest
number of satisfiable program paths.



B. Reduction in the number of analyzed paths

Figure 5 shows the number of analyzed paths with path
coverage on the one hand and with error and branch coverage
on the other. There is a clear reduction in the number of
analyzed paths for all test programs. Merging prunes a subtree,
which in general splits into more than one satisfiable program
path. The figure shows a strong correlation with Figure 4, so
that the reduction in the number of analyzed paths can be seen
as the main reason for the speed-up.

C. Proportion of merged paths

Figure 6 shows a breakdown of the analyzed paths for
merging only (error and branch coverage). The analyzed paths
are distinguished into paths, that are completely analyzed until
program end, and others, that are merged at some point. The
figure shows that for all test cases the majority of analyzed
paths is merged at some point, which is an additional reason
for speed-up and explains another part of it (with the reduction
of the analyzed lengths of the paths that are merged).

VI. RELATED WORK

Work on symbolic execution spans over 30 years. An
overview is given in [18]. Dynamic symbolic execution is
presented in [3]. The concept of selective symbolic execution
is described in [5]. The implementation uses breadth-first
execution tree traversal without path merging. Path merging
based on live variable analysis is presented in [6]. Path merging
based on interpolation using unsat-cores is described in [7].
The latter approach is more comprehensive. It comprises
elimination of constraints for dead variables, because those are
not present in backtracked formulas. The interpolation based
merging approach is used in a static symbolic execution tool
for verification [19].

The work at hand differs in that it combines dynamic
and selective symbolic execution with interpolation based path
merging. Further, the efficient application to testing requires
that merge conditions are updated in case of a bug detection,
whereas a verification tool may terminate at the first error
detection (when verification fails). The work at hand builds on
the author’s previous work described in [20], which performs
static symbolic execution with path merging based on a live
variables analysis. As already mentioned, it also builds on
own previous work described in [11], which performs dynamic
symbolic execution without any path merging.

VII. DISCUSSION

Interpolation based path merging with the presented algo-
rithm for error and branch coverage shows a clear speed-up
already for the tiny Juliet test programs. Due to the improved
scaling behaviour, it is expected to lead to increasing speed-
ups for larger programs. Future work might include loop
subsumption and the detection of infinite loops. Another point
is the addition of checkers for different bug types.

ACKNOWLEDGEMENT

This work was funded by the German Ministry for Educa-
tion and Research (BMBF) under grant 01IS13020.

REFERENCES

[1] J. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, 1976, pp. 385–394.

[2] L. deMoura and N. Bjorner, “Satisfiability modulo theories: Introduction
and applications,” Communications of the ACM, vol. 54, no. 9, 2011,
pp. 69–77.

[3] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Conference on Programming Language Design and
Implementation, 2005, pp. 213–223.

[4] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in European Software Engineering Conference and
International Symposium on Foundations of Software Engineering,
2005, pp. 263–272.

[5] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-
vivo multi-path analysis of software systems,” in Int. Conf. Architectural
Support for Programming Languages and Operating Systems, 2011.

[6] P. Boonstoppel, C. Cadar, and D. Engler, “RWset: Attacking path
explosion in constraint-based test generation,” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2008, pp. 351–
366.

[7] J. Jaffar, A. Santosa, and R. Voicu, “An interpolation method for
CLP traversal,” in Int. Conf. Principles and Practice of Constraint
Programming (CP), 2009, pp. 454–469.

[8] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory,” The Journal of Symbolic Logic, vol. 22,
no. 3, 1957, pp. 269–285.

[9] T. Boland and P. Black, “Juliet 1.1 C/C++ and Java test suite,” IEEE
Computer, vol. 45, no. 10, 2012, pp. 88–90.

[10] F. Nielson, H. Nielson, and C. Hankin, Principles of Program Analysis.
Springer, 2010.

[11] A. Ibing, “Dynamic symbolic execution using Eclipse CDT,” in Int.
Conf. Software Engineering Advances, 2015, in press.

[12] E. Laskavaia, “Codan- a code analysis framework for CDT,” in
EclipseCon, 2015.

[13] P. Piech, T. Williams, F. Chouinard, and R. Rohrbach, “Implementing
a debugger using the DSF framework,” in EclipseCon, 2008.

[14] T. Parr, Language Implementation Patterns. Pragmatic Bookshelf,
2010.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[16] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard version
2.0,” in Int. Workshop Satisfiability Modulo Theories, 2010.

[17] L. deMoura and N. Bjorner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2008, pp. 337–340.

[18] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Communications of the ACM, vol. 56, no. 2, 2013, pp.
82–90.

[19] J. Jaffar, V. Murali, J. Navas, and A. Santosa, “TRACER: A symbolic
execution tool for verification,” in Int. Conf. Computer Aided Verifica-
tion (CAV), 2012, pp. 758–766.

[20] A. Ibing, “A backtracking symbolic execution engine with sound path
merging,” in Int. Conf. Emerging Security Information, Systems and
Technologies, 2014, pp. 180–185.


