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Abstract—Finding software bugs before deployment is essential
to achieve software safety and security. The achievable code
coverage and input coverage with manual test suite develop-
ment at reasonable cost is limited. Therefore, complementary
automated methods for bug detection are of interest. This paper
describes automated context-sensitive detection of software bugs
with dynamic symbolic execution. The program under test is
executed in a debugger, and program execution is automatically
driven into all program paths that are satisfiable with any
program input. Program input and dependent data are treated
as symbolic variables. Dynamic analysis and consistent partial
static analysis are combined to automatically detect both input-
dependent and input-independent bugs. The implementation is a
plug-in extension of the Eclipse C/C++ development tools. It uses
Eclipse’s code analysis framework, its debugger services frame-
work and a Satisfiability Modulo Theories automated theorem
prover. The resulting dynamic symbolic execution engine allows
for consistent partially concrete program execution. Compared to
static symbolic execution, it transfers as much work as possible
to concrete execution in a debugger, without losing bug detection
accuracy. The engine is evaluated in terms of bug detection
accuracy and runtime on buffer overflow test cases from the
Juliet test suite for program analyzers.
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I. INTRODUCTION

Software bugs in general are context-sensitive, so that a
context-sensitive algorithm is needed for accurate detection.
Symbolic execution [1] is an approach to automated context-
sensitive program analysis. In can be applied as static analysis,
in the sense of symbolic interpretation. Program input is
treated as symbolic variables, and operations on variables yield
logic equations. The satisfiability of program paths and bug
condition satisfiability are decided with an automated theorem
prover (constraint solver). Symbolic execution in principle is
applicable to all levels of software, i.e., models, source code,
intermediate code and binaries.

As code execution is in general faster than interpretation,
symbolic execution has also been applied as dynamic analysis
[2]. When certain software parts can not practically be treated
by static symbolic execution, this offers a way for dynamic
analysis by concretizing symbolic variables as approximation,
without introducing false positive bug detections (although
this leads to false negative detections) [2]. The software parts
which are treated symbolically (static) and which concretely
(dynamic) can be made selectable for a tool user in the sense of
selective symbolic execution [3]. A more detailed overview of
available symbolic execution tools and applications is available
in [4][5].

Symbolic execution relies on an automated theorem prover
as logic backend. The current state in automated theorem
proving are Satisfiability Modulo Theories (SMT) solver [6].
An example state of the art solver is described in [7]. A
standard interface to SMT solvers has been defined with the
SMTIib [8].

The different types of softwate bugs are classified in the
common weakness enumeration (CWE) [9]. Examples are
stack based buffer overflows with number CWE-121 and heap
based buffer overflows as CWE-122.

For the evaluation of automated software analyzers, test
suites have been developed. The evaluation criteria are the
number of false positive and false negative bug detections and
the needed run time. Currently, the most comprehensive test
suite for C/C++ is the Juliet suite [10]. It systematically tests
the correct detection of different common weakness types (as
baseline bugs) in combination with different data and control
flow variants which cover the available programming language
grammar constructs. The suite contains both ’good’ (without
bug) and ’bad’ (including a bug) functions in order to measure
false positive and false negative detections. The maximum
bug context depth of a flow variant are five functions in five
different source files.

This paper describes a dynamic symbolic execution ap-
proach, that combines static and dynamic checks in order to
detect both input-dependent and input-independent bugs. It
builds upon an existing purely static symbolic execution engine
described in [11]. The work at hand differs in that most of the
work is transferred to a debugger, which additionally allows for
consistent partially concrete program execution. The debugger
is automatically driven into all executable program paths, and
bugs are detected both during concrete execution and during
symbolic interpretation.

The remainder of this paper is organized as follows: Section
IIT gives an overview of the algorithm which is used to
traverse the program execution tree. Section IV describes the
implementation which extends the Eclipse C/C++ development
tools (CDT). In Section V the achieved bug detection accuracy
and run times are evaluated with buffer overflow tests from the
Juliet suite. Section II gives an overview of related work, and
Section VI discusses the obtained results.

II. RELATED WORK

There is a large body of work on symbolic execution
available which spans over 30 years [12]. Dynamic symbolic
execution is described in [2][13][14][15]. To reduce complex-
ity and increase analysis speed, as many variables as possible
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Figure 1. Architecture overview.

are regarded as concrete values. Only variables which depend
on program input are modelled as symbolic. The analysis
runs dynamically as long as all parameters are concrete, and
equation systems for the solver are smaller. In [13], single-
stepping is used together with a check whether a symbolic
variable is contained in the respective statement. Selective
symbolic execution is presented in [3]. It allows to choose
which parts of a system are executed symbolically. It uses the
gemu virtual machine monitor with an LLVM backend and
runs the engine from [15] on it.

The presented approach differs in several aspects. One
point is the tight IDE integration which might enable syn-
ergies with other Eclipse tools. Static and dynamic checks are
combined in order to also detect bugs which are not input
dependent. Breakpoints are set adaptively to interprete as few
code lines as possible without degrading bug detection accu-
racy, and complex dependencies between symbolic variables
are tracked.

III. ALGORITHM

The algorithm is basically depth-first search. It is used to
traverse the tree of satisfiable paths through the program under
test, which is commonly called the program execution tree.

Execution of a program path changes between concrete
execution in the debugger and symbolic interpretation. Debug-
ger breakpoints are used to switch from concrete execution to
symbolic interpretation. The debugger contains a full conrete
program state. The interpreter contains the partial variable set,
which needs to be symbolic, i.e., the values are logic formulas.
The full concrete program state and the partial symbolic state
are consistent, i.e., the concrete state satisfies the symbolic
state constraints.

C programs interact with their environment through func-
tions from the C standard library (libc). The symbolic execu-
tion engine can trace input and can determine a program path
by forcing corresponding input.

Certain library functions are defined a-priori to have sym-
bolic return variables. Correspondingly, initial breakpoints
are inserted at call locations to the specified functions. The
program argument vector is also treated as symbolic, i.e.,
breakpoints are set at locations where it is accessed. Break-
points are inserted only in the source files of interest.

For the first execution path, the engine traces program
input. In case of blocking functions, a direct return with a valid
error return value is forced. The argument vector is initially
set to be empty.

Concrete variables may become symbolic, i.e., when they
are assigned a formula. Then corresponding breakpoints at
access to the new symbolic variable are set. Symbolic variables
may become concrete, i.e., when they are assigned a concrete
value. Then, the corresponding breakpoints are removed.

Bug detection in concretely executed program parts is
performed with run-time checks, i.e., dynamic analysis. Bug
detection in interpreted parts, i.e., input dependent, is per-
formed using satisfiability queries to the solver.

After reaching the program end, program input is automat-
ically generated for the next path to explore. The solver and its
model generation functionality are used to generate concrete
input values, which are forced in the next program run. The
input determines that the next program run will take a different
branch, according to depth-first traversal of the execution tree.

IV. IMPLEMENTATION AS ECLIPSE CDT PLUG-IN
A. Architecture Overview

An overview of the architecture is given in Figure 1 as
class diagram. The symbolic execution engine performs tree-
based interpretation [16] for program locations which use
symbolic variables. The engine can be started from the CDT
GUI through an extension point provided by the code analysis
framework. The syntax files of interest are parsed into abstract
syntax trees (AST) with CDT’s C/C++ parser. Translation into
logic equations is performed according to the visitor pattern
[17] using CDT’s ASTVisitor class. The interpreter has a
partial symbolic memory store which contains the symbolic
variables (global memory and function space stack). For the
rest, CDT’s debugger services framework is used. A full
concrete program state is available in the debugger. For the
detection of input dependent bugs, the engine provides a
checker interface. Through this interface, checker classes can
register for triggers and query context information, which is
necessary for the corresponding solver satisfiability checks.

B. Short review of CDT’s code analysis framework

The code analysis framework (Codan [18]) is a part of
CDT. It provides GUI integration for checker configuration
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Figure 2. Important data structures provided by CDT and its code analysis framework for CFG (left) and AST (right).

and result presentation using Eclipse’s marker framework. It
further provides a control flow graph (CFG) builder. Figure 2
illustrates important data structures for AST and CFG. There
are different CFG node types for plain nodes, decision nodes,
branch nodes, jump nodes etc. A CFG node (depending on
the type) typically includes a reference to the corresponding
AST subtree. Static program analysis normally evaluates paths
through CFGs [11]. Tree-based interpretation means that for a
CFG node the referenced AST subtree is interpreted. An AST
node provides a reference to the corresponding source location.

C. Short review of CDT’s debugger services framework

Debuggers typically feature a machine interface (MI) to
ease the development of graphical debugger frontends. CDT
includes a debugger services framework (DSF) [19], which is
an abstraction layer over debuggers’ machine interfaces. DSF
provides a set of asynchronous services. The main service
interfaces are illustrated in Figure 3. They are used to control
dynamic execution with the debugger (IMIRunControl) and
to insert breakpoints (IBreakpoints). The current program
location and variables can be queried. This comprises local
(IStack) and global variables (IExpressions).

D. Partial symbolic interpretation

The debugger stops at breakpoints or when it receives a sig-
nal. The symbolic execution engine then switches to symbolic
interpretation and tries to resolve the respective CFG node
and AST subtree. The source location (file and line number)
can be obtained from CDT (CDT’s CSourceLocator). In
order to enable CFG node resolution, a location map for the
source files of interest is pre-computed before analysis start.
The resolved CFG node is then followed to its AST subtree,
which is symbolically interpreted. Needed concrete values are
queried from the debugger The translation into logic equations
uses the SMTIib sublogic of arrays, uninterpreted functions
and bit-vectors (AUFBV).

E. Input-dependent branches

The debugger only breaks at a decision when the decision
contains a symbolic variable (input-dependent branch). Pos-
sible branch targets (CFG branch nodes and their children)
are obtained as children of the corresponding decision node.
The debugger is commanded to step, and the taken branch
is identified through the newly resolved CFG node. The
branch constraint is formulated as symbolic formula. Branch
constraints need to be remembered to enable input generation
for the next execution path. If there is already a breakpoint
set for the source location after stepping, then this location

is also symbolically interpreted. Otherwise the debugger is
commanded to resume execution.

FE. Implementation of read/write watchpoints

Concrete execution must be breaked at read and write
accesses to symbolic variables. This means conceptually that
a very large number of read/write watchpoints is needed.
Software watchpoints would severely slow down debugger ex-
ecution and in general are only available as write watchpoints,
not read watchpoints [20]. Hardware watchpoints can also not
be used, since standard processors only support a handful
of them. The implementation therefore uses normal software
line breakpoints and determines the relevant locations using
the available source code. To this end, a map of language
bindings is pre-computed before analysis. The map contains
AST names with references to the corresponding source file
locations. When a variable becomes symbolic, the correspond-
ing breakpoints are inserted (through DSF’s IBreakpoints
interface, Figure 3).

For accurate bug detection it is additionally necessary to
trace pointer targets. Pointer assignments must be traced be-
cause there may be pointers to a target when the target becomes
symbolic. The initial breakpoints therefore also include breaks
on all pointer assignments (a pointer target map is then updated
accordingly). This requirement is illustrated in the experiments
section with Figure 5.

G. Controlling program input

In order to trace and force program input, the debugger
is set to break at calls to functions from the standard library.
Because the 1ibc contains several functions for which the
debugger cannot step into or break inside (e.g., functions that
directly access the virtual dynamically shared object), these
functions are wrapped. For non-blocking functions on the
first program path, the step into and finish debugger
commands are used to trace the function’s return value. For
blocking functions or on later program paths, the program
input is set to the pre-determined value (or solver-generated
value respectively) with step into and return debugger
commands.

H. Bug detection

1) During concrete execution: Instrumentation and dy-
namic analysis are used to detect bugs during concrete execu-
tion. This paper uses the example of buffer overflow detection.
To dynamically detect buffer overflows, the available address
sanitizer from [21] is used. In [21], it is reported that the
instrumentation slows down execution by about 73% and
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void CWEI121_memcpy_01_bad () {

charvoid cv_struct;

cv_struct.y = (void %)SRC_STR;

// FLAW: overwrite the pointer y

memcpy (cv_struct.x, SRC_STR,
sizeof (cv_struct));

cv_struct.x[(sizeof (cv_struct.x)/
sizeof (char))—1]="\0";

printLine ((char *)cv_struct.x);

printLine ((char *x)cv_struct.y);

Figure 4. Buffer overflow detection during concrete execution. Example
from [22]

increases memory usage about 3.4 times. The source code
under test is compiled and statically linked with the address
sanitizer library. A breakpoint is set on the address sanitizer
error report function. In case the debugger breaks at this
location, the bug is localized by following the call stack back
into the source files of interest.

2) During symbolic interpretation: Input dependent bugs
are detected with solver queries during symbolic interpretation.
For buffer overflows, the bounds checker is triggered during
interpretation of array subscript expressions and pointer deref-
erences, when the index expression or pointer offset are sym-
bolic. The checker then queries the solver whether index/offset
can be smaller than zero or lerger than the buffersize.

1. Input generation

The parts of an execution path that are symbolically
interpreted can be denoted as symbolic execution path. To
generate input for the next execution path, the symbolic
execution path is backtracked to the last decision node. For any
unvisited child branch nodes, satisfiability of the backtracked
path constraint together with the respective branch constraint
is checked using the solver. If the constraints are satisfiable,
corresponding input values are generated using the solver’s
model generation functionality (get-model command). If
the constraints are not satisfiable, first the unvisited branch
siblings are tested, then the symbolic execution path is further
backtracked. Traversal of the symbolic execution tree (and
therefore also the execution tree) is complete when further
backtracking is not possible.

void CWEI121_fgets_32_bad () {

int data = —1;

int xdata_ptrl = &data;

int xdata_ptr2 = &data;

{ int data = xdata_ptrl;
char input_buf[CHAR_ARRAY_SIZE] = 77;
if (fgets(input_buf, CHAR_ARRAY_SIZE,

stdin) != NULL)

{ data = atoi(input_buf); }
else
{ printLine (”fgets ().failed.”); }
xdata_ptrl = data;

A

int data = xdata_ptr2;
int buffer[10] = { 0 };
if (data >= 0) {

// FLAW: possible buffer overflow:
buffer[data] = 1;
for(int i = 0; i < 10; i++)

{ printIntLine (buffer[i]); }

else
{ printLine ("ERROR: _out.of_bounds”);}

}

Figure 5. Buffer overflow detection during symbolic interpretation. Example
from [22]

V. EXPERIMENTS
A. Test cases and test set-up

The used test set consists of 58 small buffer overflow test
programs from the Juliet suite [22]. The test programs are
analysed with the Eclipse plug-in, using Eclipse version 4.5
(CDT 8.8.0) on a i7-4650U CPU, on 64-bit Linux kernel
3.16.0 with GNU debugger gdb version 7.7.1 [20]. The test
set contains stack based buffer overflows with memcpy () (19
test programs) and with fgets () (39 test programs). The test
programs cover all 39 Juliet flow variants for C. The results
are illustrated in Figure 6. The figure contains run-times for
correct detection only (no false positives or false negatives).
Flow variants in [22] are not numbered consecutively in order
to allow for later insertions.

The test set contains bugs which are detected during
concrete execution (memcpy ()) and with input-depending
branching (e.g., flow variant 12). It also contains input-
depending bugs (with fgets ()), which are detected during
symbolic interpretation using the solver (bug condition satis-
fiability check).
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Figure 6. Analysis run-times for correct bug detection with dynamic symbolic execution.

B. Detection accuracy

The functionality is illustrated with two source code listings
from [22]. The listings have been slightly modified to be
shorter.

Figure 4 shows an example of bug detection during con-
crete execution in the debugger. The ’bad’ function contains a
baseline bug (simplest flow variant) with memcpy in line 6.
The bug is that the size of the complete struct is used where
only the size of a contained array is meant. The debugger
breaks on the address sanitizer’s error reporting function and
the bug is correctly localized.

Figure 5 illustrates the need for pointer tracing with flow
variant 32 (’data flow using two pointers to the same value
within the same function’ [22]). The ’bad’ function contains
three variables data (declared in lines 2, 5 and 14). An
initial breakpoint is set on the fgets function call in line
7. The second data variable becomes symbolic in line 9
due to the atoi library call, so that a breakpoint is set
in line 12 (read access to this data). With an assignment
through pointer dereference in line 12 the first data variable
(from line 2) becomes symbolic. This would have been missed
without tracing the pointer targets (here the pointer assignment
in line 3). In line 12, also data_ptr2 becomes symbolic,
because it points to the now symbolic first data. Therefore
also data_ptr2 is watched, i.e., a breakpoint is set on line
14. In line 14, the third data variable becomes symbolic and
is watched, so that the debugger breaks on lines 16 (where
a constraint is collected) and 18. In line 18, solver bounds
checks are trigged for the array subscript expression, and the
buffer overflow is detected because the solver decides that the
index expression might be larger than the buffer size.

Bug detection during concrete execution depends on the
available instrumentation and run-time checks. The address
sanitizer used as example first misses a buffer overflow with
flow variant 9 (’control flow depending on global variables’),
but then detects it through reception of a segmentation fault
signal from the operating system.

The bugs are correctly detected for all flow variants apart
from variant 21 (’control flow controlled by value of a static
global variable’). For this variant, the CFG builder misclassi-
fies a branch node as dead node. This leads to missing program
paths in the analysis and consequently to a false negative
detection.

C. Speed

Figure 6 shows analysis runtimes for the buffer overflow
test cases with memcpy on the left, and with fgets on
the right. The vertical axis shows the numbering of data and
control flow variants from Juliet [22]. The horizontal axis
shows the measured runtime (wall-clock time) in seconds. The
tool needs about 1-2s for each of the memcpy test cases, and
about 20s for each of the fgets test cases. An exception is
the fgets test with flow variant 12. It contains quite a few
concatenated decisions for which both branches are satisfiable.
This leads to exponential path explosion. In addition, the
debugger execution is restarted many times from the program
start. This means that overlapping start paths are re-executed
redundantly.

VI. CONCLUSION AND FUTURE WORK

This paper presents an Eclipse CDT plug-in for automated
bug detection with dynamic symbolic execution. Software bugs
are detected with combined static and dynamic checks. As
much work as possible is transferred to a debugger, whose
execution is driven into all executable program paths. The
presented approach is applicable with native and with cross
compilation. It can be applied, e.g., with the gemu virtual
machine monitor which contains a gdb server for the guest
virtual machine. The current implementation suffers from the
path explosion problem, i.e., the number of satisfiable paths
in general grows exponentially with program length. Ongoing
work therefore aims to improve the scaling behaviour by
implementing ways to detect and prune program paths, on
which the detection of new bugs is not possible.
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