Deep Learning for Classification of Malware
System Call Sequences

Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert

Technical University of Munich
[kolosnjaji,zarras,webstergd,eckert]@sec.in.tum.de

Abstract. The increase in number and variety of malware samples am-
plifies the need for improvement in automatic detection and classifica-
tion of the malware variants. Machine learning is a natural choice to cope
with this increase, because it addresses the need of discovering underlying
patterns in large-scale datasets. Nowadays, neural network methodology
has been grown to the state that can surpass limitations of previous
machine learning methods, such as Hidden Markov Models and Support
Vector Machines. As a consequence, neural networks can now offer supe-
rior classification accuracy in many domains, such as computer vision or
natural language processing. This improvement comes from the possibil-
ity of constructing neural networks with a higher number of potentially
diverse layers and is known as Deep Learning.

In this paper, we attempt to transfer these performance improvements
to model the malware system call sequences for the purpose of malware
classification. We construct a neural network based on convolutional and
recurrent network layers in order to obtain the best features for classi-
fication. This way we get a hierarchical feature extraction architecture
that combines convolution of n-grams with full sequential modeling. Our
evaluation results demonstrate that our approach outperforms previously
used methods in malware classification, being able to achieve an average
of 85.6% on precision and 89.4% on recall using this combined neural
network architecture.

1 Introduction

An increasing problem in large-scale malware detection and analysis is the
high number of new malware samples. This number has exponentially increased
throughout the years, which creates difficulty for malware analysts, as they need
to extract information out of this large-scale data. Recent reports from McAfee
reveal that tens of thousands of new distinct samples are being submitted on a
daily basis [9]. Furthermore, statistics page of VirusTotal shows that, in just a
single day, over a million newly retrieved samples had to be analyzed [29]. This
surge of samples makes reverse engineering a challenging task. Although there
exist efforts to automate the reverse engineering and malware analysis process,
manual signature-based or heuristics-based detection and analysis procedures
are still very prominent. Apart from the problem of sheer number of samples,

2 Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert

these samples are of increased variety, which is usually caused by advances in
malware development that utilize polymorphic and metamorphic algorithms to
generate different versions of the same malware. This makes it extremely difficult
for signature-based systems to correctly classify and analyze these samples.

To aid malware analysts in retrieving useful information from such a large
amount of samples, we need to solve the problem of automatic classification
under the existing statistical variance on a large scale. Existing signature-based
malware detection systems cannot cope with this variance as they do not take
statistical noise into account and thus this kind of systems can be easily evaded.
Therefore, we need a robust alternative that can abstract away the noise and
capture the essential information from static or behavioral malware properties.

Static analysis tools, such as PEInfo [1], offer extraction of different proper-
ties or metadata (e.g., entropy, histograms, section length) from malware code.
This data can be very useful for characterizing malware samples. However, mis-
creants can easily obfuscate the malware code to the point where it is impossible
to retrieve any useful information from static analysis. On the other hand, be-
havioral analysis tools are less sensitive to obfuscation, as they only record traces
of activity retrieved from the execution of malware samples.

The most important traceable events for determining malware behavior are
system calls. In order to execute malicious actions, malware needs to use the
services from the operating system. For any meaningful action, such as opening
a file, running a thread, writing to the registry, or opening a network connection,
interaction with the operating system (OS) is necessary. This interaction is done
through the system call API of the target OS. Therefore, in order to character-
ize the malware behavior, it is important to track the sequence of system call
events during the execution of malware. Different malware families have different
execution goals, which should be revealed by inspecting these traces.

Towards this direction, machine learning-based systems have been developed
as a solution to the problems of large number and variety of malware samples.
For instance, researchers utilized Hidden Markov Models in an attempt to model
system call sequences [4]. Others used Support Vector Machines (SVM) with
String Kernels to detect malware based on the executed system calls [21]. Apart
from behavioral data, static code properties have also been used as data sources
for statistical analysis [25]. Many other papers of similar content have tried to
deal with this issue [5}/6,122]. The problem with these approaches is that many
times machine learning methods use simplifying assumptions. For example, some
of these works utilize Markov assumption of memoryless processes in Hidden
Markov Models or different kernel definitions that define similarity measures
between samples. One exception is the work of Pascanu et al. [19], where they
use recurrent networks for modeling system call sequences, in order to construct
a “language model” for malware. They test Long Short-Term Memory and Gated
Recurrent Units and report good classification performance. However, they do
not test deep learning approaches. This may simplify the modeling, but on the
other hand it can result in reduced classification accuracy.

Deep Learning for Classification of Malware System Call Sequences 3

In this paper, we focus on investigating the utilization of neural networks to
improve the classification of newly retrieved malware samples into a predefined
set of malware families. As a matter of fact, recent years have brought a signif-
icant development in the area of neural networks, mostly under a paradigm of
deep learning. This paradigm encompasses a movement towards creating neural
networks with a high number of layers to model complex functions of input data.
Using modern hardware technology, such as General Purpose GPUs and novel
algorithms developed in recent years, deep networks can be trained efficiently
using high dimensional datasets on a large scale.

We construct and analyze two types of neural network layers for modeling
system call sequences: convolutional and recurrent layers. These two types of lay-
ers use different types of approach in modeling sequential data. On the one hand,
convolutional networks use sequences in a form of a set of n-grams, where we do
not explicitly model the sequential position of system calls and only count pres-
ence and relation of n-grams in a behavioral trace. While this approach simplifies
sequence modeling, it also potentially causes loss of information fidelity. On the
other hand, recurrent networks train a stateful model by using full sequential
information: the model contains dependency of certain system call appearance
from the sequence of previous system calls. Since this model is more complex, it
is more difficult to train. However, if trained properly, it could potentially offer
better accuracy on sequential data, as it is able to capture more information
about the training set. By combining those two layers in a hierarchical fashion,
we can increase our malware detection capabilities. This is enabled by more ro-
bust automatic feature extraction, where we convolve n-grams of system calls
and, furthermore, create sequential model out of convolution results. We stack
layers in the neural network in accordance to the principles of deep learning [7].
In deep learning, one can construct deep neural networks in order to extract a
hierarchy of features for classification. We use this technique to achieve improve-
ment in capturing the relation between n-grams in system call sequences. In
essence, our approach enables us to get average accuracy, precision, and recall of
over 90% for most malware families, which brings significant improvement over
previously used methods and thus can help analysts to classify malware more
accurately.

In summary, we make the following main contributions:

— We construct deep neural networks and apply them to analyze system call
sequences.

— We combine convolutional and recurrent approaches to deep learning for
optimizing malware classification.

— We investigate neural unit activation patterns and explain the performance
improvement of our models by illustrating the inner workings of our neural
network.

4 Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert

2 Methodology

In this section, we describe the methodology we use to perform the task of
malware classification. We first provide information regarding our set up envi-
ronment and then proceed with our deployed techniques.

2.1 System Description

Our malware classification process is
displayed in It begins with

a malware zoo, where the executable |

. . . PE File
files are acquired and input data is
retrieved by executing malware in a

; Malware zoo
protected environment. The results of Malware Cuckoo
these executions are preprocessed in Collection Sandbox
order to get numerical feature vectors. |
These vectors are then forwarded as l

inputs for neural networks, which in
turn classify the malware into one of

Preprocessing

the predefined malware families. l
We use the Tensorflow [3] and the Neural Network
Theano (8] frameworks to construct
and train the neural networks. These %\
frameworks enable us to design neural Family 1 Family2 | - | Famiyn

network architectures and precompile
the training algorithms for execution Figure 1. Overview of our malware classi-
on graphical processors. Since GPUs fication system.

are designed for fast execution of lin-

ear algebra operations, such as matrix

multiplications, we utilize them to speed up our neural network training. This
is a very popular approach in neural network applications, since training deep
networks can be a very resource-intensive task. In our set up, we use the NVIDIA
TITAN X GPU and the NVIDIA CUDA 7 software platform to accelerate the train-
ing algorithms.

2.2 Dataset

We collect malware samples and trace malware behavior using a malware zoo [32].
Our malware collection consists of samples gathered from three primary sources:
Virus Share [23], Maltrieve [18] and private collections. We select these sources
to provide a large and diverse volume of samples for evaluation.

Since malware authors can use code obfuscation and packers in order to sub-
vert static analysis, we use dynamic malware analysis to gather data about mal-
ware behavior. Towards this direction, there exist multiple tools that enable trac-
ing the execution of malware and gathering of logs of execution sequences [13|[17].
We choose the Cuckoo sandbox which is open source, widely-used, and provides

Deep Learning for Classification of Malware System Call Sequences 5

a controlled environment for executing malware. During the execution of mal-
ware samples we record calls to the kernel API that we later use to characterize
these malware samples. For each malware sample we obtain a sequence of API
calls (system calls) and employ this sequence for behavioral modeling.

We use kernel API call sequences (system calls) as features, but as we are
doing supervised learning, we also need labels for training. These labels are ob-
tained using services of VirusTotal [2]. In particular, for each malware sample
we use, we extract antivirus labels from the VirusTotal web service. This service
is used by uploading MD5 hashes of malware executables to VirusTotal and re-
trieving results from a large number of antivirus engines through the VirusTotal
API. These engines compare the hash of the malware file to the data already
contained in their own database. We leverage the VirusTotal services in order
to access malware analysis results and particular signatures for the samples in
our malware zoo. We are interested in the antivirus signatures, out of which
we want to retrieve labels for supervised learning. Each antivirus that provides
signatures through VirusTotal has its own methodology of labeling malware,
which makes it difficult for machine learning classification tests, since we need
to extract one numerical label per unique sample. Our approach was to execute
clustering on the signatures from different antivirus programs and obtain ground
truth classes from the resulting clusters. An ideal solution for labeling is to use
reverse engineering and expert knowledge. However, on a larger scale that is not
a realistic scenario. Therefore we postprocess the VirusTotal results in order to
pull maximum information without manual inspection of malware samples.

2.3 Signature Clustering

We attempt to extract maximum amount of information from the VirusTotal
signatures by performing a simplified version of signature clustering method in-
troduced in VAMO [20]. To each malware sample we attach a boolean vector
that contains information about presence or absence of different antivirus signa-
tures. Using a variant of cosine distance and DBSCAN [12] algorithm we cluster
signature vectors in order to detect regions of high similarity. We select the ten
most populated clusters and use them to create classes for the evaluation of our
methodology. These ten clusters contain 4753 malware samples in total and cover
most of our sample set. The rest of the samples we consider as outliers. Usually a
malware analyst is interested in extracting samples belonging to certain families
and tries to differentiate them from the other executables in the dataset.

2.4 Feature Preprocessing

Before using the API call sequences as inputs to neural networks, we need to
remove redundant data and convert the data to sequences of numerical feature
vectors. First, we preprocess sequences by removing subsequences where one API
call is repeated more than two times in a row. For example, this happens if a
process tries to create a file repeatedly in a loop. We cut these subsequences
by using maximum two consequent identical kernel API call instances in the

6 Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert

Convolution LSTM cell

LdrGetProcedureAddress

i LSTM cell
LdrGetProcedureAddress :

average

pooling, dropout

pooling LSTM cell
> > Softmax

LdrGetProcedureAddress i

LdrLoadDll

LdrLoadDll l

LSTM cell

N
X

Figure 2. Deep Neural Network architecture

resulting sequence. Furthermore, we use one-hot encoding to find a unique binary
vector for every API call present in the dataset. This means that we create zero
feature vectors of length equal to the number of distinct API calls and toggle
one bit in a position unique for a particular kernel API call. This way, we have
sequences of binary vectors instead of sequences of API call names provided by
Cuckoo sandbox. Since our dictionary consists of only 60 distinct system calls,
we do not face any challenge with the size of feature vectors.

2.5 Deep Neural Network

In order to maximize the utilization of the possibilities given by neural net-
work methodology, we combine convolutional and recurrent layers in one neural
network. depicts our neural network architecture. The convolutional
part consists of convolution and a pooling layers. On the one hand, the convolu-
tional layer serves for feature extraction out of raw one-hot vectors. Convolution
captures the correlation between neighboring input vectors and produces new
features. We use two convolution filters of size 3 x 60, which corresponds to 3-
grams of instructions. As the results of convolution we take feature vectors of size
10 and 20 for the first and second convolution layer, for every input feature. Af-
ter each convolutional layer we use max-pooling to reduce the dimensionality of
data by a factor of two. Outputs of the convolutional part of our neural network
are connected to the recurrent part. We forward each output of the convolutional
filters as one vector. The resulting sequence is modeled using the LSTM cells.
We use LSTM cells, as they are flexible in terms of training, even though the
maximal sequence length was limited to 100 vectors. Using the recurrent layer
we are able to explicitly model the sequential dependencies in the kernel API
traces. Mean-pooling is used to extract features of highest importance from the
LSTM output and reduce the complexity of further data processing. Further-
more, we use Dropout [26] in order to prevent overfitting and a softmax layer to
output the label probabilities.

Deep Learning for Classification of Malware System Call Sequences 7

Family Results of various neural network architectures (%)

Feedforward network Convolutional Network ConvNet+LSTM

ACC PR RC ACC PR RC ACC PR RC
Multiplug 99.6 100.0 99.3 98.9 98.9 98.9 98.9 99.8 99.0
Kazy 100.0 71.7 100.0 100.0 100.0 100.0 100.0 99.9 100.0
Morstar 0.0 0.0 0.0 100.0 100.0 100.0 100.0 99.9 100.0
Zusy 9.1 57.2 68.5 100.0 56.8 100.0 100.0 57.5 100.0

SoftPulse 100.0 100.0 98.2 100.0 99.6 100.0 100.0 99.1 100.0
Somoto 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Mikey 89.1 37.1 28.8 0.0 0.0 0.0 0.0 0.0 0.0
Amonetize 100.0 98.4 100.0 99.1 100.0 99.1 99.1 100.0 99.6
Eldorado 100.0 100.0 96.4 99.2 100.0 99.2 99.4 100.0 99.5
Kryptik 100.0 100.0 100.0 95.0 100.0 95.1 96.6 100.0 96.2
Average 79.8 76.4 79.1 89.2 85.6 89.2 89.4 85.6 89.4

Table 1. Evaluation of deep hybrid network.

3 Evaluation

In this section, we describe the outcomes of our experiments executed using
the data from our malware zoo and the neural network architectures that we
constructed. For our evaluation measurements we noted the performance for
different families in terms of accuracy (ACC), precision (PR) and recall (RC).

In our evaluation we used a type of 3-fold crossvalidation. In each test, we
chose two thirds of samples as training set, while one third of samples is assigned
to the test set. As a matter of fact, to obtain a reliable performance estimate,
we averaged the results of ten crossvalidation tests, executed each time with a
new random dataset permutation.

In our first experiment, we investigated the performance of our neural net-
work architecture with respect to the simpler, previously used architectures, such
as feedforward neural network, or convolutional network. displays the
overall results in percentage. These results show that our configuration brings
improvements in the classification performance. It also shows that for one family,
Mikey, we do not get good accuracy. This family gets very often confused for the
family Zusy, because of very similar behavioral traces.

Next, we wanted to measure the performance improvement of our methodol-
ogy. Therefore, we compared the performance of deep hybrid architecture with
Hidden Markov Models and Support Vector Machines (SVM), since these meth-
ods have been heavily used in previous works. [Table 2]illustrates the results. This
table shows high improvement in case of using neural networks as classifiers. The
improvement is statistically significant, with a 5x2cv t-statistics value |11] in the
95% confidence level in comparison with the SVM.

In our last experiment we attempted to illustrate the inner working of our
neural network. Thus, we visualized intermediate results of the convolutional
layer in the neural network trained on our dataset. displays the correla-
tion of 5-gram similarity and similarity of results from convolutional filters. We
got the best classification results for using convolutional filters of width 3, but

8 Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert

Family Deep Neural Network Hidden Markov Model Support Vector Machine

ACC PR RC ACC PR RC ACC PR RC
Multiplug 98.9 99.8 99.0 91.5 74.5 91.5 99.3 99.9 99.3
Kazy 100.0 99.9 100.0 73.1 95.1 73.1 96.6 93.1 96.6
Morstar 100.0 99.9 100.0 80.0 63.7 80.0 82.3 91.0 82.3
Zusy 100.0 57.5 100.0 65.4 45.1 65.4 100.0 58.4 100.0
SoftPulse 100.0 99.1 100.0 51.1 100.0 51.1 99.9 99.6 99.9
Somoto 100.0 100.0 100.0 50.0 37.6 50.0 99.8 100.0 99.8
Mikey 0.0 0.0 0.0 5.7 20.0 5.7 0.0 0.0 0.0
Amonetize 99.1 100.0 99.6 29.4 100.0 29.4 99.3 100.0 99.3
Eldorado 99.4 100.0 99.5 20.0 80.4 20.0 100.0 100.0 100.0
Kryptik 96.6 100.0 96.2 10.0 100.0 10.0 97.1 100.0 97.1
Average 89.4 85.6 89.4 47.5 71.6 47.6 87.4 84.2 87.4

Table 2. Comparison with previously used methods.

API Call Array Neuron Activation Value
LdrGetDIlHandle, LdrGetProcedureAddress, LdrGetProcedureAddress, 64.40814948
LdrGetDIllHandle, LdrLoadDIl

LdrGetDIllHandle, LdrGetProcedureAddress, LdrGetProcedureAddress, 72.43323427
LdrLoadDll, LdrGetProcedureAddress

LdrGetDIllHandle, DeviceIloControl, DeviceIoControl, -59.49672516
LdrGetDllHandle, LdrLoadDIl

LdrGetDIllHandle, LdrGetProcedureAddress, LdrGetProcedureAddress, -60.89228849
RegOpenKeyExW, RegOpenKeyExW

ExitThread, LdrLoadDIl, LdrGetProcedureAddress, -60.64636472

LdrGetProcedureAddress, LdrGetDIlHandle

NtOpenFile, NtCreateSection, ZwMapViewOfSection, -12.56477188
NtOpenFile, LdrLoadDIl

Table 3. Comparison of neuron activation

we use b-grams here for visualization, as it is more illustrative to show longer
n-grams. The activation values are normally vectors, but we reduced them to
scalars using the t-SNE transformation [28], for better visualization. It is no-
ticeable that the neuron activation values follow the similarity between n-grams
of kernel API calls. The function that governs how this similarity is followed is
optimized during the training of our neural network.

As the input values are propagated through the layers of the neural network,
activations are trained in order to separate different malware classes. In the last
layer the activation values should be able to totally separate between different
classes, based on features learned in previous layers. |[Figure 3|shows the results of
clustering neuron activation values before the softmax layer, when using malware
data of different families as inputs. Again, the neuron activation vectors are
reduced to two-dimensional representation using the t-SNE transformation.

Deep Learning for Classification of Malware System Call Sequences 9

40

[]
30 +
20 bt
" A
. ° V'*
~ g Multiplug .. 0o h
<4 <« Kazy ® v
-ag O/ » Morstar e °
L V Zusy ° %‘ ®
—10/| A SoftPulse L * 44
@ Somoto [] Yy «4 °
—20f| % Mikey ° <
® Amonetize < «ﬁ
—30{| ® Eldorado <
— Kryptik
0 -30 —20 -10 0 10 20 30 40
Feature 1

Figure 3. T-SNE transform of neuron activations in the last layer of our deep hybrid
network.

4 Discussion

Our results show that deep learning indeed brings improvements in classification
of malware system call traces. Although there exist classes where the classifica-
tion accuracy is under 90%, on average we bring an improvement of performance
with respect to Hidden Markov Models and SVM. We combine convolutional and
recurrent layers to achieve this improvement. This combination helps us obtain
slightly better results than with simpler architectures with only feedforward
or only convolutional layers. Using only LSTM recurrent network also does not
achieve accuracy as high as we get with our architecture, which can be explained
with the relatively short length of the malware execution traces.

While dynamic analysis information is very important, in this work we only
look at system call traces, which contain information of only the path taken by
malware on execution. This path could also depend on input data, which we
ignore in this work. By joining static and dynamic analysis, we could unify the
two approaches in looking at malware features. Future work will be dedicated to
this goal. One other limitation of our approach is that we do not consider evasion
of malware detectors by inserting noise in the system call sequences. This issue
has been raised before by Wagner and Soto [30]. We plan to investigate the
mitigation of this issue in the future.

Although training time for neural network ranges from three to ten hours,
on test time the classification is instantaneous. Therefore the neural network
approach is very good in case where there is no common need to retrain the
model. We have also experimented with extending the neural network further
with an even higher number of layers. However, we did not get any more perfor-
mance improvement. Further improvement could exist if the dataset was larger
and if the malware sample set was more diverse. Our plan is to investigate this
direction as well.

10 Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert

5 Related work

This section contains the description of the research efforts that precede our pa-
per. These efforts are mostly divided into research dedicated to (i) application of
machine learning methods in malware analysis and (i4) using specifically neural
networks for malware detection and classification. In the following we explain
the evolution and current state of those two groups of methods separately.

5.1 Machine Learning Methods for Malware Detection

Machine learning-based malware detection and classification are topics of multi-
ple research efforts. These efforts use various behavioral features of malware as
input data for statistical models. The features are obtained by analyzing code
or tracing events such as system calls [31], registry accesses [14], and network
traffic [27]. This kind of event sequences are analyzed using unsupervised (e.g.,
clustering), semi-supervised, or supervised learning (classification) methods. Al-
though most of papers investigate malware clustering [5/6], supervised learning
is also a prominent topic.

There also papers in recent years that try to use advanced machine learning
methods and extract more information from malware datasets. An example of
this is given by recent application of statistical topic modeling approaches to the
classification of system call sequences [34], which was further extended with a
nonparametric methodology [16]. This approach was extended by taking system
call arguments as additional information and including memory allocation pat-
terns and other traceable operations [33]. Support vector machines with string
kernels represent an another interesting sequence-aware approach [21].

5.2 Neural Networks for Malware Detection and Classification

There are also noticeable efforts to use neural networks for malware detection and
analysis. For example, Dahl et al. [10] try to classify malware on a large scale
using random projections and neural networks. However, they do not report
advantages of increasing the number of neural network layers. Saxe et al. [24]
used feedforward neural networks to classify static analysis results. However, they
do not consider dynamic analysis results in their research. In case of obfuscated
binaries, the static analysis may not give satisfactory inputs for classification.
Huang et al. [15], on the other hand, use up to four hidden layers of feedforward
neural network, but focus on evaluating multi-task learning ideas. Pascanu et
al. [19] use recurrent networks for modeling system call sequences, in order to
construct a “language model” for malware. They test Long Short-Term Memory
and Gated Recurrent Units and report good classification performance. However,
they do not test deep learning approaches.

These papers give motivating conclusions that enhance the reputation of
neural networks being applicable for malware datasets. However, these papers
do not report any advantages from diversifying deep architectures in case of
behavioral modeling of malware activity and they do not do extensive research
in that direction.

6

Deep Learning for Classification of Malware System Call Sequences 11

Conclusion

In this paper, we construct deep neural networks to improve modeling and clas-
sification of system call sequences. By combining convolutional and recurrent
layers in one neural network architecture we obtain optimal classification re-
sults. Using a hybrid neural network containing two convolutional layers and
one recurrent layer we get a novel approach to malware classification. Our neu-
ral network outperforms not only other simpler neural architectures, but also
previously widely-used Hidden Markov Models and Support Vector Machines.
Overall, our approach exhibits better performance results when compared to
previous malware classification approaches.

References

11.

12.

13.

14.

15.

PEInfo Service. https://github.com/crits/crits_services/tree/master/
peinfo_service.

VirusTotal. http://www.virustotal.com, May 2015.

M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous sys-
tems. arXiv preprint arXiv:1603.04467, 2015.

S. Attaluri, S. McGhee, and M. Stamp. Profile Hidden Markov Models and Meta-
morphic Virus Detection. Journal in computer virology, 5(2):151-169, 2009.

M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario.
Automated Classification and Analysis of Internet Malware. In International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID), 2007.

. U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable,

Behavior-Based Malware Clustering. In ISOC Network and Distributed System
Security Symposium (NDSS), 2009.

Y. Bengio. Learning Deep Architectures for Al. Foundations and trends in Machine
Learning, 2(1):1-127, 2009.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio. Theano: A CPU and GPU math
expression compiler. In Python for Scientific Computing Conference (SciPy), 2010.
Z. Bu et al. McAfee Threats Report: Second Quarter 2012. 2012.

. G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-Scale Malware Classifi-

cation Using Random Projections and Neural Networks. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013.

T. G. Dietterich. Approximate statistical tests for comparing supervised classifi-
cation learning algorithms. Neural computation, 10(7):1895-1923, 1998.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases With Noise. In Kdd, 1996.

C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser. The Cuckoo Sandbox,
2012.

K. Heller, K. Svore, A. D. Keromytis, and S. Stolfo. One Class Support Vector
Machines for Detecting Anomalous Windows Registry Accesses. In Workshop on
Data Mining for Computer Security (DMSEC), 2003.

W. Huang and J. W. Stokes. MtNet: A Multi-Task Neural Network for Dynamic
Malware Classification. In Conference on Detection of Intrusions and Malware €
Vulnerability Assessment (DIMVA), 2016.

https://github.com/crits/crits_services/tree/master/peinfo_service
https://github.com/crits/crits_services/tree/master/peinfo_service
http://www.virustotal.com

12

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert

B. Kolosnjaji, A. Zarras, T. Lengyel, G. Webster, and C. Eckert. Adaptive
Semantics-Aware Malware Classification. In Conference on Detection of Intru-
stons and Malware & Vulnerability Assessment (DIMVA), 2016.

T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A. Kiayias.
Scalability, Fidelity and Stealth in the Drakvuf Dynamic Malware Analysis System.
In Annual Computer Security Applications Conference (ACSAC), 2014.

K. Maxwell. Maltrieve. https://github.com/krmaxwell/maltrieve, Apr 2015.
R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas. Malware
Classification With Recurrent Networks. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2015.

R. Perdisci and M. C. U. VAMO: Towards a Fully Automated Malware Clus-
tering Validity Analysis. In Annual Computer Security Applications Conference
(ACSAC), 2012.

J. Pfoh, C. Schneider, and C. Eckert. Leveraging String Kernels for Malware
Detection. In Network and System Security. 2013.

K. Rieck, T. Holz, C. Willems, P. Diissel, and P. Laskov. Learning and Classifica-
tion of Malware Behavior. In Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA). 2008.

J.-M. Roberts. Virus Share. https://virusshare.com/, Nov 2015.

J. Saxe and K. Berlin. Deep Neural Network Based Malware Detection Using T'wo
Dimensional Binary Program Features. arXiv preprint arXiv:1508.03096, 2015.
M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data Mining Methods for
Detection of New Malicious Executables. In IEEE Symposium on Security and
Privacy, 2001.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks From Overfitting. Journal of
Machine Learning Research, 15(1):1929-1958, 2014.

F. Tegeler, X. Fu, G. Vigna, and C. Kruegel. Botfinder: Finding Bots in Network
Traffic Without Deep Packet Inspection. In International Conference on Emerging
Networking Ezxperiments and Technologies (CoNEXT), 2012.

L. Van der Maaten and G. Hinton. Visualizing Data Using T-Sne. Journal of
Machine Learning Research, 9(2579-2605):85, 2008.

VirusTotal. File Statistics. https://www.virustotal.com/en/statistics/, Nov
2015.

D. Wagner and P. Soto. Mimicry Attacks on Host-Based Intrusion Detection
Systems. In Conference on Computer and Communications Security (CCS), 2002.
C. Warrender, S. Forrest, and B. Pearlmutter. Detecting Intrusions Using System
Calls: Alternative Data Models. In IEEE Symposium on Security and Privacy,
1999.

G. Webster, Z. Hanif, A. Ludwig, T. Lengyel, A. Zarras, and C. Eckert. SKALD: A
Scalable Architecture for Feature Extraction, Multi-User Analysis, and Real-Time
Information Sharing. In International Conference on Information Security, 2016.
H. Xiao and C. Eckert. Efficient Online Sequence Prediction With Side Informa-
tion. In IEEE International Conference on Data Mining (ICDM), 2013.

H. Xjao and T. Stibor. A Supervised Topic Transition Model for Detecting Ma-
licious System Call Sequences. In Workshop on Knowledge Discovery, Modeling
and Simulation, 2011.

https://github.com/krmaxwell/maltrieve
https://virusshare.com/
https://www.virustotal.com/en/statistics/

	Lecture Notes in Computer Science
	Introduction
	Methodology
	System Description
	Dataset
	Signature Clustering
	Feature Preprocessing
	Deep Neural Network

	Evaluation
	Discussion
	Related work
	Machine Learning Methods for Malware Detection
	Neural Networks for Malware Detection and Classification

	Conclusion

