
Automated Dynamic Firmware Analysis at Scale:
A Case Study on Embedded Web Interfaces ∗

Andrei Costin
EURECOM

costin@eurecom.fr

Apostolis Zarras
Technical University of Munich

zarras@sec.in.tum.de

Aurélien Francillon
EURECOM

francill@eurecom.fr

ABSTRACT
Embedded devices are becoming more widespread, intercon-
nected, and web-enabled than ever. However, recent studies
showed that embedded devices are far from being secure.
Moreover, many embedded systems rely on web interfaces
for user interaction or administration. Web security is still
difficult and therefore the web interfaces of embedded sys-
tems represent a considerable attack surface.

In this paper, we present the first fully automated frame-
work that applies dynamic firmware analysis techniques to
achieve, in a scalable manner, automated vulnerability dis-
covery within embedded firmware images. We apply our
framework to study the security of embedded web interfaces
running in Commercial Off-The-Shelf (COTS) embedded de-
vices, such as routers, DSL/cable modems, VoIP phones,
IP/CCTV cameras. We introduce a methodology and im-
plement a scalable framework for discovery of vulnerabilities
in embedded web interfaces regardless of the devices’ ven-
dor, type, or architecture. To reach this goal, we perform full
system emulation to achieve the execution of firmware im-
ages in a software-only environment, i.e., without involving
any physical embedded devices. Then, we automatically ana-
lyze the web interfaces within the firmware using both static
and dynamic analysis tools. We also present some interest-
ing case-studies and discuss the main challenges associated
with the dynamic analysis of firmware images and their web
interfaces and network services. The observations we make
in this paper shed light on an important aspect of embedded
devices which was not previously studied at a large scale.

1. INTRODUCTION
Embedded devices are present in many complex systems

like cars, airplanes, and programmable logic controllers. Such
devices also appear massively in customer products such as
network gateways and IP cameras. Those devices are be-
coming more pervasive and “invade” our lives under many

∗An extended version of this paper is available at [18].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897900

different forms (e.g., home automation, smart TVs). Thus,
their proper and secure functioning is of great importance.

Embedded systems, in particular Small Office/Home Of-
fice (SOHO) devices, are often insecure [54]. Their lack of
security may be the consequence of the harsh market com-
petition. For instance, the time to market is crucial and the
competition puts high pressure on the design and produc-
tion costs, and enforces short release timelines. Vendors try
to provide as many features as possible to differentiate prod-
ucts, while customers do not necessarily look for the most
secure products.

Some embedded systems have clear and well-defined se-
curity goals, such as the pay-TV smart cards and the Hard-
ware Security Modules (HSM). However, many embedded
systems are not designed with a clear threat model in mind.
This gives little motivation to manufacturers to invest time
and money in securing them. This fact motivated several re-
searchers to evaluate the state of security of such embedded
devices [11,17]. Moreover, during the past few years, embed-
ded devices became more connected forming what is called
the Internet of Things (IoT). Such devices are often put on-
line by composition; attaching a communication interface to
an existing (insecure) device. Most of these devices lack the
user interface of desktop computers (e.g., keyboard, video,
mouse), but nevertheless need to be configured and main-
tained. Albeit some devices rely on custom protocols used
by “thick” clients or even legacy interfaces (i.e., telnet), the
web quickly became the universal administration interface.
Thus, the firmware of these devices often embed a web server
running web applications; for the rest of this paper, we will
refer to these as embedded web interfaces.

It is well known that making secure web applications is
not a trivial task. In fact, researchers showed that more
than 70% of vulnerabilities are hosted in the (web) appli-
cation layer [51]. Attackers use various techniques to exploit
these web applications. Well known vulnerabilities, such as
SQL injection or Cross Site Scripting (XSS), constitute a
significant portion of the total amount of vulnerabilities dis-
covered each year [15] and are frequently used in real-world
attacks [29]. Additionally, vulnerabilities such as Cross Site
Request Forgery (CSRF), command injection, and HTTP
response splitting are also often present in web applications.
Given such a track record of security problems in both em-
bedded systems and web applications, it is natural to expect
the worse from embedded web interfaces. However, those vul-
nerabilities are neither easy to discover, analyze, and con-
firm, nor do the vendors perform the necessary security qual-
ity assurance of their released firmware images.

http://dx.doi.org/10.1145/2897845.2897900

While there are solutions that can be used during the
design phase of the software [52], it is also important to
discover and patch existing vulnerabilities before they are
found and exploited“in the wild”. This can be done by static
analysis on their source code [8,22], or by dynamic analysis
where their compiled code or web interface is typically ex-
ercised against a number of known attack patterns [9, 11].

Unfortunately, these techniques can be inefficient or diffi-
cult to use for detecting vulnerabilities inside embedded web
interfaces [9,30]. For instance, performing static analysis on
embedded web interfaces seems to be a rather simple task
once the firmware has been unpacked. One main limitation
of this approach is that the web interfaces often rely on
various technologies (e.g., PHP, CGIs, custom server-side
languages). However, the static analysis tools are usually
designed for a particular technology and many of them are
concentrated around some trendy environment (e.g., PHP)
leaving the others “uncovered”. In addition, though sound
static analysis tools exist, many others are merely “glori-
fied greps” and have a large number of false positives, which
make them problematic to reliably use in an automated large
scale study. On the other hand, dynamic analysis tools [28]
are more generic as they are less sensitive to the server-side
language. Yet, they require the system or the web interface
to be functional. Unfortunately, it is challenging to create
an environment that can perfectly emulate firmware images
for a broad range of devices based on a variety of computing
architectures and hardware designs.

The easiest way to perform dynamic analysis is to do it on
a live device. However, acquiring devices to dynamically ana-
lyze them is expensive and does not scale. At the same time,
it is ethically questionable, if not illegal, to test devices one
does not own (e.g., devices on the Internet). Another option
is to extract the web interface files from a device and load
them to a test environment, like an Apache web server. Un-
fortunately, a large majority of the embedded web interfaces
use native CGIs, bindings to local architecture-dependent
tools or custom web server features which cannot be easily
reproduced in a different environment (Section 2.4.1).

Emulating the firmware is an elegant method to perform
dynamic analysis of an embedded system, since it does not
require the physical device to be present and can be com-
pletely performed in a controlled environment while being
easy to scale. But emulation of unknown devices is not easy
because an embedded firmware expects specific hardware to
be fully present (i.e., peripherals or memory layouts). Pre-
vious attempts were made at improving emulation of firm-
ware images by forwarding hardware I/O or ioctl to the
hardware [45, 57]. These techniques achieve a rather good
emulation, but require the presence of the original device
and custom manual setup, which does not scale. One ob-
servation is that in Linux-based embedded systems the in-
teraction with the hardware is usually performed from the
kernel, and their web interfaces often do not interact with
the hardware directly.

To perform scalable security testing of embedded web
interfaces we developed a distributed framework for auto-
mated analysis (Figure 1) and evaluated it in a cloud setup.
We started our analysis with a dataset of 1925 unpacked
firmware images that contain embedded web interfaces. Then,
for each unpacked firmware we identify any potential web
document root present inside the firmware. At this point we
make a pass with static analysis tools on the modules of

the web service under test. Next, we perform a system em-
ulation of firmware images by replacing their kernel with a
stock kernel (for the same CPU architecture) and emulating
the whole userland of the firmware using the QEMU emula-
tor [27]. We then chroot to the unpacked firmware and start
the init program, the init scripts, or directly the web server
in some cases. Once (and if) the web service under test is up
and operational, we perform dynamic analysis on it. Finally,
we analyze the results, and whenever applicable we perform
manual analysis and investigate the failures. Overall, in this
paper we present a completely automated framework to per-
form scalable dynamic firmware analysis and demonstrate its
effectiveness by testing the security of embedded web inter-
faces. Essentially, our framework relies on the emulation of
the firmware images, which allows to test the embedded web
interfaces using off-the-shelf dynamic analysis tools.

In summary, we make the following main contributions:

• We present the first framework that achieves scalable
and automated dynamic analysis of firmwares for dis-
covering vulnerabilities in embedded devices using the
software-only approach.

• We highlight the challenges in emulating firmware im-
ages and dynamically testing (web interfaces of) em-
bedded systems, and describe the techniques we used.

• We perform the first large scale security study on web
interfaces of embedded systems and automatically dis-
cover 225 previously unknown serious vulnerabilities
in 45 firmware images.

2. EXPLORING METHODS TO ANALYZE
EMBEDDED WEB INTERFACES

In this section, we summarize the different possibilities
for static and dynamic analysis of embedded web interfaces,
their limitations, and motivate our final choices.

2.1 Static Analysis
Static analysis tools have many practical advantages as

they are often automated and do not require setting up too
complex test environments. In general, they only need the
source code (or the application) to be provided to generate
an analysis report. It is also relatively easy to plug new static
analysis tools for increased coverage or wider support of file
formats and source code languages. Finally, as a result of all
the above, such tools are scalable and easy to automate.

Static analysis, however, has well understood limitations.
Although it cannot find all the vulnerabilities, i.e., false neg-
atives (FN), it may also alert on non-vulnerabilities, i.e.,
false positives (FP). Additionally, we found that embedded
devices’ firmware often rely on uncommon technologies for
which security static analysis tools do not exist (e.g., Haserl,
Lua, binary CGIs). Albeit there exist a number of static
analysis tools for PHP [22, 44], in our dataset only 8% of
embedded firmware images contain PHP code in their web
interfaces. This is not really a surprise since PHP is not
primarily designed for embedded systems. We nevertheless
analyze these cases with RIPS [22]. Finally, binary static
analysis could be applied to binary CGIs to find vulnera-
bilities such as buffer overflow, (remote) code execution or
command injection [53]. In particular, techniques that aim
at supporting the diversity of CPU architectures found in
embedded systems start to appear [50].

Results
Collection

and
Analysis

Feedback for Improving Analysis

 File
Systems

Preparation

 Firmware
Selection

Unpacked
Firmware
Sources

Results
Exploitation

Static Analysis

Doc Root Analysis

Dynamic Analysis

QEMU/Chroot Analysis Tools

Scalable Cloud VM Infrastructure

Figure 1: Overview of the analysis framework.

2.2 Dynamic Analysis
Dynamic analysis—an analysis that relies on testing an

application by running it—has many benefits. First, dy-
namic analysis of web interfaces is mostly independent from
the server-side technology that is used. For instance, the very
same tool can test web interfaces that are implemented in
PHP, native CGIs, or custom web scripting engines. Second,
it can be used to confirm vulnerabilities found in the static
analysis phase. Although many dynamic analysis tools for
security testing of web applications exist [9], unfortunately
they often require significant effort to setup and customize,
by writing new modules for scanning, testing, or validation.

For this study, we focused on web penetration tools that
are open source so that we can easily adapt and integrate
them in our framework, and fix their defects when required.
Based on this, we selected Arachni [1], Zed Attack Proxy
(ZAP) [2], and w3af [3]. However, our approach and frame-
work are designed in a way that allows great flexibility. As
Figure 3 depicts, other tools such as Metasploit, Nessus and
Nmap can supplement or replace the tools mentioned above.
In this way, we can achieve additional security and vulner-
ability testing that can help us increase the surface of vul-
nerability discovery for known and unknown vulnerabilities.

2.3 Limitations of Analysis Tools
Our framework relies on existing web analysis tools, which

have their own limitations. For instance, the number of FPs
and FNs of this study is a direct consequence of the tools we
rely on. An example of such limitation is their ability to de-
tect or not command injection vulnerabilities. Those are fre-
quently missed because such flaws are nontrivial to discover
via automated testing [4, 9]. For example, tools may try to
inject commands such as ping <ip>, assuming that the net-
work is functional and that the target system provides the
ping tool. We overcome some of these limitations by taking
advantage of our “white box” approach (Section 3.4.1).

In addition, the tools we use were not particularly de-
signed to target vulnerabilities in embedded web interfaces
or to be integrated in automated frameworks. Therefore, we
faced various problems using these tools and this impacted
the success rate of the vulnerability discovery. We were able
to improve or fix many of them at the cost of a significant en-
gineering effort. Nevertheless, fixing these bugs proved nec-
essary to obtain better results. This highlights that better
web application analysis tools are needed, especially ones
that are particularly adapted to test embedded web inter-
faces.

Emulation accuracy

Speed

Complexity

Generic system emulator Userland
emulator

"Perfect"
emulation

Original FW,
original
kernel

Original FW
with

architectural
chroot

Hosted web
application

Original FW
with chroot,

generic
Kernel

Ideal emulator No emulator

Figure 2: Ways to emulate embedded web interfaces: from
perfect emulation of a hardware platform to hosting the web
interface. (The arrows show a general increasing trend, ac-
tual evolution of the properties may not be linear.)

2.4 Running Web Interfaces
Dynamic analysis of web applications requires a function-

ing web interface. There are different ways to launch the web
interface that is present in the firmware of an embedded sys-
tem, however, none of them are perfect. Some methods are
very accurate but infeasible in our setup, such as emulating
the firmware in a perfect emulator—which is not available.
Other methods are much less accurate, like extracting the
web application files and serving them from a generic web
server. Therefore, we evaluated different approaches (Fig-
ure 2) and describe their advantages and drawbacks.

2.4.1 Hosting Web Interfaces Non-Natively
A straightforward way to launch a web interface from a

firmware is to extract and then launch it under a web server
on an analysis environment, without trying to emulate the
original web server and firmware. The web application is lo-
cated (i.e., the document root, as described in Section 3.2.2),
extracted, and “transplanted” to the hosting environment.
The main advantage of this technique is that it does not
require emulation, which dramatically simplifies the deploy-
ment and thus is easy to automate and scale.

However, this approach has many limitations. For exam-
ple, it is not possible to handle platform dependent binaries
and CGIs. We analyzed the document roots within 1580
firmware candidates for emulation and found that 57% out
of these were using binary CGIs or were in some way bound
to the hardware platform. In essence, this is a lower bound
as we did not count web scripts calling local system util-
ities, for instance, using the system() call. In addition to

this, the firmware images often use either customized web
servers, or versions which are not available on normal sys-
tems, thus a generic web server (e.g., Apache) has to be used
in the hosting environment. We evaluated this technique and
we present results of its evaluation in Section 5.4, where we
also compare its performance to other techniques we used.

2.4.2 Firmware and Web Interface Emulation
A preliminary step to emulate a firmware is to know its ar-

chitecture. While this may seem straightforward, it is in fact
a nontrivial step to perform automatically at scale. For in-
stance, some firmware images contain files for various archi-
tectures (e.g., ARM and MIPS), where the vendors package
two different firmware blobs into a single firmware update
package. The firmware updater then picks the right archi-
tecture during the upgrade based on the detected hardware.
In such cases, we try to emulate this filesystem with each
detected architecture. We detect the architecture of each
executable in a firmware either using ELF headers (if avail-
able) or statistical opcode distribution for raw binaries. We
decide on the target architecture by counting the number
of architecture-specific binaries and then we use the QEMU
version for that particular architecture. Different possibili-
ties for emulating firmware images exists (Figure 2), and we
compare them hereafter.

Perfect emulation: Ideally, the firmware would be com-
plete (including the bootloader, kernel, etc.) and a QEMU
configuration which emulates the original hardware would
be available. However, QEMU emulates only few platforms
for each supported CPU architecture. Therefore, emulating
unknown hardware is impossible in practice, especially con-
sidering that hardware devices can be arbitrarily complex.
Furthermore, hardware in embedded devices is often custom
and its documentation is not available. Thus, it is infeasible
to adapt the emulator, let alone applying it at a large scale.

Original kernel and filesystem on a generic emulator:
Reusing the kernel of the firmware could lead to a more
accurate emulation, in particular because it may export in-
terfaces for some custom devices that are needed to properly
emulate the whole system. Unfortunately, kernels for embed-
ded systems are often customized and hence do not support
a wide range of peripherals. Therefore, using the original
kernel is unlikely to work very well on a generic emulator.
Additionally, in our dataset only 5% of the firmware images
contain a kernel, making this approach infeasible.

Firmware chroot with a generic kernel and filesystem:
Lacking the original kernel, it is still possible to rely on a
complete and generic system (targeting the same CPU archi-
tecture), which is then used as a base for the firmware ana-
lysis. In our framework, we use the pre-compiled releases of
Debian Squeeze [43]. From this generic system we chroot to
the unpacked firmware and execute the shell (e.g., /bin/sh)
or the init binary (e.g., /sbin/init). Finally, we start the
web server’s binary along with the web interface document
root and web configuration.

It should be possible to directly boot the firmware filesys-
tem instead. However, using a generic file system provides
a consistent environment to control the QEMU Virtual Ma-
chines (VM), to perform our analysis, and to monitor the
emulated system. As an advantage, this approach allows the
emulation of web servers and interfaces in their original file
system structure, and can also execute native programs.

This approach, however, has some drawbacks. First, emu-
lating the system is not very fast (i.e., the emulation is one
order of magnitude slower than native execution). Addition-
ally, the emulator environment setup and cleanup introduces
a significant overhead. Furthermore, with this approach we
cannot fully emulate the peripherals and specific kernel ex-
tensions of the embedded devices. Even so, few firmware im-
ages and a limited part of embedded web interfaces actually
interact directly with the peripherals. One such example is
a web page that performs a firmware upgrade which in turn
requires access to flash or NVRAM memory peripherals.

Overall, we found this approach to offer the best trade-
off between emulation accuracy, complexity, and speed (see
Figure 2). It is also scalable and provided the best results in
analyzing dynamically the web interfaces (see Section 5.4).

Architectural chroot: One way to improve the performance
and emulation management aspects of our framework is by
using architectural chroot [5] (also known as QEMU static
chroot). This technique uses chroot to emulate an environ-
ment for architectures other than the architecture of the run-
ning host itself. This basically relies on the Linux kernel’s
ability to call an interpreter to execute an ELF executable
for a foreign architecture. Registering the userland QEMU
as an interpreter allows to transparently execute ARM Linux
ELF executables on an x86_64 Linux system. However, we
found this approach to be quite unstable, making it a chal-
lenge to use it at a large scale. Finally, while this approach
has the advantage of improving emulation speed, in essence,
it is unlikely to improve the number of firmware images we
can finally emulate. Therefore, we did not use this technique
in our setup, and we leave this for future work.

3. ANALYSIS FRAMEWORK DETAILS
To perform a large scale and automatic analysis of firm-

ware images we designed a scalable framework (Figure 1).
First, we obtain a set of unpacked firmware images, which
we analyze and filter (Section 3.1). Next, we perform some
pre-processing of the selected unpacked firmware images, as
some of them are incompletely unpacked or the location of
the document root is not obvious (Section 3.2). We then per-
form static and dynamic analysis (Section 3.3). Finally, we
collect and analyze the reported vulnerabilities (Section 3.4)
and exploit these results (Section 3.5).

3.1 Firmware Selection
The firmware selection works as follows. First, we select

the firmware images that are successfully unpacked and are
Linux-based systems which we can natively emulate and
chroot with QEMU (Section 3.2). Second, we select firm-
ware instances that clearly contain web server binaries (e.g.,
httpd, lighttpd) and typical web configuration files (e.g.,
boa.conf, lighttpd.conf). In addition to these, we select
firmware images that include server-side or client-side code
related to web interfaces (e.g., HTML, JavaScript, PHP, Perl).
Our dataset is detailed in Section 4.

3.2 Filesystem Preparation
To emulate a firmware the emulator requires its root filesys-

tem. In the simplest case the unpacked firmware directly
contains the root filesystem. However, in many cases the
firmware images are packed in different and complex ways.
For instance, a firmware can contain two root filesystems,

one for the upgrade and one for the factory restore, or it can
be packed in multiple layers of archives along with other
resources. Thus, we first need to detect the potential can-
didates for root filesystems. We can achieve this by search-
ing for key directories (e.g., /bin/, /sbin/, /etc/, /usr/)
and for key files (e.g., /init, /linuxrc, /bin/sh, /bin/bash,
/bin/dash, /bin/busybox). Once we discover such files and
folders relative to a directory within the unpacked firmware,
we select that particular directory as the root filesystem
point. There are also cases where it is hard or impossible
to detect the root filesystem. A possible reason is that some
firmware updates are just partial and do not provide a com-
plete system. We extract each detected root filesystem and
pack it as a standalone root filesystem that is a candidate
for emulation. But unpacking firmware images can produce
“broken” root filesystems which we attempt to fix. Addi-
tionally, in order to start the web server within the root
filesystem, we need to detect the web server type, its config-
uration, and its document root. For these reasons, we have
to use heuristics on the candidate root filesystems and apply
transformations before we can use them for final emulation
and analysis.

3.2.1 Filesystem Sanitization
Unpacking firmware images is not a perfect procedure.

First, unpacking tools sometimes have defects. Second, some
firmware images have to be unpacked using an imperfect
“brute force” approach [17]. Finally, some vendors customize
archives or filesystem formats. For instance, some filesys-
tems have symbolic links that are incorrectly unpacked be-
cause they were represented as text files containing the tar-
get of the link (e.g., the symbolic link /usr/bin/boa ->

/bin/busybox is represented with a single text file named
/usr/bin/boa and containing the string /bin/busybox). All
these lead to an incorrect unpacking and thus the unpacked
firmware image differs from the filesystem representation in-
tended to be on the device. This reduces the chances of suc-
cessful emulation and thus we need a sanitization phase.

This sanitization phase is performed by scripts that tra-
verse unpacked firmware filesystems and fix such problems.
Sometimes, there are multiple ways to fix a single unpacked
firmware, which results in multiple root filesystems submit-
ted for emulation and increases the chances of proper em-
ulation for a given firmware. Implementing these heuristics
added a 13% processing overhead. At the same time, it al-
lowed us to increase the successful emulations by 2% and
the successful web server launches by 11%.

3.2.2 Web Server Heuristics
Within the firmware, we additionally locate web server bi-

naries and their related configuration files (e.g., boa.conf,
lighttpd.conf). The path of the web server and its config-
uration file is sufficient to start the web server using a com-
mand such as /bin/boa -f /etc/boa/boa.conf (i.e., a real
example from our dataset). We also extract important set-
tings from the configuration files (e.g., the document root).

Sometimes, we miss important parameters which are re-
quired to properly start the web server, such as the docu-
ment root path or the CGI path. Often this happens because
of a missing configuration file (e.g., partial firmware update)
or because the parameters are supplied via the command line
from a script which is not available. In these cases, we exper-
iment with all the potential document roots found inside the

Figure 3: Overview of one analysis environment for Linux
armel with a 2.6 kernel.

firmware. To find a potential document root (within the root
filesystem) we first search for index files (e.g., index.html,
default.html) with possible file extensions (.html, .shtml,
.php, .asp, .cgi). Then, we build a set of longest common
prefix directories of these files. This can result in multiple
document root directories, for example, a second document
root can be found in a recovery partition. Once we discover
the document roots, we prepare the possible commands to
start the web server. These allow us to increase the chances
of bringing the web server up and operational.

We also build an optimized site map for each such docu-
ment root directory. We use the site maps to hint the dy-
namic analysis tools which URLs they have to analyze. In
general, dynamic analysis tools crawl the web application
to discover its site map. However, this is inefficient and can
easily miss some pages and even whole sets of vulnerabili-
ties [24]. Thus, for multiple reasons, we instruct the tools to
derive their analysis based on the supplied site map. First,
it significantly lowers the time required to complete the dy-
namic analysis. No time is wasted to analyze uninteresting
files, such as image files, or to (inefficiently) crawl the web
application [24]. Second, it reduces the chances for the web
interface or the emulator to crash by limiting the resource
load (e.g., number of requested URIs). Third, it increases
the chances that the files that are reported as vulnerable by
static analysis will also undergo dynamic analysis.

There are several possible improvements to our approach.
Restricting the site map may miss URLs when content is
dynamically generated or monolithic web server binaries are
used. Therefore, we could use the site map as crawling seeds
for the tools. Additionally, using a tool like ConfigRE [55]
could improve the automatic inference for configuration files.

3.3 Analysis Phase
Once we prepare the filesystems, we then emulate each

of them in an analysis VM where dynamic testing is per-
formed (Figure 3 and Section 2.2). We also submit the doc-
ument roots to the static analyzers (Section 2.1). This phase
is completely automated and scales well as each firmware
image can be analyzed independently.

3.4 Results Collection and Analysis
After dynamic and static analysis phases are completed,

we obtain the analysis reports from the analysis tools. We
also collect log files that can help us make further analysis
and improve our framework. These are typically required

to debug the analysis tools or our emulation environment.
For instance, we collect SSH communication logs with the
emulator host, changes in the firmware filesystem, and net-
work traffic of interactions with the web interfaces. Below
we discuss these in slightly more details.

3.4.1 Filesystem Changes
We capture a snapshot of the emulated filesystem at sev-

eral different points in time. We do this (i) before starting
the emulation, (ii) after emulation is started, and (iii) after
dynamic analysis is completed. Then, we perform a filesys-
tem diff among these snapshots. Interesting changes are
usually observed when new files are created or within log files
of the emulated system. Log files are interesting to collect in
case a manual investigation is needed. New files can be the
consequence of a OS command injection or more generally
of a Remote Code Execution (RCE) vulnerability triggered
during the dynamic analysis phase. This often occurs when
dynamic testing tools try to inject commands (e.g., touch
<filename>). Sometimes, the command injection can be suc-
cessful but not detected by the analysis tools. However, it is
easy to detect such cases with the filesystem diff.

3.4.2 Capturing Communications
Performing dynamic analysis involves a lot of input and

output data between the (emulated) embedded system and
the dynamic analysis tool. Capturing the raw input and out-
put of the communication allows to increase accountability
in case of emulation problem. For instance, a successful OS
command injection can go undetected by the tools. Also,
such vulnerability can be difficult to verify, even in a “white
box” testing approach (see Section 2.3). Once the testing
phase is over, it can be discovered that a command injec-
tion was, in fact, successful. In such case, we need to rewind
through all HTTP transactions to find the input trigger-
ing the particular vulnerability and afterward we can look
for incriminating inputs and parameters (e.g., a touch com-
mand). The testing tools often behave like fuzzers as they
try many malformed inputs one after the other. Because of
this, a detected vulnerability may not be a direct result of
the last input, but the combination of several previous in-
puts. It is therefore important to recover all these previous
inputs in order to successfully reproduce the vulnerability.

3.5 Results Exploitation
After collecting all the details of the analysis phase, we

perform several steps to exploit these results. First, we vali-
date the high impact vulnerabilities by hand and try to cre-
ate a proof-of-concept exploit. We could fully automate this
in the future, as performed in other fields of vulnerability re-
search [7]. Unfortunately, none of the tools we currently use
provide such functionality. Additionally, from the static ana-
lysis reports we manually select the high impact vulnerabili-
ties (e.g., command injection, XSS, CSRF) and the files they
impact. We then use these to explicitly drive the dynamic
analysis tools and aim mainly at two things: (i) get the dy-
namic analysis tools to find the vulnerabilities they missed
(if they did) and (ii) find the bugs or limitations that pre-
vented the dynamic tools to discover these vulnerabilities in
the first place. Even though manual analysis does not scale,
it can help uncover additional nontrivial vulnerabilities. Fi-
nally, we summarize all our findings in vulnerability reports
to be submitted as CVEs.

Dataset phase
of FWs
(unique)

of root FS
of vendors

(unique)

Original dataset 1925 – 54
Candidates for chroot
and web interface emulation

1580 1754 49

Improved by heuristics 1580 1982 49
Chroot OK 488 – 17
Web server OK 246 – 11
High impact vulnerabilities
(static & dynamic)

185 – 13

Table 1: Number of firmware images and corresponding ven-
dors at each phase of the experiment.

Web server % among started web servers

minihttpd 37%
lighttpd 30%
boa 4%
thttpd 3%
empty banner 26%

Table 2: Distribution of web server types among the 246
started web server.

4. DATASET
We started our study with a set of firmware images that we

collected over time from publicly available sources. Table 1
presents details about the counts of the firmware images for
each of the phases in our framework. First, we chose the firm-
ware instances which were successfully unpacked and which
were Linux-based embedded systems (1925). These are the
systems which seemed the easiest to emulate. Then, we se-
lected firmware instances that clearly contained a web server
binary (e.g., httpd, lighttpd) and typical configuration files
(e.g., lighttpd.conf, boa.conf). In addition, we chose im-
ages that included server-side or client-side code associated
with web interfaces (e.g., HTML, JS, PHP, CGI). Once we ap-
plied all the heuristics to the firmware candidates 1580), we
tried to chroot them and start their web interface emula-
tion. Unfortunately, we were able to chroot only 488 firm-
ware candidates. On top of that, we managed to start the
embedded web interfaces for only 246 firmware images which
successfully chrooted. Table 2 shows the distribution of the
web servers among the successfully chrooted images, while
Table 3 exhibits the web technologies these servers use. Fi-
nally, we discovered high impact vulnerabilities only in 185
web interfaces that were successfully emulated.

Challenges and Limitations: Inevitably, our dataset and
the heuristics we apply lead to a bias. First, the dataset
contains firmware images that are publicly available online.
Second, Linux-based devices only account for a portion of
all embedded systems. Third, because we use pre-compiled
Debian Squeeze images, we performed our tests mainly on
ARM, MIPS, and MIPSel firmware images. However, as we
present in Table 4, adding support for additional architec-
ture should be straightforward, and requires mainly engi-
neering effort. For example, our framework could ideally sup-
port the emulation of ≈ 97% of the firmware images in our
dataset when pre-compiling Debian for all architectures in
Table 4 and using mainline QEMU version with additional
patches. Finally, there exist images running as monolithic
software or embedding web servers which we currently do
not detect or support. In essence, these choices were needed
to perform this study and it will be an interesting future
work to extend the study to more diverse firmware images.

Web interface contains % of started web servers

HTML 98%
CGI 57%
PHP 2%
Perl 3%
POSIX shell 11%

Table 3: Web technologies used by the started web servers
(combinations possible).

Architecture
QEMU
support

Original
firmware

Chroot
OK

Web server
OK

ARM mainline 35% 53% 55%
MIPS mainline 19% 21% 17%
MIPSel mainline 17% 26% 28%
Axis CRIS patch [40,41] 16% – –
bFLT mainline 5% – –
PowerPC mainline 3% – –
Intel 80386 mainline 2% – –
DLink Specific no ≈ 1% – –
Unknown no ≈ 1% – –
Altera Nios II patch [56] � 1% – –
ARC Tangent-A5 no � 1% – –

Total – 1925 488 246

Table 4: Distribution of CPU architectures, QEMU support
of those CPUs, and the success rates of chroot and web
launch for each architecture. (The failure analysis is detailed
in Section 5.6.)

5. EVALUATION
In this section, we present the findings from both static

and dynamic analysis, and study different aspects of embed-
ded web interfaces that attackers could potentially exploit.

5.1 Summary of Discovered Vulnerabilities
Our automated system performed both static and dy-

namic analysis of embedded web interfaces inside 1925 firm-
ware images from 54 vendors. We found serious vulnera-
bilities in at least 45 firmware images out of those 246 for
which we were able to emulate the web server. These in-
clude 225 high impact vulnerabilities found and verified by
dynamic analysis. Static analysis reported 145 unique firm-
ware images to expose 9046 possible vulnerabilities. Aggre-
gating static and dynamic analysis reports, a total of 185
firmware images are responsible for 9271 vulnerabilities, af-
fecting nearly a quarter of vendors in our dataset.

5.2 Static Analysis Vulnerabilities
PHP is one of the most used server-side web program-

ming languages [25]. Over the past years, many researchers
focused on investigating vulnerabilities in PHP applications
and creating static analysis tools [22, 44]. However, to the
best of our knowledge, we are the first to study the preva-
lence of PHP in embedded web interfaces and their security.
In our dataset 8% of the embedded firmware images contain
PHP code in their server-side. We extracted the PHP source
code from these firmware images and analyzed the code us-
ing RIPS. More specifically, RIPS reported 145 unique firm-
ware images to contain at least one vulnerability and a total
of 9046 reported issues. The detailed breakdown is presented
in Table 5. We observe that cross-site scripting and file ma-
nipulation constitute the majority of the discovered vulner-
abilities, while command injection (one of the most serious
vulnerability class) ranks third.

Vulnerability type # of issues # of affected FWs

Cross-site scripting 5000 143
File manipulation 1129 98
Command execution 938 41
File inclusion 513 40
File disclosure 461 87
SQL injection 442 10
Possible flow control 171 56
Code execution 141 21
HTTP response splitting 127 27
Unserialize 119 15
POP gadgets 4 4
HTTP header injection 1 1

Total 9046 145 (unique)

Table 5: Distribution of PHP vulnerabilities reported by
RIPS static analysis. (The typical error rates of each type
of vulnerability can be found in [22].)

Vulnerability type # of issues # of affected FWs

Command execution 51 21
Cross-site scripting 90 32
CSRF 84 37

Sub-total HIGH impact 225 45 (unique)

Cookies w/o HttpOnly † 9 9
No X-Content-Type-Options † 2938 23
No X-Frame-Options † 2893 23
Backup files † 2 1
Application error info † 1 1

Sub-total low impact † 5843 23 (unique)

Total 6068 58 (unique)

Table 6: Distribution of dynamic analysis vulnerabilities.
(The vulnerabilities followed by a “†” sign have low severity
and are known to be reported with a very high false posi-
tive rate, therefore they are not mentioned elsewhere in this
paper, including when we mention a total number of vulner-
abilities found.)

5.3 Dynamic Analysis Vulnerabilities
Our framework was able to perform dynamic security test-

ing on 246 distinct web interfaces, and the general results are
presented in Table 6. In particular, we discovered 21 firm-
ware images which are vulnerable to command injection.
The impact of such vulnerabilities can be significant as a
large number of devices may be running these firmware im-
ages. Additionally, we found that 32 firmware images are af-
fected by XSS and 37 are vulnerable to CSRF. Even though
XSS and CSRF are usually not considered to be critical
vulnerabilities, they can have a high impact. For example,
Bencsáth et al. [10] were able to completely compromise an
embedded device only by using XSS and CSRF flaws.

The above vulnerabilities affect the firmware of multiple
type of devices in our dataset, such as SOHO routers, CCTV
cameras, smaller WiFi devices (e.g., SD-cards). Leveraging
tools such as Shodan [6] or ZMap [26], it is possible to corre-
late these firmware images to populations of online devices
using multiple correlation techniques [17], which we leave for
future work.

In summary, we found vulnerabilities in roughly one out of
four (24%) of the dynamically tested firmware images, which
demonstrates the viability of our approach. In other words,
these findings reveal that embedded devices are vulnerable
and easy to exploit by the attackers.

Emulated
(unique FWs)

Hosted
(unique FWs)

Hosted Contribution
(added unique FWs)

Command execution 21 15 † 0
Cross-site scripting 32 13 † 0
CSRF 37 307 † 269

Tested FWs 246 515 † 269
Vulnerable FWs 45 307 † 262

Table 7: Comparison of firmware images affected by high
impact vulnerabilities found with the Emulated and Chroot
method and the ones found with the Hosted technique. The
firmware and vulnerabilities marked with a ”†” are found us-
ing the Hosted technique, which is not yet integrated in the
fully automated framework. Therefore, they are not aggre-
gated elsewhere in this paper, including when we mention a
total number of vulnerabilities and affected firmware.

5.4 Evaluating the Hosting Web Interfaces
“Hosting” embedded web interfaces seems a promising ap-

proach as it allows testing a web interface without emulat-
ing the complete firmware. Indeed, many firmware images
are difficult (or even impossible) to emulate. We therefore
evaluated the “hosting” approach on all the firmware images
from our dataset where our web server heuristics tools could
extract a document root (Section 3.2.2). These document
roots are “transplanted” into testing hosts running a generic
web server (i.e., Ubuntu 14.10, Kernel 3.13, Apache2, PHP
5.5.9, Perl 5.18.2.). Then we perform dynamic analysis with
the same methodology as for the emulated case.

Table 7 shows the high impact vulnerabilities found in
this experiment and also presents a comparison with the
emulation approach. We can immediately see that unsur-
prisingly the “hosted” analysis allows to test web interfaces
from many more firmware images, but surprisingly it almost
only reports CSRF vulnerabilities. In fact the technique did
not allow to detect any new command injection or XSS vul-
nerabilities. We expect that the lack of results for some cat-
egories of vulnerabilities is due to the fact that using the
“hosted” approach with a static web server configuration
has some undesired side effects. For instance, the headers
of the HTTP responses will be different from those of the
real device’s web server, while these headers may have an
important security role (e.g., Cookies w/o HttpOnly, No X-
Content-Type-Options, No X-Frame-Options) [59]. In fact,
for command execution and XSS vulnerabilities we had to
perform manual interventions into the hosting environment
to make the web interface more functional. Then, we had to
rerun the dynamic analysis to discover a part of vulnerabil-
ities already reported by the fully automated emulation ap-
proach. In few instances we had to install additional apache2
modules, while in some others we had to disable .htaccess

configuration files which came with the transplanted doc-
ument roots. Yet in several other cases we had to adjust
a variety of shebang (#!) paths in the interpreted scripts’
headers to point to the correct interpreter path of the host-
ing environment. These manual interventions clearly do not
scale and limit the “hosted” approach. In the future, we plan
to address such limitations with approaches to automatically
reconfigure the “hosting” environment based on the seman-
tics of the transplanted document root.

Overall, we conclude that both firmware emulation and
“hosting” web interfaces are useful and complementary tech-
niques. Moreover, whenever the emulation is possible, it
finds more vulnerabilities.

Port type Port number Service name # of FWs

TCP 554 RTSP 91
TCP 555 RTSP 84
TCP 23 Telnet 60
TCP 53 DNS 23
TCP 22 SSH 15
TCP Others Others 58

Total 207 (unique)

Table 8: Distribution of network services opened by 207 firm-
ware instances out of 488 successfully emulated ones. The
last entry summarizes the 16 unusual port numbers opened
by services such as web, telnetd, ftp or upnp servers.

5.5 HTTPS and Other Network Services
We also explored how often embedded devices provide

HTTPS support. In our dataset, nearly 19% of the orig-
inal firmware images contained at least one HTTPS cer-
tificate. This provides a lower bound estimate of firmware
images that could provide a web server with HTTPS sup-
port, as some devices may generate certificates dynamically.
Similarly, around 24% of the firmware instances starting an
HTTP web server, also started an HTTPS one. We also ex-
pect this number to be a lower bound estimate as an HTTPS
web server might not start for multiple reasons. Still, it is
unfortunate that so few devices provide HTTPS support.

While in this paper we focus on the security of web inter-
faces, we found it interesting to also report on the network
services that are automatically started during the dynamic
analysis. Indeed, these additional services which we detected
using netstat may be vulnerable on their own (e.g., CVE-
2007-1435/CVE-2011-4821 for TFTP, CVE-2010-2965/CVE-
2014-0659 for TR-069, CVE-2014-4880/CVE-2013-1606 for
RTSP, CVE-2014-9222 for Debug). Therefore, we compare
the netstat output before and after starting the chroot and
the init scripts. This provides a precise information on which
program is listening and its corresponding port (Table 8).

5.6 Analysis of the Failures
The failures at various stages limit the coverage of the

tested firmware images. For example, Table 4 shows that
chroot failed for around 69% of the original firmware im-
ages, and around 50% of the successfully chrooted firmware
images failed to start the embedded web interface. To in-
crease the coverage and hence the chances of finding more
vulnerabilities in more firmware images, we have to perform
analysis of the failures and improve our framework. Such a
failure diagnosis is very time consuming as it requires the ex-
ploration of the failure symptoms such as message patterns,
error codes, unstructured or inconsistent logs. Nevertheless,
this information differs from one system (i.e., device, firm-
ware) to another. Ideally, such fixes should resolve the fail-
ures permanently. However, in practice failures often reoc-
cur. One reason is that the corrective maintenance activities,
failure diagnosis and solution development can take a long
effort. Another reason is that the deployed solution is not
completely effective. Additionally, failures can become more
recurrent in older systems (e.g., old devices and firmware).
This is often linked with the program’s resistance to change
being maximal, also known as software fatigue [33]. More-
over, once the firmware complexity grows, human analysts
become overloaded with the logging or failure information.
Therefore, scalable failure analysis approaches are required.

5.6.1 Failures Analysis
In our experiments, we encountered 1092 firmware images

where chroot failed and 242 firmware emulations where web
interface launch failed. However, this is too many failures
to analyze manually and the diversity of the systems makes
automated log analysis challenging. Hence, we perform the
analysis on a sample of failure data. We apply statistical
methods with confidence intervals to reason about failures
and their root causes, and to find ways to avoid them. For
this, we consider a 95% confidence level and a ± 10% confi-
dence interval for the accuracy of estimations. Those param-
eters allow to provide coarse grained results while remaining
within a reasonable number of failures to manually analyze.

Overall, we analyzed the log samples of 88 randomly se-
lected (out of 1092) firmware files that failed to chroot. Among
them we found actual chroot failures, and cases where ch-
root was in fact successful but we failed to exploit. In 36
cases the chroot was the actual cause of the failure (which
we extrapolate to 40.9% ± 9.8% cases out of 1092). In these
sampled logs we found two main reasons of chroot failure.

First, chroot failed for 10 firmware images because of exec
format errors (extrapolated to 11.3% ± 6.3% out of 1092
firmware images). These failures are the consequence of an
incorrect guess of the CPU architecture or due to a /bin/sh

that contain illegal instructions. We believe that these error
cases should be relatively easy to fix, for instance, by chang-
ing the QEMU architecture (e.g., because architecture was
improperly detected in the first place) or improving QEMU
(e.g., to support or ignore non-standard instructions).

Second, chroot failed for 26 samples because the firmware
images were only partial firmware updates (which we extrap-
olate to 29.5% ± 9.1% out of 1092). Such firmware images do
not contain any shell or busybox binary that our framework
could chroot to. These cases can also be fixed by replacing
missing utilities, yet, at this point the firmware under ana-
lysis will start to diverge from the actual device’s firmware.

The remaining 52 chroot failures were found to be false
positives. In fact, these firmware images did chroot success-
fully but our framework failed to detect this. This can oc-
cur in systems that set the environment in unusual ways or
take long time to respond to chroot and environment queries
(timeout). We therefore extrapolate that 59.1% ± 9.8% of
1092 chroot failure cases were in fact successfully chrooted.
We estimate that these cases should be relatively easy to fix.
The fixes could include more adaptive timeouts, and more
robust handling of various shells and environments.

In summary, for the chroot failed failures we estimate that
62 samples should be relatively easy to fix, meaning that
70.4% (± 9.1%) of the failures would allow the emulation to
advance one step further.

Similarly, we analyzed log samples of 69 randomly se-
lected (out of 242) firmware files that successfully chrooted
but failed to start the web interface. We found 45 instances
where missing device were the cause of the failure. Some
examples of the missing devices are eth1, br0, /dev/gpio,
/dev/mtdblock0. We estimate that fixing the missing de-
vices in the emulator is generally hard (or even impossible)
due to the lack of specification datasheets. This means that
65.2% ± 9.5% of these 242 web server failures are in general
hard to fix. We also found 15 firmware samples that failed
or hung during the initialization of the emulation. Some of
these errors were “Init is the parent of all processes” and
“init: must be run as PID 1”. The reason for such errors could

be the chrooted nature of the emulation. However, we ex-
pect this not to be extremely difficult to fix. This translates
to 21.8% ± 8.2% of original 242 web interface failure will be
likely easy to fix. Finally, we identified 9 firmware samples
that reached the web interface launch but failed to launch.
We estimate that this is the case for 13.0% ± 6.7% of firm-
ware images that produced web server failures. Examples
of errors are “(server.c.621) loading plugins finally failed”
and“(log.c.118) opening errorlog /tmp/log/lighttpd/error.log
failed: No such file or directory”. However, we estimate this
failure category can be relatively easy to fix as well.

In summary, for the web server failures we estimate that
24 samples should be relatively easy to fix, meaning that
34.8% (± 9.6%) of the failures would eventually allow the
launch of embedded web interfaces.

5.6.2 Failures Correction and Further Improvements
The failure analysis and determination in large-scale de-

ployments [14] can be improved and automated in several
ways. One way is to perform log pre-processing, log mining,
and analysis. This method often uses clustering and machine
learning techniques to classify an unknown execution of the
system based on its logs and based on previously seen logs of
that system [16, 49]. Filesystem instrumentation is another
approach to automate the failure analysis [38]. Such an ap-
proach is generic because it does not assume that the sys-
tem is based on particular components or existing log files.
The failure causes are determined by looking at differences
between file accesses (e.g., which file, when) under both nor-
mal and abnormal executions. However, these approaches as-
sume that there are samples of the analyzed system that run
under normal and abnormal conditions. Also, some of these
approaches require domain-specific knowledge [48]. These
techniques are not trivial to apply in our case, as we aim at
emulating unknown firmware images regardless of the type
or application domain of the device for which the firmware is
intended, and often we do not have samples of a non-failure
run of the firmware. Another way to trace and analyze the
failures is to use tracing. For example, strace is a debug-
ging tool that provides useful diagnostics by tracing system
calls and signals. Unfortunately, strace is broken for stock
kernels 2.6, which also affects the builds for embedded archi-
tectures (e.g., ARM, MIPS). Finally, kernel level instrumen-
tation and analysis could be a reliable approach to monitor
and detect the failures and their root cause. For example,
Kprobes [46] can be used to dynamically monitor any kernel
routine and collect debugging and performance information
non-disruptively. Sadly, Kprobes is often not enabled in de-
fault kernels we used, but more importantly its support for
various CPU architectures is not stable in some old kernel
versions that we need to use for emulation.

These limitations do not represent themselves research
challenges. However, it takes more than a trivial engineering
effort to properly address them, and overcome their effect in
a systematic and generic manner. We leave the resolution of
such limitations as an engineering challenge for future work.
Nevertheless, we plan to make the logs and their manual
analysis available at http://firmware.re.

6. DISCUSSION
As with any other detection system, our approach has

some restrictions. In this section, we discuss the limitations
we confronted during our study and propose solutions.

6.1 Limitations of the Emulation Techniques
Although our approach can discover vulnerabilities in em-

bedded web interfaces that run inside an emulated environ-
ment, setting up such environments is not always straight-
forward. We discuss several limitations and outline how they
could be handled in the future. In fact, many of these limi-
tations are the results of the failures analyzed in Section 5.6.

6.1.1 Forced Emulation
Even though most of the firmware instances in our data-

set are for Linux-based devices, they are quite heteroge-
neous and their actual binaries vary. Examples include init

programs having different set of command parameters or
strictly requiring to run as PID 0 (which does not work by
default in a chrooted environment). Ideally, there should be
a simple and uniform way to start the firmware, but this is
not the case in practice as devices are very heterogeneous.
In addition to this, unless we have access to the bootloader
of each individual device, there is no reliable way to repro-
duce the boot sequence. Obtaining and reverse-engineering
the bootloaders themselves is not trivial. This usually re-
quires access to the device, use of physical memory dumping
techniques, and manual reverse-engineering, which is out-
side the scope of this paper. We emulate firmware images
by forcefully invoking its default initialization scripts (e.g.,
/etc/init, /etc/rc), however, sometimes, these scripts do
not exist or fail to execute correctly leading to an incomplete
system configuration. For instance, it may fail to mount the
/etc_ro partition at the /etc mount point, and then, the
web server is missing some required files (e.g., /etc/passwd).

6.1.2 Emulated Web Server Environment
Even if the basic emulation was successful, other problems

with the emulated web server environment are common. For
example, an emulated web interface return for many requests
the HTTP response codes 500 Internal Server Error or
404 Not Found. Manual inspection of the cases when code
500 is returned suggests that some scripts or binaries are ei-
ther missing from the root filesystem or do not have proper
permissions. Code 404 was often returned due to the wrong
web server configuration file being loaded, which lead to the
document root pointing at a wrong directory. To overcome
this, we try to emulate the web interface of a firmware us-
ing all combinations of the configuration files and document
roots we find within the firmware.

6.1.3 Imperfect Emulation
The ability to emulate embedded software in QEMU is

incredibly valuable, but comes at a price. One big draw-
back is that some very basic peripheral devices are missing
in the emulated environments. A very common emulation
failure is related to the lack of non volatile memories (e.g.,
NVRAM). Such memories are used by embedded devices to
store boot and configuration information. One solution is to
have an universal or on-the-fly NVRAM emulator plugged
into QEMU, for example instrumented at kernel-level or im-
plemented using Avatar [57]. Another approach is to inter-
cept calls to the commonly used libnvram functions (such
as nvram_get and nvram_set) and return fake data [21,34].
While these tools are easy to compile and use, it is not triv-
ial to automatically generate meaningful application data
without producing false alerts or breaking the emulation.
We plan to integrate these techniques in our future versions.

6.2 Outdated Firmware Versions
The firmware files in our experiments were including both

older and newer versions of the firmware images. Therefore,
the vulnerabilities that were found may be found on older
firmware versions. It is nevertheless important to know and
understand how many embedded devices that are vulnerable
or have outdated firmware will update their firmware in such
a case. On the one hand, many embedded devices are SOHO
devices on which the users decide if and when they will up-
grade their firmware version. On the other hand, researchers
showed that even simple improvements, such as changing the
default credentials of the embedded devices, are not always
applied by the users during long period of times [31]. For
example, it was found that 96% of accessible devices having
factory default root passwords still remain vulnerable after
a period of 4 months [20]. However, downloading a firmware
update and updating a device is a more complex task than
changing the default credentials. Therefore, unless the de-
vices are connected to the Internet and have an automatic
firmware update mechanism in place and enabled, it is rea-
sonable to expect that in practice the firmware updates are
applied far less than it would be desirable.

Second, even though the embedded devices should keep
their firmware updated, this is not always feasible (e.g., for
field-deployed devices). Such devices often cannot be re-
motely updated and require the physical access of an op-
erator in the field to do so. However, even in such cases the
upgrade of the firmware is not always straightforward. Cer-
rudo [12] showed that in some cases embedded devices could
be buried in the roadway, making firmware updates that re-
quire physical access very challenging, if not impossible.

Third, even the latest firmware releases could still con-
tain the very same vulnerabilities as the older versions [19].
Therefore, vulnerabilities discovered in older firmware ver-
sions can prove extremely useful as direct input or mutation
template for testing the latest firmware versions.

In summary, we believe that a security study performed
only on the latest firmware releases could provide important
details for securing embedded devices (e.g., critical vulner-
ability discovery, patching 0-days). At the same time, how-
ever, such a study would not be completely accurate as many
existing devices run outdated firmware versions. Ultimately,
the goal of this work is not to find (all) the vulnerabilities
in (all) the latest firmware versions. The main goal is to
provide a methodology and insights that can be applied on
any firmware version of any embedded device in order to au-
tomatically discover and verify vulnerabilities inside them,
and in particular inside their embedded web interfaces.

6.3 Manual Interventions
Our framework is designed to be as automated as possible.

However, manual interventions are sometimes necessary or
even desirable. First, for each web server type never seen
before we write (as a one time activity) a small tool which
will automatically detect, parse, and launch instances of this
particular web server. Automation of such a step could be
improved, for example, using ConfigRE [55]. Second, manual
inspection of the results and of the affected software allows
to confirm vulnerabilities and sometimes leads to finding
new ones. This is part of the power of our methodology, for
instance, pointing the finger on likely vulnerable software. In
our experience this last phase was very productive as there
were only a few FPs left after the dynamic analysis phase.

7. RELATED WORK
Analysis of embedded devices is an active topic. Costin

et al. [17] performed a large scale firmware analysis, but
they mainly focused on simple static analysis. Zaddach and
Costin [58] demonstrated the feasibility of dynamic analysis
and vulnerability discovery in embedded devices via firm-
ware emulation using QEMU and custom-built kernels. Bo-
jinov et al. [11] studied the security of embedded manage-
ment interfaces, but they performed the analysis manually
and focused only on 21 devices. Similar studies were recently
preformed on popular SOHO devices [37, 42] each perform-
ing manual analysis on about ten devices and uncovering
flaws in almost all of them. In contrast, we show that by au-
tomating the analysis we can scale the analysis to hundreds
of devices and find thousands of vulnerabilities.

In addition, several projects scanned the Internet, or parts
of it, to discover vulnerabilities in embedded systems [6,20,
35]. In most cases these approaches lead to discovery of de-
vices with known vulnerabilities such as default passwords
or keys, and in several notable cases helped the discovery of
new flaws [35]. However, such approaches raise serious eth-
ical problems and in general only allow to find devices that
are vulnerable to known or manually found bugs.

Web static analysis is a very active field of research, where
Huang et al. [39] were the first to statically search for web
vulnerabilities in the context of PHP applications. Balzarotti
et al. [8] showed that even if the developer performs certain
sanitization on input data, XSS attacks are still possible due
to the deficiencies in the sanitization routines. Pixy [44] pro-
posed a technique based on data flow analysis for detecting
XSS, SQL, or command injections. RIPS [22], on the other
hand, is a static code analysis tool that detects multiple
types of injection vulnerabilities. While we could use any of
those detection mechanisms we only used RIPS which has
low false positives and is still openly available.

Several recent works rely on emulation to discover or ver-
ify vulnerabilities in embedded systems. Avatar [57] is a
dynamic analysis framework for firmware security testing
of embedded devices that executes embedded code inside a
QEMU emulator, while the I/O requests to the peripher-
als are forwarded to the real device attached to the frame-
work. Kammerstetter et al. [45] targeted Linux-based em-
bedded systems that are emulated with a custom kernel
which forwards ioctl requests to the embedded device that
runs the normal kernel. Li et al. [47] proposed a hybrid
firmware/hardware emulation framework to achieve confi-
dent SoC verification by using a transplanted QEMU at
BIOS level to directly emulate devices upon hardware. Un-
fortunately, these approaches require access to the physical
devices, which does not scale as our approach does. Indepen-
dently and at the same time, Chen et al. [13] proposed an
approach for firmware emulation and dynamic analysis simi-
lar to ours. Although they build and use instrumented stock
kernels, they do not perform extensive web interfaces test-
ing and do not automatically discover new vulnerabilities as
they only test for known vulnerabilities, for example using
Metasploit. Meanwhile, Firmalice [53] is a static binary ana-
lysis framework that supports the analysis of firmware files
for embedded devices. It was shown to detect three known
backdoors in real devices, but it requires manual annotations
and is therefore challenging to use in a large scale analysis.

Fong and Okun [30] took a closer look at web applica-
tion scanners, their functions and definitions, and proposed

a taxonomy of software security tools. Bau et al. [9] con-
ducted an evaluation of the state of the art of tools for au-
tomated “black box” web application vulnerability testing.
While results have shown the promise and effectiveness of
such tools, they also uncovered many limitations of existing
tools. Similarly, Doupé et al. [24] performed an evaluation of
eleven “black box” web pen-testing tools, both open-source
and commercial. Authors found that crawling ability is as
important and challenging as vulnerability detection tech-
niques and many classes of vulnerabilities are completely
overlooked. Holm et al. [36] performed a quantitative eval-
uation of vulnerability scanning. The authors showed that
automated scanning is unable to accurately identify all vul-
nerabilities, and that the scans of Linux-based hosts (i.e.,
many embedded systems are known to be Linux-based) are
less accurate than of the Windows-based ones. Doupé et
al. [23] proposed improvements to such “black box” tools by
observing the web application state from the outside, which
allows them to extend their testing coverage and to precisely
control the “black box” web vulnerability scanner. They im-
plemented the technique in a crawler linked to a fuzzing
component of an open-source web pen-testing tool. Such im-
provements to the analysis tools may improve our framework
as we can integrate them in our analysis phase.

Finally, Gourdin et al. [32] addressed the challenges of
building secure embedded web interfaces with WebDroid,
the first framework specifically dedicated to this purpose.
Such frameworks can be used by the vendors of embedded
systems to provide secure web interfaces within their devices.

8. CONCLUSION
In this work, we presented a new methodology to per-

form large scale security analysis of web interfaces within
embedded devices. For this, we designed the first frame-
work that achieves scalable and automated dynamic analysis
of firmwares, and that was precisely developed to discover
vulnerabilities in embedded devices using the software-only
approach. Our framework leverages off-the-shelf static and
dynamic analysis tools. Because of the limitations in static
analysis tools, we created a mechanism for automatic em-
ulation of firmware images. While perfectly emulating un-
known hardware will probably remain an open problem, we
were able to emulate systems well enough to test the web
interfaces of 246 firmware images. Our framework found se-
rious vulnerabilities in at least 24% of the web interfaces we
were able to emulate, including 225 high impact vulnerabili-
ties found and verified by dynamic analysis. When counting
static analysis, 9271 issues were found in 185 firmware im-
ages, affecting nearly a quarter of vendors in our dataset.
These results show that some embedded systems manufac-
turers need to start considering security in their software
life-cycle, for instance, by using off-the-shelf security scan-
ners as part of their product quality assurance.

ACKNOWLEDGMENTS
The research was partially supported by the German Federal
Ministry of Education and Research under grant 16KIS0328
(IUNO).

9. REFERENCES
[1] http://www.arachni-scanner.com/.
[2] https://github.com/zaproxy/zaproxy/.
[3] http://w3af.org/.

http://www.arachni-scanner.com/
https://github.com/zaproxy/zaproxy/
http://w3af.org/

[4] http://owasp.org/index.php/Top 10 2013-A1-Injection.
[5] http://www.darrinhodges.com/chroot-voodoo/.
[6] http://www.shodan.io.
[7] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG:

Automatic Exploit Generation. In ISOC Network and
Distributed System Security Symposium (NDSS), 2011.

[8] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing Static and
Dynamic Analysis to Validate Sanitization in Web Applications.
In IEEE Symposium on Security and Privacy, 2008.

[9] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the
Art: Automated Black-Box Web Application Vulnerability
Testing. In IEEE Symposium on Security and Privacy, 2010.

[10] B. Bencsáth, L. Buttyán, and T. Paulik. XCS Based Hidden
Firmware Modification on Embedded Dievices. In International
Conference on Software, Telecommunications and Computer
Networks (SoftCOM), 2011.

[11] H. Bojinov, E. Bursztein, E. Lovett, and D. Boneh. Embedded
Management Interfaces: Emerging Massive Insecurity.
BlackHat USA, 2009.

[12] C. Cerrudo. Hacking US (And UK, Australia, France, Etc.) –
Traffic Control Systems. http://blog.ioactive.com/2014/04/
hacking-us-and-uk-australia-france-etc.html, Apr 2014.

[13] D. D. Chen, M. Egele, M. Woo, and D. Brumley. Towards
Automated Dynamic Analysis for Linux-based Embedded
Firmware. In ISOC Network and Distributed System Security
Symposium (NDSS), 2016.

[14] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem Determination in Large, Dynamic Internet
Services. In Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2002.

[15] S. Christey and R. A. Martin. Vulnerability Type Distributions
in CVE. Mitre Report, 2007.

[16] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons.
Correlating Instrumentation Data to System States: A Building
Block for Automated Diagnosis and Control. In OSDI, 2004.

[17] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A
Large-Scale Analysis of the Security of Embedded Firmwares.
In USENIX Security Symposium, 2014.

[18] A. Costin, A. Zarras, and A. Francillon. Automated Dynamic
Firmware Analysis at Scale: A Case Study on Embedded Web
Interfaces (Extended Version). arXiv, (arXiv:1511.03609), 2015.

[19] A. Cui, M. Costello, and S. J. Stolfo. When Firmware
Modifications Attack: A Case Study of Embedded Exploitation.
In ISOC Network and Distributed System Security
Symposium (NDSS), 2013.

[20] A. Cui and S. J. Stolfo. A Quantitative Analysis of the
Insecurity of Embedded Network Devices: Results of a
Wide-Area Scan. In Annual Computer Security Applications
Conference (ACSAC), 2010.

[21] Z. Cutlip. Emulating and Debugging Workspace.
http://shadow-file.blogspot.fr/2013/12/
emulating-and-debugging-workspace.html.

[22] J. Dahse and T. Holz. Simulation of Built-In PHP Features for
Precise Static Code Analysis. In ISOC Network and
Distributed System Security Symposium (NDSS), 2014.

[23] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the
State: A State-Aware Black-Box Web Vulnerability Scanner. In
USENIX Security Symposium, 2012.

[24] A. Doupé, M. Cova, and G. Vigna. Why Johnny Can’t Pentest:
An Analysis of Black-Box Web Vulnerability Scanners. In
Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). 2010.

[25] L. Duflot, Y.-A. Perez, and B. Morin. Netcraft. PHP Usage
Stats. http://www.php.net/usage.php, June 2007.

[26] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast
Internet-Wide Scanning and Its Security Applications. In
USENIX Security Symposium, 2013.

[27] F. B. et al. QEMU – Quick EMUlator. http://www.qemu.org.
[28] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward

Automated Detection of Logic Vulnerabilities in Web
Applications. In USENIX Security Symposium, 2010.

[29] Firehost. The Superfecta Report Special Edition.
https://www.firehost.com/media/1657954/
firehost-superfecta-2013-year-in-review.pdf, 2013.

[30] E. Fong and V. Okun. Web Application Scanners: Definitions
and Functions. In Annual Hawaii International Conference on
System Sciences (HICSS), 2007.

[31] B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek, and J. A.
Halderman. Green Lights Forever: Analyzing the Security of
Traffic Infrastructure. In USENIX Workshop on Offensive
Technologies (WOOT), 2014.

[32] B. Gourdin, C. Soman, H. Bojinov, and E. Bursztein. Toward

Secure Embedded Web Interfaces. In USENIX Security
Symposium, 2011.

[33] P. Grubb and A. A. Takang. Software Maintenance: Concepts
and Practice. World Scientific, 2003.

[34] C. Heffner. Emulating NVRAM in Qemu. http:
//www.devttys0.com/2012/03/emulating-nvram-in-qemu/.

[35] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman.
Mining Your Ps and Qs: Detection of Widespread Weak Keys
in Network Devices. In USENIX Security Symposium, 2012.

[36] H. Holm, T. Sommestad, J. Almroth, and M. Persson. A
Quantitative Evaluation of Vulnerability Scanning. Information
Management & Computer Security, 19(4):231–247, 2011.

[37] HP-Fortify-ShadowLabs. Report: Internet of Things Research
Study. http://h20195.www2.hp.com/V2/GetDocument.aspx?
docname=4AA5-4759ENW, 2014.

[38] L. Huang and K. Wong. Assisting Failure Diagnosis Through
Filesystem Instrumentation. In Proceedings of the 2011
Conference of the Center for Advanced Studies on
Collaborative Research, 2011.

[39] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo. Securing Web Application Code by Static Analysis and
Runtime Protection. In International Conference on World
Wide Web (WWW), 2004.

[40] E. Iglesial. CRIS Target Port of Qemu.
http://repo.or.cz/qemu/cris-port.git.

[41] E. Iglesial. Status of CRIS Architecture Support in Linux
Kernel. https://lkml.org/lkml/2014/9/15/1082.

[42] Independent Security Evaluators. SOHO Network Equipment
(Technical Report), 2013.

[43] A. Jarno. Debian Pre-Compiled Images for QEMU.
https://people.debian.org/˜aurel32/qemu/.

[44] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis
Tool for Detecting Web Application Vulnerabilities (Short
Paper). In IEEE Symposium on Security and Privacy, 2006.

[45] M. Kammerstetter, C. Platzer, and W. Kastner. PROSPECT –
Peripheral Proxying Supported Embedded Code Testing. In
ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2014.

[46] R. Krishnakumar. Kernel Korner: Kprobes-A Kernel Debugger.
Linux Journal, 2005(133):11, 2005.

[47] H. Li, D. Tong, K. Huang, and X. Cheng. FEMU: A
Firmware-Based Emulation Framework for SoC Verification. In
International Conference on Hardware/Software Codesign
and System Synthesis, 2010.

[48] C. Lim, N. Singh, and S. Yajnik. A Log Mining Approach to
Failure Analysis of Enterprise Telephony Systems. In Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2008.

[49] T.-T. Y. Lin and D. P. Siewiorek. Error Log Analysis:
Statistical Modeling and Heuristic Trend Analysis. Reliability,
IEEE Transactions on, 39(4):419–432, 1990.

[50] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz.
Cross-Architecture Bug Search in Binary Executables . In
IEEE Symposium on Security and Privacy, 2015.

[51] J. Prescatore. Gartner, Quoted in ComputerWorld, 2005.
[52] P. Saxena, D. Molnar, and B. Livshits. SCRIPTGARD:

Automatic Context-Sensitive Sanitization for Large-Scale
Legacy Web Applications. In ACM Conference on Computer
and Communications Security (CCS), 2011.

[53] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and
G. Vigna. Firmalice: Automatic Detection of Authentication
Bypass Vulnerabilities in Binary Firmware. In ISOC Network
and Distributed System Security Symposium (NDSS), 2015.

[54] J. Viega and H. Thompson. The State of Embedded-Device
Security (Spoiler Alert: It’s Bad). IEEE Security & Privacy,
10(5):68–70, 2012.

[55] R. Wang, X. Wang, K. Zhang, and Z. Li. Towards Automatic
Reverse Engineering of Software Security Configurations. In
ACM Conference on Computer and Communications Security
(CCS), 2008.

[56] C. Wulff. Altera NiosII Support. https://lists.gnu.org/archive/
html/qemu-devel/2012-09/msg01229.html.

[57] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar:
A Framework to Support Dynamic Security Analysis of
Embedded Systems’ Firmwares. In ISOC Network and
Distributed System Security Symposium (NDSS), 2014.

[58] J. Zaddach and A. Costin. Embedded Devices Security and
Firmware Reverse Engineering. BlackHat USA, 2013.

[59] A. Zarras, A. Papadogiannakis, R. Gawlik, and T. Holz.
Automated Generation of Models for Fast and Precise
Detection of HTTP-Based Malware. In Annual Conference on
Privacy, Security and Trust (PST), 2014.

http://owasp.org/index.php/Top_10_2013-A1-Injection
http://www.darrinhodges.com/chroot-voodoo/
http://www.shodan.io
http://blog.ioactive.com/2014/04/hacking-us-and-uk-australia-france-etc.html
http://blog.ioactive.com/2014/04/hacking-us-and-uk-australia-france-etc.html
http://shadow-file.blogspot.fr/2013/12/emulating-and-debugging-workspace.html
http://shadow-file.blogspot.fr/2013/12/emulating-and-debugging-workspace.html
http://www.php.net/usage.php
http://www.qemu.org
https://www.firehost.com/media/1657954/firehost-superfecta-2013-year-in-review.pdf
https://www.firehost.com/media/1657954/firehost-superfecta-2013-year-in-review.pdf
http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-4759ENW
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-4759ENW
http://repo.or.cz/qemu/cris-port.git
https://lkml.org/lkml/2014/9/15/1082
https://people.debian.org/~aurel32/qemu/
https://lists.gnu.org/archive/html/qemu-devel/2012-09/msg01229.html
https://lists.gnu.org/archive/html/qemu-devel/2012-09/msg01229.html

	1 Introduction
	2 Exploring Methods to Analyze Embedded Web Interfaces
	2.1 Static Analysis
	2.2 Dynamic Analysis
	2.3 Limitations of Analysis Tools
	2.4 Running Web Interfaces
	2.4.1 Hosting Web Interfaces Non-Natively
	2.4.2 Firmware and Web Interface Emulation

	3 Analysis Framework Details
	3.1 Firmware Selection
	3.2 Filesystem Preparation
	3.2.1 Filesystem Sanitization
	3.2.2 Web Server Heuristics

	3.3 Analysis Phase
	3.4 Results Collection and Analysis
	3.4.1 Filesystem Changes
	3.4.2 Capturing Communications

	3.5 Results Exploitation

	4 Dataset
	5 Evaluation
	5.1 Summary of Discovered Vulnerabilities
	5.2 Static Analysis Vulnerabilities
	5.3 Dynamic Analysis Vulnerabilities
	5.4 Evaluating the Hosting Web Interfaces
	5.5 HTTPS and Other Network Services
	5.6 Analysis of the Failures
	5.6.1 Failures Analysis
	5.6.2 Failures Correction and Further Improvements

	6 Discussion
	6.1 Limitations of the Emulation Techniques
	6.1.1 Forced Emulation
	6.1.2 Emulated Web Server Environment
	6.1.3 Imperfect Emulation

	6.2 Outdated Firmware Versions
	6.3 Manual Interventions

	7 Related Work
	8 Conclusion
	9 References

