
Autocorrelation-Based Detection of
Infinite Loops at Runtime

Andreas Ibing, Julian Kirsch and Lorenz Panny
Chair for IT Security

TU München
Boltzmannstrasse 3, 85748 Garching, Germany

Abstract—We present a new algorithm for the detection of
infinite loop bugs in software. Source code is not needed. The
algorithm is based on autocorrelation of a program execution’s
branch target address sequence. We describe the implementa-
tion of the algorithm in a dynamic binary instrumentation tool;
the result is lightweight enough to be applied continuously at
runtime. Functionality of the tool is evaluated with infinite
loop bug test cases from the Juliet test suite for program
analyzers. Applicability of the algorithm to production software
is demonstrated by using the tool to detect previously known
infinite loop bugs in cgit, Avahi and PHP.

Keywords-Program analysis; infinite loops; dynamic binary
instrumentation

I. INTRODUCTION

Infinite loop bugs are both an issue of software safety and
of software security. A program that runs into an infinite
loop becomes unresponsive, which violates safety properties.
If an infinite loop can be triggered with program input by
an attacker, the program is vulnerable to a denial of service
attack. Under the common weakness enumeration [1], infinite
loops are known as CWE-835 (‘loop with unreachable exit
condition’).

Possible mitigation approaches to infinite loop bugs include
the usage of testing tools in order to detect and remove
bugs before deployment, or to use light-weight program
instrumentation to catch an infinite loop when in occurs at
runtime.

The problem of finding infinite loops in programs is
as old as computing itself. A perfect bug checker would
detect all infinite loops in any program without false
negative detections, without false positive detections, and
with bounded runtime. Because the Halting Problem is known
to be undecidable in general [2], such a perfect bug checker
can not exist. Any real detection algorithm must therefore
drop at least one of the three properties and tolerate either
false positive detections, false negative detections, or running
into non-termination itself.

Nevertheless, three principle approaches to automated
infinite loop detection have been developed and are in
practical use today. The oldest one is to set a maximum
duration after which an unresponsive program is assumed
to be stuck in an infinite loop. This approach is most often

implemented with a watchdog timer in embedded systems:
A watchdog timer has to be actively reset by the software
perpetually, otherwise the watchdog triggers a system restart.
A more recent example is found in dynamic symbolic
execution tools [3], [4]. Dynamic symbolic execution is a
testing approach where program execution is automatically
driven into different program paths. The corresponding
program input is automatically generated with a constraint
solver, typically a Satisfiability Modulo Theories (SMT, [5])
solver. These symbolic execution tools also set a maximum
duration of unresponsiveness, after which an infinite loop
bug is reported.

The second approach is to prove termination or non-
termination using an automated theorem prover, again typ-
ically an SMT solver. While (non-)termination can not be
decided for all loops in general, it can be decided often
enough to be of practical use. Prominent tools include [6]–
[11]. Because these tools are not perfect, there is still an
interest in detecting infinite loops at runtime. The process of
translating a program into logic equations and especially
theorem proving itself is too complex to be applicable
continuously at runtime. In [12] it is proposed to connect a
symbolic execution tool called Looper at a user’s request
to an unresponsive process. The tool would then single-step
with symbolic execution and try to prove that an infinite loop
is executed.

The third approach uses hash values of concrete program
states to verify the execution of an infinite loop by finding a
recurrence program state [13]. The tool presented in [13] is
connected at a user’s request to an unresponsive process
and single-steps this process. At branches, the program
state including register and memory contents is hashed and
compared to previous hash values. If a hash appears more
than once, an infinite loop is reported.

This paper presents a new algorithm for automated
detection of infinite loops. It is sufficiently lightweight
to be applied continuously at runtime. It does not need
constraint solver, program source code or hash values over
program states. The algorithm is based on autocorrelation,
a computation commonly used in many areas of applied
statistics: One example is in time series analysis to identify
periodic changes. Another example is in signal processing,

1 i n t main (i n t argc , char ∗∗ a rgv) {
2 unsigned i n t i , j , k = 0 ;
3 /∗ I n f i n i t e l oop : i n c r e m e n t i i n s t e a d o f j ∗ /
4 f o r (j = 1 ; j < 0 x10000 ; i ++)
5 f o r (i = 0 ; i < 0x10 ; i ++)
6 k ++;
7 }

Figure 1: Sample C program containing an infinite loop

1 004004 b6 <main>:
2 004004 b6 : push rbp
3 004004 b7 : mov rbp , r s p
4

5 004004 ba : mov DWORD PTR [rbp−0x14] , e d i
6 004004 bd : mov QWORD PTR [rbp−0x20] , r s i
7 004004 c1 : mov DWORD PTR [rbp−0x8] , 0 x1
8 004004 c8 : jmp 4004 e5 <main+0 x2f>
9 004004 ca : mov DWORD PTR [rbp−0x4] , 0 x0

10 004004 d1 : jmp 4004 db <main+0x25>
11

12 004004 d3 : add DWORD PTR [rbp−0xc] , 0 x1
13 004004 d7 : add DWORD PTR [rbp−0x4] , 0 x1
14 004004 db : cmp DWORD PTR [rbp−0x4] , 0 x f
15 004004 df : jbe 4004 d3 <main+0x1d>
16 004004 d7 : add DWORD PTR [rbp−0x4] , 0 x1
17

18 004004 e5 : cmp DWORD PTR [rbp−0x8] , 0 x f f f f
19 004004 ec : jbe 4004 ca <main+0x14>
20 004004 ee : mov eax , 0 x0
21 004004 f3 : pop rbp
22 004004 f4 : r e t

Figure 2: Compiled version of the sample program

for synchronization in communication systems. We apply
autocorrelation as an efficient way to identify suspicious
branch sequences on-the-fly.

The remainder of this paper is organized as follows.
Section II describes and illustrates the algorithm in detail.
Section III presents an implementation using dynamic binary
instrumentation. Algorithm properties are described in detail
in Section IV. Experiments with the resulting tool are
described in section V. The tool is evaluated with infinite
loop test cases from the Juliet suite [14], and it is used to
detect known infinite loop bugs in Avahi, cgit and PHP.
Related work is reviewed in section VI. Results of the tool
evaluation are discussed in section VII.

II. ALGORITHM: MODIFIED AUTOCORRELATION FOR
BRANCH TARGET ADDRESS SEQUENCE ANALYSIS

Autocorrelation is the correlation of a function f(n) with
itself at different points in time. It computes the similarity
between the function and a time-lagged version of itself,
where the time lag l is variable. The (discrete) autocorrelation
Rff at lag l for a real-valued function f(n) is:

Rff (l) =
∑
n∈Z

f(n)f(n− l)

For a periodic function f(n) we have:

f(n+ p) = f(n)

where p is the period length. The autocorrelation function
Rff (l) always has a peak value for l = 0. For a periodic
function of period p, the autocorrelation also peaks at the
period length l = p and its integer multiples. For the
detection of infinite loops in programs, we slightly adapt the
autocorrelation as described in the following sections.

A. Detecting periodic infinite loops

A path through a program can be represented by the
corresponding sequence of branches, i.e., the sequence
of branch target addresses. The branches comprise both
conditional branches and unconditional branches (jumps).
A branch target address sequence is denoted as:

b(n) n ∈ [0,m]

where b(0) is the first branch after the program’s entry point,
and b(m) is the last taken branch, leading to the current
program execution state. The basic idea is to detect an infinite
loop through the branch sequence, which is assumed to
become periodic. To this end, the autocorrelation of the
branch sequence is computed on-the-fly during program
execution.

Rbb(l,m) =

m∑
n=1

b(n)b(n− l) , l = 0..m

The value for l = 0 is not of interest and not computed,
because an infinite loop has a positive period length. If the
program runs into an infinite loop with period length p, the
autocorrelation will show a peak at Rbb(l = p,m), where
the peak value increases with the number of branches m.

Unlike in other applications of autocorrelation where a
periodic function undergoes some time variance due to noise,
here we have identical periods. Therefore, we replace the
multiplication with Kronecker’s delta function:

δ(i, j) =

{
1 if i = j

0 else
i, j ∈ Z

That yields:

Rbb(l,m) =

m∑
n=1

δ
(
b(n), b(n− l)

)
, l = 0..m

i.e., the autocorrelation value is only increased if the branch
target address is identical to the target address of l branches
before. The recursive version for on-the-fly computation is:

Rbb(l,m) = Rbb(l,m− 1) + δ
(
b(m), b(m− l)

)
We also want to consider the falsification of an infinite

loop hypothesis. If a periodic sequence is broken, we reset the
corresponding correlation value(s). The recursive computation
becomes:

Rbb(l,m) =

{
Rbb(l,m− 1) + 1 if b(m) = b(m− l)
0 else

(1)

Figure 3: A static snapshot of the autocorrelation val-
ues Rbb(l, lmax) at forcibly induced program termination
(Rbb(18, lmax) ≥ T)

An infinite loop candidate is identified if the correlation
exceeds a pre-defined threshold value T :

Rbb(l,m) > T for any l (2)

the period of the infinite loop is p = l, i.e., the index of
the correlation value that first exceeds the threshold T . The
location of the infinite loop is given by the p last branch
target addresses.

Correlation length: In order to limit the buffer length
for branch target addresses and autocorrelation values to a
constant size independent of the length of a program path,
the autocorrelation length can be limited. Rbb(l,m) is then
only computed for indices l ∈ [1..lmax]. With such a fixed
correlation length, the algorithm detects infinite loops with a
period of up to p = lmax .

Illustration: We provide a sample program as depicted
in Figure 1 to clarify how the algorithm behaves during
program execution. To understand the results, we briefly
consider the x86 assembly code (Figure 2 generated out
of 1 by the GNU C compiler (version 4.9.2): The outer
(infinite) loop is transformed into an unconditional branch
at virtual address 0x4004c8 and a conditional one at
address 0x4004ec. Similarly, the branches at 0x4004d1
and 0x4004df represent the inner loop. Local variables i,
j and k are addressed relatively to the base pointer rbp
at offsets -0x4, -0x8 and -0xc within the current stack
frame. Figure 3 shows the autocorrelation values at the time of
(forced) program termination (that is ∃l : Rbb(l, lmax) ≥ T)
when choosing lmax = T = 28. The peaks at positions

Figure 4: A selected time frame observing two dynamically
changing values (Rbb(18, lmax), Rbb(19, lmax)) during pro-
gram execution

p which are non-zero multiples of 19 clearly indicate the
periodicity of the generated assembly code: To perform
one complete iteration of the outer loop, the conditional
branch at 0x4004df corresponding to the inner loop is
considered 17 times (16 times taken, once not taken) by the
algorithm, and with the conditional jump at 0x4004ec and
the unconditional jump at 0x4004d1 this results in a total of
19 branches. The diagram in Figure 4 visualizes the behaviour
of two selected autocorrelation values while the instrumented
program is executing. We chose one autocorrelation value at a
position congruent to the periodicity of the sample program
and the direct neighbouring value and plot the different
behaviours over time. The diagram shows that the first value
increases steadily while the second autocorrelation value
follows a sawtooth-like shape.

B. Detecting certain non-periodic infinite loops

There are non-periodic infinite loops, i.e., infinite loops
whose branch sequence depends on input. An example is
shown in Figure 5 in assembly. Every second branch targets
.loop, but the branch in between is random.

The algorithm can be generalized to also detect infinte
loops with non-deterministic branches, as long as the branch
sequences in the loop have equal length. The following
recursive correlation detects re-visited branches with constant

1 . l o o p :
2 r d r a n d %ax
3 t e s t $1 , %ax
4 j n z . o n e
5 . z e r o :
6 jmp . l o o p
7 . o n e :
8 jmp . l o o p

Figure 5: Example non-periodic infinite loop in x86 assembly

branch sequence length:

Rbb(l, f,m) =



Rbb(l, f,m− 1) for f 6≡ m (mod l)

Rbb(l, f,m− 1) + 1 for f ≡ m (mod l)

∧ b(m) = b(m− l)
0 for f ≡ m (mod l)

∧ b(m) 6= b(m− l)
(3)

where f is an offset modulo l. The coefficent vector becomes
a triangular matrix (compare Figure 6).

The number of coefficient computations is the same as
before, i.e., for every new branch and for each l, only one
coefficient is updated (the one for which f ≡ m (mod l)).
But the number of coefficients increases to:

Ncoeff =
lmax

2
(lmax − 1),

i.e., the space for coefficient storage increases quadratically
with correlation length. The example non-periodic infinite
loop is detected with the extended algorithm (triangular
coefficient matrix) with lmax ≥ 2.

C. Avoiding false positives: optional SMT-based verification
of candidate loops

Depending on the theshold value and the application, the
presented algorithm has false positive detections. If false
positives are not tolerable, there is a possibility for verification
or falsification of infinite loop candidates. One iteration of
the candidate loop is executed with symbolic execution, and
an SMT solver is used to check whether the loop is indeed
infinite. If the candidate is not verified, the threshold can
be increased by some factor. The SMT check for an infinite
loop is the same as described in [12] for the LOOPER tool.
This optional candidate verification however differs from
LOOPER in that LOOPER searches for an infinite loop with
unknown period length and unknown location. Therefore,
LOOPER needs a number of solver checks that increases
exponentially with period length, while the work at hand
only needs one check for the infinite loop candidate.

III. IMPLEMENTATION WITH BINARY INSTRUMENTATION

We implemented our algorithm based on dynamic binary
instrumentation engine Pin [15].

Dynamic binary instrumentation provides a mechanism to
monitor, inspect and alter the execution of any given binary

R (l,f)
bb

fl

b(m)

m

Figure 6: Triangular coefficient matrix

program at runtime. This is typically achieved by injecting
callback functions into a Just-In-Time (JIT) compiled version
of the instrumented program which can then observe and/or
manipulate the internal state of the program. Dynamic binary
instrumentation lends itself very well towards program anal-
ysis as it allows for fine-grained inspection of arbitrary code
without having to rely on the presence of the executable’s
source code. Programs based on instrumentation frameworks
are usually referred to as tools.

The source code of our implementation can be seen in
Figure 7: The code adds a callback function Branch()
to all conditional and unconditional branches that reside in
the virtual address space of the main executable program
image. It is the injected handler function’s responsibility to
re-compute each autocorrelation value Rbb (line 15) and to
store the most recent branch target. Moreover, the Branch()
function ensures that T is still the upper bound of all values
residing in Rbb. In case of a violation of this last constraint,
the Pin tool outputs a warning in line 18.

IV. PROPERTIES

A. Complexity

1) Time: The number of operations performed by the
algorithm per branch depends on the correlation length lmax.
The algorithm updates lmax coefficients for every new branch,
and compares them against the threshold. It can therefore be
assumed, that the computation overhead increases linearly
with correlation length lmax , and is independent of program
length. To confirm this, we instrumented an infinite-loop-
free (terminating) version of the sample program with our
algorithm implementation as Pin tool (using equation (1), i.e.,
without the modulo addressing of equation (3)) and measured
the total runtime for different values lmax . In the changed
sample program, line 6 was updated to increment the local
variable j instead of i. Benchmark results can be seen in
Figure 8.

2) Space: The amount of memory required to store branch
target addresses increases linearly with correlation length.
The amount of memory required to store autocorrelation
values increases linearly with correlation length when using
equation (1), and quadratically when using equation (3).

1 # i n c l u d e ” p i n .H” /∗ A l l o t h e r i n c l u d e s
o m i t t e d f o r r e a d a b i l i t y r e a s o n s ∗ /

2

3 # d e f i n e T (5 0 0) /∗ T h r e s h o l d t r i g g e r i n g
an a b o r t ∗ /

4 # d e f i n e M (1 6) /∗ Number o f v a l u e s ∗ /
5 # d e f i n e MASK(X) ((X) % M)
6

7 s i z e t c u r = 0 ;
8 unsigned long d s t [M] = { 0 } ; /∗ The m l a s t branch

t a r g e t s ∗ /
9 unsigned long c n t [M] = { 0 } ; /∗ The m v a l u e s R bb (l ,

m) ∗ /
10

11 void Branch (unsigned long ip , bool t aken , unsigned long
t a r g e t , unsigned long f a l l t h r o u g h) {

12 i f (! t a k e n) t a r g e t = f a l l t h r o u g h ;
13

14 /∗ Check i f T has been s u r p a s s e d by any o f t h e
c o u n t e r s and up da t e a u t o c o r r e l a t i o n v a l u e s ∗ /

15 f o r (s i z e t i = 0 ; i < M; i ++) {
16 c n t [i] = (d s t [MASK(c u r − i)] == t a r g e t) ? c n t [i] +

1 : 0 ;
17 i f (c n t [MASK(c u r − i)] >= T)
18 e r r o r (−1 , 0 , ” I n f i n i t e l oop d e t e c t e d .

I n s t r u c t i o n : %p T a r g e t : %p\n ” , ip , t a r g e t
) ;

19 }
20

21 /∗ S t o r e most r e c e n t branch t a r g e t ∗ /
22 c u r = MASK(c u r) ;
23 d s t [c u r ++] = t a r g e t ;
24 }
25

26 void I n s t r u c t i o n (INS i n s , void ∗v) {
27 /∗ For any newly t r a n s l a t e d branch i n s t r u c t i o n i n t h e

main image , add a c a l l b a c k t o Branch () ∗ /
28 i f (INS Category (i n s) == XED CATEGORY COND BR | |

INS Category (i n s) == XED CATEGORY UNCOND BR) {
29 IMG img = IMG FindByAddress (INS Address (i n s)) ;
30 i f (IMG Valid (img) && IMG IsMainExecutable (img))
31 I N S I n s e r t C a l l (i n s , IPOINT BEFORE , (AFUNPTR)

Branch , IARG INST PTR , IARG BRANCH TAKEN,
32 IARG BRANCH TARGET ADDR,

IARG FALLTHROUGH ADDR,
IARG END) ;

33 }
34 }
35

36 i n t main (i n t argc , char ∗∗ a rgv) {
37 i f (P I N I n i t (a rgc , a rgv)) re turn −1;
38 I N S A d d I n s t r u m e n t F u n c t i o n (I n s t r u c t i o n , 0) ;
39 P I N S t a r t P r o g r a m () ;
40 }

Figure 7: Implementation of the algorithm based on the PIN
binary instrumentation framework

3) Runtime Overhead: The runtime overhead of the Pin
based instrumentation consists of three parts. A one-time
overhead independent of program length and a dynamic
constant overhead for every branch are due to Pin. The
third part is the actual autocorrelation, that causes a constant
overhead for every branch, where the overhead increases
linearly with correlation length (using equation (1)).

The Intel Pin creators estimate the runtime overhead added
by the instrumentation engine at a factor of 2.8 with just the
JIT compiler enabled and at an average factor of 7.8 for a
basic-block counting instrumentation tool in the worst case
[15]. Figure 8 shows a run time of about 2 ms for the modified

(terminating) test program running without instrumentation.
The same program takes about 200 ms running within an
empty Pin instance. We further obtain a runtime of about
450 ms for the sample program running within Pin using a
correlation length of 100. This implies a slowdown of factor
450
2 = 225 for the example correlation length.
If faster execution is desirable, we consider to implement

the described algorithm as compiler instrumentation (static
binary instrumentation at compile time). This gets rid of
the overhead introduced by Pin. The overhead added by Pin
are the fixed one-time overhead introduced by Pin’s JIT as
well as the dynamic part that depends on the number of
branches within the target program. Both are independent of
the correlation length lmax . We thus argue that a compiler
based instrumentation shows the same slope in dependence
on lmax . This runtime is depicted as a dashed (green) line in
Figure 8, below the blue linear regression curve for measured
values with Pin instrumentation. The blue line is the graph
of the linear function t(lmax) = 2156.2 · lmax +302700 (t in
milliseconds). For lmax = 100 the slowdown factor decreases
to about 100 by changing from dynamic instrumentation to
static instrumentation. Additionally, our example program
consists of an unnaturally high fraction of branches compared
to control-flow presevering instructions of ≈ 1

3 . For real-
world programs, one would expect this fraction between
10% and 20%. This would decrease the slowdown factor
again, resulting in a slowdown factor of about 50 to 70
for real-world programs with compiler instrumentation and
correlation length 100.

B. Incompleteness

Completeness would mean the detection of all infinite
loops, i.e., that there are no false negative detections. Since
there are non-periodic infinite loops that are not detected by
the presented algorithm, and since periodic infinite loops with
periodicity larger than correlation length are not detected,
the presented algorithm is not complete.

C. Soundness

Soundness means that any loop which is reported as infinite
by the algorithm is indeed infinite, i.e., that there are no
false positive detections. The presented algorithm uses a
threshold comparison to select infinite loop candidates. This
candidate selection is not sound. It could arguably be seen
as ‘asymptotically sound’ with an increasing threshold value.
The algorithm becomes sound by applying an SMT check
for a candidate and by only reporting loops whose non-
termination was proven by the check.

D. Trade-offs

The tool user can set the two algorithm paramters lmax

for correlation length and T as detection threshold. There
are two trade-offs. The first trade-off concerns the number
of false negative candidate detections versus algorithm

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

R
un

tim
e
t

(s
)

Correlation Length lmax

Instrumentation with Pin (linear regression)
Expected using compiler instrumentation

Run time without instrumentation

Figure 8: Runtimes of the algorithm applied to a modified (terminating) version of the sample program.

complexity. By increasing correlation length, the number of
false negative candidate detections is reduced at the expense
of increased program overhead. The second trade-off concerns
the number of false positive detections versus detection delay.
By increasing the threshold T , the number of false positive
candidate detections is reduced at the expense of increased
detection delay. An infinite loop must then be executed for
more iterations until the threshold is reached. In our practical
tests, the threshold could be set very high (106 or more)
without causing any significant detection delay.

V. EXPERIMENTS

Benchmark results are obtained on an Intel Core i7-
2600 (3.4 GHz) on 64bit Linux kernel 3.16.0-4-amd64. The
algorithm is run with equation (1).

A. Juliet suite

The Juliet test suite [14] is currently the most comprehen-
sive test suite for C/C++ program analyzers. It is developed by
the United States National Security Agency’s (NSA) Center
for Assured Software and the National Institute of Standards
(NIST). The suite is freely available and consists of C/C++
source code covering over 100 common weaknesses. The test
cases are artificial and systematically combine basic bugs
with different control and data flow variants. We use the
current Juliet version 1.2. For infinite loops it contains 6 test
programs, each with ‘good’ (bug-free) and ‘bad’ functions
(containing a bug).

An example is shown in Figure 9. The infinite loop has a
period of 1. The terminating ‘good’ loop is breaked after 10
iterations.

We compile the programs and apply our tool with param-
eters T = 500 and lmax = 16. The tool correctly detects the
contained infinite loops without false positive and without

false negative detections. The runtimes until detection of the
respective infinite loop are given in Table I.

The Juliet infinite loop tests have also been used in [16]
to test detection based on static symbolic execution on the
source code level. An SMT solver is used to check for
fixed-point satisfiability. Compared to [16], our tool achieves
correct detection an order of magnitude faster. For bigger
test programs, we would expect a larger speed-up with our
tool, because on the small Juliet test programs a considerable
portion of the runtime is used to perform the instrumentation.

B. Real-world programs
To show that the algorithm scales to real-world problems,

we triggered publicly known infinite-loop vulnerabilities in
three widely-used open-source programs and successfully
detected all of them using our implementation. The three
vulnerabilities outlined below have been selected based on
the ease of triggering the bug.
• cgit is a web frontend for git repositories written in C.1

Prior to version 0.8.3.5, cgit contained an infinite loop
bug that could be triggered by clients sending an invalid
hex escape in the URL query to the remote side. This
bug has been assigned CVE-2011-1027.

• Avahi is a Unix daemon providing service discovery in
local networks which is enabled by default in many
popular Linux distributions.2 Before version 0.6.29,
Avahi would enter an infinite loop upon receiving a
zero-length UDP packet (CVE-2011-1002).

• PHP: Hypertext Processor is a highly popular server-
side scripting language for web development.3 All ver-
sions before 5.2.17/5.3.5 hang infinitely when processing

1http://git.zx2c4.com/cgit/
2http://avahi.org/
3http://php.net/

1 void do 01 good1 () {
2 i n t i = 0 ;
3 do {
4 i f (i == 10) {
5 break ;
6 }
7 p r i n t I n t L i n e (i) ;
8 i = (i + 1) % 256 ;
9 } whi le (i >= 0) ;

10 }
11

12 void do 01 bad () {
13 i n t i = 0 ;
14 do {
15 p r i n t I n t L i n e (i) ;
16 i = (i + 1) % 256 ;
17 } whi le (i >= 0) ;
18 }

Figure 9: Example from Juliet test suite [14]

the string representation of the floating-point value
2.2250738585072011 · 10−308. This infinite loop bug is
referenced as CVE-2010-4645.

The results of our evaluation are compiled in Table II.
It features the detected jump target address period length
(as defined by the l value which caused Rbb(l, lmax) to
exceed the threshold T) as well as the wall-clock time
difference between triggering the bug and forced termination
of the instrumented program using our implementation of
the algorithm.

In all three cases, we used the threshold value T = 1024
and initially conducted tests with lmax = 64. This yielded
positive results for the cgit and Avahi tests, detecting the
infinite loops of periodicities 22 and 3 within 0.23 and 0.07
seconds, respectively. We discovered lmax = 64 to be too
few for the PHP test, since that bug exhibits a period length
of 69 branches: After increasing lmax to 128, the infinite
loop was detected within 0.78 seconds.

VI. RELATED WORK

Previous work on infinite loop detection relies on a
threshold for a maximum duration of unresponsiveness (e.g.,
[3], [4]), on automated theorem proving [7]–[12], [16], or on
comparing program states at branches [13]. The presented
algorithm clearly differs from these approaches.

On the one hand, specifying a threshold for maximum
number of loop iterations does bear some resemblance to
specifying a maximum duration of unresponsiveness. On
the other hand, it is not straight-forward to predict an
adequate time threshold, as execution speed depends on many
parameters like the underlying hardware, program input or
system load. This is why watchdogs are mainly used in
embedded systems, where these parameters are predictable.
An iteration threshold is independent of such parameters, and
could additionally be inferred from program source code if
available (to avoid false detections).

The main difference to the theorem proving approach is
that it reasons about a multitude of program paths at once,

Testcase Runtime (s)

Infinite_Loop__do_01 0.20
Infinite_Loop__do_true_01 0.20
Infinite_Loop__for_01 0.14
Infinite_Loop__for_empty_01 0.19
Infinite_Loop__while_01 0.14
Infinite_Loop__while_true_01 0.14

Table I: Error detection runtimes of the infinite loop test
cases from the Juliet suite

while the proposed algorithm is applied to an individual
program path. The prominent tools use static symbolic
execution of the program source code, with loop invariant
generation [7], [8] and/or checking for satisfiable fixed-points
or more generally recurrence sets [7], [11]. Proving non-
termination is sound, i.e., it does not yield any false positive
infinite loop detections. In Looper [12], it is proposed to
use a theorem prover to verify that a program is stuck in
an infinite loop. The tool is to be run at user’s request,
and single-steps the unresponsive program with symbolic
execution. The work at hand for detection of infinite loop
candidates with autocorrelation does not need a solver, and is
orthogonal to the theorem proving approach. The presented
algorithm spots unresponsiveness automatically by checking
the iteration number threshold. The theorem proving approach
is much more complex, which makes it suited for analysis
before deployment. The presented algorithm on the other
hand is lightweight enough for detection at runtime.

The work at hand also differs from the approach of
finding concrete fixed-points by comparing program states at
branches, as proposed in [13]. Program states can become
quite big, which makes this approach too complex to be run
continuously. In [13], it is proposed to apply program state
comparisons only on demand in case a process becomes
unresponsive. As noted in [13], this approach misses infinite
loops where program states are not identical. Comparing
process states as described in [13] is also not sound, i.e., it
might false positively report an infinite loop, because there is
also a kernel state (packet queues etc.) for a running process.
The kernel state is not included in the state comparisons.

VII. DISCUSSION

Unlike previous work for sound detection, the presented
algorithm is lightweight enough for continuous detection of
infinite loops at runtime. While a watchdog timer needs to
be actively used by the programmer, the presented algortihm
can be used to monitor any program.

In order to reduce the average overhead introduced by
the presented infinite loop detection, the correlation length
could be adaptively changed during program execution. One
possibility is to introduce a lower-complexity ‘search mode’,
where no correlation is computed at all. Instead, counters
can be increased for how often the program execution

CVE Name lmax T Detection Time Measured Periodicity

CVE-2011-1027 cgit 64 1024 0.23 s 22
CVE-2011-1002 Avahi 64 1024 0.07 s 3
CVE-2010-4645 PHP 128 1024 0.78 s 69

Table II: Selected CVEs

passes individual branch locations. This essentially reduces
the algorithm overhead to an overhead value required by
instrumentation to trace code coverage, like, e.g., gcov. If
any branch counter exceeds a pre-defined threshold Ts, the
algorithm can change into ‘correlation mode’.

There is the possibility of integrating the presented algo-
rithm in CPUs, in order to benefit from hardware acceleration.
Most CPUs already have a branch target address cache.
Detection of an infinite loop could be signaled with an
interrupt (to the operating system) and an operating system
signal (to a process). The operating system could perform
verification / falsification with an SMT check to eliminate
false positives. Hardware acceleration would eliminate the
runtime software overhead of the proposed algorithm for
correlation at the expense of some extra transistors.

Future work could be the re-implementation of the algo-
rithm with static binary instrumentation, and integration into
the GNU compiler (gcc). gcc already features an address
sanitizer [17] and a thread sanitizer [18], but not yet a loop
sanitizer.

It seems further possible to combine the presented algo-
rithm with dynamic symbolic execution based testing. The
synergy would be that symbolic execution drives the program
into different paths, where the presented algorithm could
perform lightweight detection of infinite loop candidates.

REFERENCES

[1] R. Martin, S. Barnum, and S. Christey, “Being explicit about
security weaknesses,” CrossTalk The Journal of Defense
Software Engineering, vol. 20, pp. 4–8, 3 2007.

[2] A. Turing, “On computable numbers, with an application
to the Entscheidungsproblem,” Proceedings of the London
Mathematical Society, vol. 42, pp. 230–265, 1937.

[3] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
automated random testing,” in Conference on Programming
Language Design and Implementation, 2005, pp. 213–223.

[4] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit
testing engine for C,” in European Software Engineering
Conference and International Symposium on Foundations of
Software Engineering, 2005, pp. 263–272.

[5] L. deMoura and N. Bjorner, “Satisfiability modulo theories:
Introduction and applications,” Communications of the ACM,
vol. 54, no. 9, 2011.

[6] A. Podelski and A. Rybalchenko, “A complete method for the
synthesis of linear ranking functions,” in Int. Conf. Verification,
Model Checking, and Abstract Interpretation (VMCAI), 2004.

[7] A. Gupta, A. Rybalchenko, T. Henzinger, R. Xu, and R. Ma-
jumdar, “Proving non-termination,” in Symp. Principles of
Programming Languages (POPL), 2008.

[8] H. Velroyen and P. Rummer, “Non-termination checking for
imperative programs,” in Tests and Proofs (TAP), 2008.

[9] E. Payet and F. Spoto, “Experiments with non-termination
analysis for Java Bytecode,” in BYTECODE, 2009, pp. 83–96.

[10] M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl, “Automated
detection of non-termination and NullPointerExceptions for
Java Bytecode,” in Int. Conf. Formal Verification of Object-
Oriented Software, 2011, pp. 123–141.

[11] H. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. O’Hearn,
“Proving nontermination via safety,” in Tools and Algorithms
for the Construction and Analysis of Systems, 2014, pp. 156–
171.

[12] J. Burnim, N. Jalbert, C. Stergiou, and K. Sen, “Looper:
Lightweight detection of infinite loops at runtime,” in Int.
Conf. Automated Software Engineering, 2009.

[13] M. Carbin, S. Misailovic, M. Kling, and M. Rinard, “Detecting
and escaping infinite loops with Jolt,” in European Conf.
Object-Oriented Programming, 2011, pp. 609–633.

[14] T. Boland and P. Black, “Juliet 1.1 C/C++ and Java test suite,”
IEEE Computer, vol. 45, no. 10, 2012.

[15] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Reddi, and K. Hazelwood, “Pin: Building cus-
tomized program analysis tools with dynamic instrumentation,”
in Proc. ACM Conf. Programming Language Design and
Implementation, 2005, pp. 190–200.

[16] A. Ibing and A. Mai, “A fixed-point algorithm for automated
static detection of infinite loops,” in IEEE Int. Symp. High
Assurance Systems Eng., 2015, pp. 44–51.

[17] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: A fast address sanity checker,” in USENIX
Annual Technical Conference, 2012, pp. 28–28.

[18] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: data
race detection in practice,” in Workshop on Binary Instrumen-
tation and Applications, 2009, pp. 62–71.

