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ABSTRACT

We propose a probabilistic model for behavior-based mal-
ware detection that jointly models sequential data and class
labels. Given labeled sequences (harmless/malicious), our
goal is to reveal behavior patterns and exploit them to pre-
dict class labels of unknown sequences. The proposed model
is a novel extension of supervised latent Dirichlet allocation
with an estimation algorithm that alternates between Gibbs
sampling and gradient descent. Experiments on real-world
data set show that our model can learn meaningful patterns,
and provides competitive performance on the malware de-
tection task. Moreover, we parallelize the training algorithm
and demonstrate scalability with varying numbers of proces-
SOTS.

Categories and Subject Descriptors
1.2 [Artificial Intelligence]: Learning—Parameter learn-
ing; 1.5 [Pattern Recognition]: Models—statistical

General Terms
Algorithms, Experimentation, Security

Keywords
Probabilistic Model, Supervised Learning, Sequential Data,
Malware Detection

1. INTRODUCTION

Detecting malware, that is, malicious programs such as Tro-
jan horses and worms is an active field of research in com-
puter security [10]. One approach is to monitor generated
system call sequences of the observed programs and to ap-
ply machine learning techniques to classify such sequential
data [9, 11]. A system call sequence can have for instance
the following form: “OpenRegistry, ManipulateRegistry,
OpenSocket, WriteSocket,...” and characterizes a mali-
ctous program that performs manipulations in the Windows
registry database and transmits information by means of
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network socket operations. From a machine learning per-
spective, two types of information are encoded in a sys-
tem call sequence, namely, semantic and sequential infor-
mation. Semantic information denotes system calls such as
“ReadFile, WriteFile” and “CloseFile” that jointly belong
to a single semantic topic, here, file I/O operation. In con-
trast, system calls such as “Connect, Listen” and “SendBuf”
are tightly coupled to the semantic topic network commu-
nication. In other words, any system call sequence can be
characterized by a set of latent topics. Such an assumption
is also suggested in the field of information retrieval [8] and
text analysis [2], where it is assumed that text documents
are generated by a random mixture of latent topics [13].
Sequential information denotes the Markovian dependence
of system calls, that is, dependence of the next system call
given the preceding system calls. In summary, semantic and
sequential information encoded in system calls carry the suc-
cinct behavior of a program, thus they are crucial informa-
tion to be exploited for detecting malware.

Inspired by recent machine learning research in probabilistic
topic models, we focus on learning patterns in sequences and
predicting labels of unseen system call sequences. Discover-
ing patterns via topic models has been extensively studied in
the literatures. First, latent Dirichlet allocation (LDA) [2]
has been successfully employed to discover contextual in-
formation in data. Next, Simplicial Mixture of Markov
Chain [4] and the Topic Model [14] are proposed. These
approaches directly model the Markovian dependence of the
conditional probability of a symbol given its previous state.
Additional approaches where the Markovian property is in-
tegrated into topic models are proposed in [5, 6]. Moreover,
to discover topics as well as phrases, i.e. the local depen-
dency between words, Topical N-grams [15] are proposed.
All of the above models enjoy a big success in text model-
ing.

Our proposed model finds a set of topics that are represen-
tative of both behavior patterns and class labels. The two
main contributions of this work are:

1. The supervised latent Dirichlet allocation (sLDA) [1]
is modified and extended to fit our problem domain.
That is, the proposed model provides a multi-class ex-
tension of sLDA for predicting discrete response val-
ues, via generalized logistic regression and can be trained
with a straightforward parallized algorithm. Moreover,



Markovian dependence is integrated to model the se-
quential nature of the system call data.

2. We classify malware and extract behavior patterns in a
single model. Previous approaches usually performed
these two tasks separately by treating them as different
parts of a pipeline. That is, first selecting features and
then feeding features to a classifier. On contrary, we
fundamentally take the probabilistic approach to solve
classification and pattern analysis simultaneously.

We explain the proposed model and present the estimation
algorithm in Sect. 2. Experiments on the real-world data set
are presented in Sect. 3. Sect. 4 concludes. For the sake of
conformity to terms used in the field of probabilistic topic
models, the following name convention is used throughout
this paper. A system call is termed word. A system call
sequence generated by a program is termed document. A
set of system call sequences is denoted as a collection.

2. SUPERVISED TOPIC TRANSITION
MODEL

The notation used in this paper is summarized in Fig. 1.
The characteristic of our proposed Supervised Topic Tran-
sition model (STT) is threefold. First, we add a transition
matrix between different topics in each document in order
to find the sequential correlation between topics. As in the
LDA model, topic-words distributions are shared by all doc-
uments. Second, we employ generalized logistic function for
incorporating the multi-class labels to the model, thus pro-
vides an oracle on exploring latent space meanwhile gives
the model discriminative power. Third, we implement the
training algorithm for the STT model in a parallel manner.
This allows our model to be highly efficient on large-scale
sequential data. The generative process of the STT model
can be described as follows:

1. Draw multinomial distributions v, from a Dirichlet
prior 3 for each topic z;

2. For each document d, draw T multinomial distribu-
tions ¢q,. from a Dirichlet prior «; then for each word
wq,; in document d:

(a) Draw z4,; from multinomial Bd,2q.1

(b) Draw wg,; from multinomial v,
3. Draw a class label y4 for document d from a general-
ized logistic function P(y|7,0), where
Mg,z = ”d,z,z’/zzT/:l N4, is the empirical topic
transition frequencies. The generalized logistic func-
tion provides the following distribution:
exp 1Ok, 22Nz 20

P(yd _ k|57 9) _ - (Zz,z z,z z_z ) )

> k1 eXP(Zz,zl Ok,z,2/ Md, 2,2 )

(1)

The graphical representation of STT is shown in Fig. 2. Con-
sider step 3 of the generative process. We assume the class
label for each document is drawn from a generalized logis-
tic function with input given by the empirical distribution of
topic transitions. This representation provides the flexibility
of encoding arbitrary topic features while the output of the

Symbol Description

T number of topics

D number of documents

14 number of unique words

K number of classes

Ny number of words in document d

wq, i the ith word in document d

Zd,i the topic associated with the ith word in
document d

Yd the class label of document d

Mz, w number of words w which are assigned with
topic z

Ng o ot number of topics z followed by 2’ in document
d

Pd,= the multinomial distribution of topics w.r.t
topic z in document d,
those distributions constitute a
topics-transition matrix ¢4

P, the multinomial distribution of words w.r.t.
topic z

« Dirichlet prior of ¢q, .

B Dirichlet prior of 1,

O regression coefficients of class k

Figure 1: Notations used in Supervised Topic Transi-

tion model.

Figure 2: A graphical representation of
the proposed Supervised Topic Transition
Model. The gray nodes represent observed
variables. The edges represent direct prob-
abilistic interaction between the linked vari-
ables.

model always results in well-calibrated probabilities. This
setting is inspired by sLDA, yet with an improvement. In
sLDA, a response variable for each document is real valued
and drawn from a linear regression. However, a continuous
response is not appropriate for our goal of building a clas-
sifier. In STT, we exploit the generalized logistic function
to supervise the topic model, which provides an important
multi-class extension of the sLDA framework.

During the estimation process, class labels are observed.
The labels are used to train a logistic regression model,
which in turn provides an oracle and induces a subtle re-
finement of latent topics. As we shall see in Sect. 2.1, such
reciprocal refinement is explicitly represented in the sam-
pling formula and in the training algorithm. Another strong
argument for coupling a logistic regression model is the dis-
criminative power on unseen data. Given an unlabeled doc-
ument d, the predicted label is yq = arg max P(y|z,0).
ye{l’... ’K}



2.1 Parameters Estimation

Given a document collection, the aim is to estimate a topic
transition matrix ¢ for each document, multinomial distri-
butions of words for each topic 1, as well as the regression
coefficient 6 shared by the collection. In many state-of-art
topic models, Gibbs sampling is used to perform parameter
estimation, whereas in logistic regression, gradient descent
is the method of choice. Although the mechanisms behind
these two algorithms are different, both algorithms are it-
erative methods. In this section, we present an iterative
algorithm that combines Gibbs sampling (for estimating ¢
and 1) and gradient descent (for estimating 0)

2.1.1 Gibbs sampling step
For every word in the collection, we sample the topic assign-
ment from the following distribution:

P(Zd’¢|W7 Zﬂ(d,i)7Y7 «, ﬂ7 9) X

logistic regression

T K T
eXp(Z ayd&,zd,iﬁdvz’zd,i) Z exp( Z Ok,z,2/Td,2,2) X
k=1

z=1 2,2/ #24,i

Mzg,wa, + 8
I:ndazd,i—lwzd,i + O‘} X ZV m + Vl?’
v=1 2d,i,V

standard posterior

where counts m and n are counted except for z4; (the Gibbs
sampling derivation is provided in the Appendix). Notably,
this Gibbs sampling formula consists of two parts: an expo-
nential component from logistic regression where 6 is fixed,
and a standard posterior from the unsupervised topic model.
After each iteration i, we can obtain the estimates of ¢ and
¢ by calculating the followings:

Mz + 0
S maw+ VB

The remaining task is estimating the regression coefficient
0.

Nd,z,z + «
T Ta
Zz':1 Ng,z,> + 1o

vl = &y, .= (2)

2.1.2 Gradient descent step

Essentially, we want to use the topic assignments as features
to train the logistic regression model after each iteration.
The derivation of the gradient with respect to 6 in the STT
model is same as in the multi-class logistic regression model.
We introduce y4x, which follows a coding scheme as:

] 1
Yk =9

Consequently, the update function of 0 is given by:

if yg = k (document d is labeled class k),
otherwise.
®3)

D
i+1 7 1)\ =
al(c,:z)’ A Gl(c,)z,z’ + )\Z(ydk - pElk))nd,Z’z” (4)
d=1

where ) is the learning rate, pf;k) is the predictive probability
of document d labeled with class k in ith iteration, which
has been given in (1). The new 6 is used in the next Gibbs
sampling step.

2.1.3  Summary

Putting all together, our training algorithm alternates be-
tween Gibbs sampling (2) and gradient descent (4). The two
procedures affect each other by updating 7 and 0 iteratively.
The advantage of modeling sequences and labels jointly is
twofold. First, the label subtly directs the topic evolution
by minimizing the error value on classification. Second, the
random sampling avoids the local optima that plagues gra-
dient descent.

2.2 Parallelized STT

The computational complexity of Gibbs sampling in each
round is determined by the number of topics multiplied by
the total number of word occurrences in the training set,
that is O(T' 3.2, N4). On a large-scale document collec-
tion, the standard Gibbs sampling is computationally infea-
sible. We therefore implement the training algorithm for
the STT model in a parallel manner, which follows the idea
of AD-LDA model [12]. The complete training algorithm is
summarized in Algorithm 1:

Algorithm 1 Parallelized training algorithm for STT

model.

Input: Model parameters: «, 3, A\, T'; Document collection: Dj; Avail-
able processors: P

1: Initialize § randomly

2: Partition D into D'',-.. , DIP

3: for all processor p € P do

4: Initialize the topic assignments randomly
5: Compute m‘zfjw and nlipz o
6: end for -
7: repeat
8: for all processor p € P do
9: for all document d € D'? do : :
1
10: for all word wg ; in document d do Gibbs sampling step
11: Sample zq,; by (2)
12: end for
13: end for —
14:  end for
15: My w Zle m‘z’?w .
16: repeat
17: for all processor p € P do
18: ¢ te VI? by (4
19: endoflglfu © v (4) Gradient descent step
20: Ve XP VP 0+ 0+av
21: until converged _

22: until converged
23: return ¥, ® by (2) and 6

2.3 Model convergence

As the logistic regression model is trained simultaneously
with the Gibbs sampling procedure, it might not be obvi-
ous to reader that the training algorithm of the STT model
will converge in general to a useful result. Therefore, we
first employ a toy example to provide some insights into the
convergence of STT. We define 3 topics over 8 system calls
and create 5 programs artificially, three of the programs are
labeled as harmless, the other two are malicious. We trained
the STT model with this toy example and recorded the lo-
gistic regression error value 25:1(%1 — pg)? and the KL-
divergence S°7_ W, log(¥./Q.) after each iteration. The
former gives an idea of the convergence of the logistic re-
gression model. The latter measures the distance between
the model’s estimate ¥, and the true distribution Q..

Figure 3(a) shows these two measurements as a function
of the iterations while training the model. One can ob-
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Figure 3: Convergence behavior of the STT model
on a toy example (left) and a real-world data set
(right).

serve, that the training process is roughly divided into three
phases. In the first 100 iterations, the error value and the
KL-divergence are “oscillating”. The model then comes to
a “burn-in” phase, starting from 100 to 500 iteration, where
both Gibbs sampling and gradient descent finds their way
in parameter space. In this period, the KL-divergence is de-
creasing over time and the error value of the logistic regres-
sion is damped down. After 600 iterations, the model finally
reaches an equilibrium — the “coupled” phase — where the
KL-divergence and error value finally converged. In Fig. 3(b)
the error value of the real-world data set with different num-
ber of topic is plotted. One can observe, that the model is
50 — 100 iterations in the “oscillating” phase, followed by ap-
proximately 1000 iterations staying in the “burn-in” phase,
and finally converges after approximately 1500 iterations.
Additionally, one can observe in Fig. 3(b) that, the more
topics the more accurate is the descriptive power of STT
model, thus the smaller the error value of the logistic re-
gression.

In standard Gibbs sampling, there is no obvious clue to
tell the convergence of the algorithm, the sampling is often
stopped after a desired number of iterations. In our model,
a convergent Gradient descent implies a convergent Gibbs
sampling. Consequently, by observing the error value, we
can tell whether or not the training algorithm is convergent.
This feature allows us to avoid unnecessary training steps
and saves a lot of time when training on large-scale data
set.

3. EXPERIMENTS

Due to the fact that most malicious programs exist on the
Windows operating system (OS), we focus in this work on
Windows programs. For collecting system calls of harmless
and malicious programs a tool for Windows OS is devel-
oped which hooks in the OS and allows to gather system
calls of executable programs. We collected system call se-
quences from 3048 programs' in 8 categories: Harmless,
Email-worm, IM-worm, IRC-worm, Net-worm, Backdoor,

! Available at http://vx.netlux.org.

Trojan and Others (i.e. Badjoke, HackTool etc.). In total,
system call sequences of 168 harmless programs and 2880
malicious programs are collected. After pre-processing® the
data, 34,007, 743 system calls are in total gathered.

We present the experimental results from three perspectives.
First, we interpret the uncovered patterns from system call
sequences. Second, we use classification accuracy to numer-
ically evaluate the STT model. Finally, we examine the
performance of the parallelized training algorithm on large-
scale data and analyze the bottleneck of it?.

3.1 Analysis of Latent Topics

In this section the latent information learned in the STT
model are investigated. In Table 1, eight topics are depicted
which are found in a 40-topics run on the real-world data set
(2,000 Gibbs sampling iterations, symmetric priors o« = 0.1,
B =0.01 and A = 0.1). The evolved topics are quite expres-
sive*. Topic 1 provides a summary of the window interface
handler, topic 12, 32 and 33 are related to graphics, process
and memory handling and RPC (Remote procedure call),
respectively. Besides, we also notice that some topics give
extremely salient descriptions. For instances, in topic 14,
the sum of the probabilities of ReadFile and WriteFile is
0.99; in topic 32 the single word ReadProcessMemory has a
probability of 0.86. This phenomenon is due cyclically in-
voking system calls. It is clear that ReadFile and WriteFile
are frequently invoked together, in most cases, cyclically in
a loop. Similarly, one has to invoke ReadProcessMemory re-
peatedly to get a sufficient range of memory of a specified
process. In general, the STT model is capable to capture
co-occurrence patterns in sequences. However, in the spe-
cial case when a word often occurs repetitively or two words
frequently occur as repetitive pairs, then the STT model will
give sharp and sparse topic results.

In Table 2, the topic transitions learned from nine programs
are reported. We assign names for each topic by hand as
we did in Table 1. For each program the top 6 topic tran-
sitions with highest probability are listed. By studying the
learned topic-transitions, one can reveal the behavior of a
program. Consider for example the program “mspaint.exe”.
One can observe, that the frequent topic transition Graphics
— Graphics implies a behavior such as “keep drawing pic-
tures on device”. Another example is “Net.Worm.Lovesan”,
which exploits the Windows RPC flaw to spread itself. The
infecting and propagating behavior of “Net.Worm.Lovesan”
is clearly reflected in its topic transitions.

Additionally, we visualized eight learned transition matri-
ces (see Fig. 4) to study the functional similarity of pro-
grams. It is interesting to observe that malicious varia-
tions of the same stem (e.g. “IRC-Worm.Golember.p” and
“IRC-Worm.Golember.u”) have similar topic-transition ma-
trices. Since the STT model reveals the “behavior” in lower

2Gystem call sequences of length smaller than 50 are omit-
ted, as the length is not sufficient to characterize program
behavior.

3The processed data set and a python-implementation of
parallel STT are available at
http://www.sec.in.tum.de/~stibor/xiao/data+code.zip.
4The description of each system call can be found on
http://msdn.microsoft.com/en-us/library/.



Table 1: Eight topics from a 40-topic run of the STT model on the real-world data set. The 10 most probable
words in each topic are depicted. Observe, that the STT model groups congeneric system calls together. For

the sake of example the topic names are created by hand.

#1 Window Message Prob. | #2 File Seek Prob. | #5 Memory Control Prob. | #12 Graphics Prob.
PeekMessageA .38 SetFilePointer .58 VirtualAllocEx .15 SelectPalette .23
FindWindowA .36 _llseek .15 VirtualAlloc .14 SelectObject .18
GetCurrentProcessId 11 GetFileSizeEx .06 VirtualQueryEx 12 GetVersion A7
IsWindowVisible .07 GetFileSize .06 VirtualQuery 11 SetDIBitsToDevice .07
GetFileAttributesW .04 CloseHandle .04 GetCharABCWidthsW .09 CreateCompatibleDC .06
GetFileAttributesA .04 MapViewOfFileEx .02 VirtualFreeEx .07 DeleteDC .06
GetVersionExA .00 MapViewOfFile .02 VirtualFree .07 SetDIBits .06
TranslateMessage .00 CreateFileMappingW .02 FormatMessageA .03 SetMapMode .02
Sleep .00 CreateFileMappingA .01 1strlenW .03 FindAtomW .01
SafeArrayGetDim .00 UnmapViewOfFile .01 GetProcAddress .03 GloballLock .01
#14 File 10 (Win32) Prob. | #32 Process Memory Prob. | #33 RPC Sync. Prob. | #39 Registry Handler Prob
ReadFile .63 ReadProcessMemory .86 I_RpcRequestMutex .14 GetProcAddress 41
WriteFile .36 VirtualQueryEx .04 I_RpcClearMutex .14 RegOpenKeyExA .07
WriteConsoleA .00 OpenProcess .02 InterlockedIncrement .10 RegQueryValueExA .05
CloseHandle .00 WriteProcessMemory .02 InterlockedDecrement .08 RegCloseKey .04
_lclose .00 CloseHandle .02 GetCurrentThreadId .06 RegEnumKeyExA .03
RegOpenKeyA .00 WideCharToMultiByte .01 TlsGetValue .04 LoadLibraryExW .02
CreateFileW .00 LocalFree .01 InterlockedCmpExg .04 LoadLibraryExA .02
CreateFileA .00 LocalAlloc .01 RegOpenKeyExW .02 LoadLibraryA .01
wvsprintfW .00 VirtualProtectEx .00 CompareStringW .02 RegEnumKeyA .01
wvsprintfA .00 VirtualAllocEx .00 GetThreadLocale .02 RegCreateKeyExA .01

Table 2:

Topic transitions learned from STT model.

Four harmless programs: bootvrfy.exe (boot

check), clipbrd.exe (clipboard control), dvdplay.exe (a DVD player) and mspaint.exe (a painting pro-
gram). Five malwares: IM.Worm.Opanki, Email. Worm.NetSky, Email. Worm.Roron, Net.Worm.Lovesan and
Net.Worm.Mytob. For each document, STT models has 40 x 40 topic transitions in total, we only report the

top 6 transitions with highest probability.

bootvrfy.exe

| clipbrd.exe

dvdplay.exe

Registry Read — Process Memory
Process Memory — Registry Handler
File Delete — Registry Read

Call DLL Func. — File Delete
Registry Handler — Registry Handler
Registry Handler — Registry Read

String Handler — Locale Language
Process Memory — Unicode Handler
File Seek — RPC

Timer — File Copy

Call DLL Func. — Call DLL Func.
Message Handler — GUI Sync.

Process Status — GUI Sync.

Locale Language — String Handler
Process Memory — Process Memory
Graphics — Graphics

Thread Read — Error Handling
Timer — Thread Sync.

mspaint.exe

| IM.Worm.Opanki

Email.Worm.NetSky

Graphics — Graphics

GUI Sync. — GUI Sync.

Process Memory — Thread Sync.
File 10 Win32 — File Copy

File Seek — File 10 Win32
Memory Control — Thread Sync.

String — GUI Sync.

Thread Sync. — File Delete
Process Memory — Registry Read
File Delete — Process Memory
Call DLL Func. — Registry Read
GUI Sync. — Call DLL Func.

Message Sync. — Process Memory
RPC — Load Resources

String Handler — Locale Lanquage
Graphics — Timer

Error Handling — Registry Edit
Memory Control — Registry Handler

Email.Worm.Roron

| Net.Worm.Lovesan

Net.Worm.Mytob

File Copy — File Copy

Process Status — File Delete
File Search — Registry Handler
GUI Sync. — Thread Sync.
String Handler — Thread Sync.
Message Handler — File Delete

Registry Edit — Registry Edit

RPC — RPC

File Search — File Search

GUI Sync. — Call DLL Func.
Registry Handler — Registry Handler
Load Resources — Load Resources

File Delete — Thread Sync.
Registry Read — Registry Read
File IO Win32 — Process Memory
Memory Control — Registry Handler
File Seek — File 10 Win32

Process Memory — Registry Read

dimensions by introducing latent topics, we are able to com-
pare two programs without noisy influence in system call
sequences. In this low “behavior” space, the original differ-
ent variations are represented similarly. This representation
helps classifying the harmless programs from malicious pro-
grams, and indeed this can be verified in the next section.

3.2 Classification

We study the classification performance of the STT model
and compare it to a SVM which is fed with different input
features. More specifically, we use the unigram and bigram
model, where we first select the words with the highest fre-

quency as features, thus each document is represented by a
vector of relative frequencies. These frequency vectors are
then used as input features for the SVM. We build two SVMs
with 3560 unigram features® and 6400 bigram features, re-
spectively. Moreover, we use P(z|d) from the LDA model
as a feature vector for the SVM. These three baselines are
denoted as Uni+SVM, Bi+SVM and LDA+SVM, respec-
tively. As STT model has discriminative power, it can be
directly used to classify documents. In detail, we first sam-
ple a topic for each word in the test set by (2) as performed

®The number of unique system calls in this collection is 3560,
thus the maximum size of unigram features is restricted to
3560.
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Figure 4: Visualized topic transition matrices of
harmless and malicious (boldface) programs. Each
matrix has 40-by-40 elements, where element (i, )
represents P(z;|z;) with black being the highest
probability and white being zero. Observe, that
programs originating from the same malicious stem
have similar topic transitions matrices.

in training algorithm, except that 6 and m. ., are now fixed

to the training result. After the sampling converged, we

predict the label by yq = arg {maXKl}D(y|2, 0) for every doc-
ye{l,-,

ument in test set. We also construct two classifiers based on
the STT model. First, TT+LR® is built by separating the
gradient descent from training algorithm. More precisely,
we remove the supervision from STT, thus in each training
iteration only the Gibbs sampling is performed. After the
model converged, we feed the topic transition matrix to a
logistic regression model. Another classifier is STT+SVM,
where we feed the topic transition matrix learned from STT
to train the SVM. We use LIBSVM [3] to build 1-vs-1 SVM
classifier with RBF kernel and penalty term C' = 100.For
each model, a five-fold cross-validation is conducted and the
following measurements are evaluated:

Accuracy =
F#MALICIOUS classified as MALICIOUS+#HARMLESS classified as HARMLESS
# ALL ?

False alarm rate =

F#HARMLESS classified as MALICIOUS
# HARMLESS ?

Missing rate =
F#MALICIOUS classified as HARMLESS
# MALICIOUS :

The results are illustrated in Fig. 5. Although the above
measurements are prevalent in the community of malware
detection, using such measurements we ignore the misclassi-
fication among different types of malware. To fully demon-
strate the performance of different models, we also depict
confusion matrices in Fig. 6.

One can observe, that the predictive power of STT is getting
better when the number of topics is increasing, meanwhile
both false alarm and missing rate are dropping. STT+SVM
further refines the classification performance and yields a

6Topic Transition 4+ Logistic Regression. One can also view
TT model as a Bayesian HMM, where a Dirichlet prior is
added on each latent state.

slightly higher accuracy and lower false alarm and miss-
ing rate. Moreover, by incorporating supervised informa-
tion into topic model, STT finds a better latent space that
can be used to predict topics and class labels, which yields
better accuracy than TT+LR. This result further shows the
effectiveness of our training algorithm. When the number of
topics increase to 80, STT and STT4+SVM enjoy impressive
performance on three evaluations. Bi+SVM seems compar-
ative with STT, yet it suffers from lower accuracy and higher
false alarm rate. Uni+SVM keeps lowest missing rate which
is surprising at the first glance, however, it is understand-
able with such a high false alarm rate. LDA+SVM gives a
poor performance on multi-class task, which is only slightly
better than Uni+SVM. Generally, the Markov family mod-
els, even a trivial bigram model, enjoy better accuracy in the
task. This is due to such models can capture the sequen-
tial relationship between system calls, which are crucial in
malware detection. On the other hand, the LDA model and
unigram model are based on the bag-of-words assumption
without encoding any sequential information. Apparently,
only the pure co-occurrences information is not sufficient to
express the behavior of a program, thus LDA and Unigram
models result in poor accuracy. Moreover, we figured out,
that LDA overfits at 40 topics. This also suggests that STT
which combines aspects of both generative and discrimina-
tive classification, can handle more latent features than a
purely generative model.

We also emphasize that precisely classifying malware is still
a difficult problem. As depicted in Fig. 6, one can observe
that almost all models failed to distinguish between Back-
door, Trojan and Others. Despite the internal similarity of
these three kinds of programs, the accuracy might be in-
creased by using more elaborate features rather than topic
transition frequencies.

3.3 Parallel Performance

Having demonstrated STT’s promising performance for the
malware classification task, we parallelize it to gain speedup.
We created four artificial data sets with 10,000, 20, 000,
40,000 and 80,000 documents respectively, where each doc-
ument consists of 1000 words. We trained STT on these data
sets with 10 topics. The training is conducted on a Linux
machine with 8 CPUs, each 2.7 Ghz and 64GB of memory
in total. The average runtime of 50 iterations is recorded.

Fig. 7 shows the average time for one iteration as a function
of the number of processors. By increasing the number of
processors, we can significantly reduce the training time. For
instance, for the collection of 80,000 documents, the parallel
STT model achieved approximately linear speedup of 7.4 on
up to 8 processors. We also notice that the speedup is get-
ting less effective, when the size of collection is getting small.
This is observable for instance on 10,000 documents, where
the model yields a speedup of 4.6 on up to 8 processors. This
phenomenon can be attributed to the IO overhead. Recall,
that after each Gibbs sampling, a number of gradient de-
scent steps are performed. After each gradient descent step,
the worker nodes write the local gradient V!? on the disk.
The master node calculates the global gradient V and writes
the updated 6 on this disk. The worker nodes then load the
new 0 and perform another step of gradient descent. When
D is small, the computation of the local gradients does not
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Comparisons using confusion matrices.

Labels on the left are true labels (from top to bot-
tom: Harmless, Email-worm, IM-worm, IRC-worm,
Net-worm, Backdoor, Trojan and Others), labels at
the bottom are predicted labels in the same order.
Higher value represents better accuracy. The num-
ber of topics in STT, TT and LDA is fixed to 80.
The average accuracy is computed by averaging of

the diagonal values.
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Figure 7: Scaleup result on artificial data for differ-
ent document sizes.

take too much time, whereas frequent 1O operations become
a bottleneck of the training algorithm.

4. CONCLUSION

We have developed a new probabilistic topic model which
is capable to recover the sequential patterns and perform
malware classification simultaneously. This is achieved by
jointly modeling sequences and class labels in the same la-
tent space. Our training algorithm that alternates between
Gibbs sampling and gradient descent is straightforward and
easy to be extended. Comparing to previous approaches, we
performed pattern discovery and malware classification in a
single coherent model, rather than a stepwise pipeline. Ex-
periments on a real-world data set suggested that the topics
found by our approach are interpretable, and can be used to
detect malicious programs. The comparative study showed
that the our model outperforms other popular models on
this classification task. Furthermore, we parallelized the
training algorithm and demonstrated scalability with vary-
ing numbers of processors. In summary, our presented re-
sults are promising and underpin the effectiveness of prob-
abilistic models for this kind of problem domain. Future
work can address the scalability problem by means of online



learning”. Furthermore by modeling higher-order dependen-
cies of the system calls, deeper insights into the nature of
malware can be obtained.

5. REFERENCES

[1] D. Blei and J. McAuliffe. Supervised topic models.
NIPS, 20:121-128, 2008.

[2] D. Blei, A. Ng, and M. Jordan. Latent dirichlet
allocation. JMLR, 3:993-1022, 2003.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[4] M. Girolami and A. Kaban. Sequential activity
profiling: latent Dirichlet allocation of Markov chains.
Data Mining and Knowledge Discovery, 10(3):175-196,
2005.

[5] T. L. Griffiths, M. Steyvers, D. M. Blei, and J. B.
Tenenbaum. Integrating topics and syntax. In NIPS,
volume 17, pages 537-544. MIT Press, 2005.

[6] A. Gruber, M. Rosen-Zvi, and Y. Weiss. Hidden topic
markov models. In AISTATS, 2007.

[7] M. D. Hoffman, D. M. Blei, and F. Bach. Online
learning for latent dirichlet allocation. In NIPS, 2010.

[8] T. Hofmann. Probabilistic latent semantic analysis. In
Uncertainty in Artificial Intelligence (UAI), pages
289-296. Morgan Kaufmann, 1999.

[9] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, 6:151-180, 1998.

[10] S. Jha, C. Wang, D. Song, and D. Maughan, editors.
Malware Detection. Advances in Information Security.
Springer, 2007.

[11] J. Z. Kolter and M. A. Maloof. Learning to detect and
classify malicious executables in the wild. JMLR,
7:2721-2744, 2006.

[12] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed inference for latent dirichlet allocation.
NIPS, 20:1081-1088, 2007.

[13] M. Steyvers and T. Griffiths. Probabilistic topic
models. In T. K. Landauer, D. S. McNamara,

S. Dennis, and W. Kintsch, editors, Handbook of
Latent Semantic Analysis, chapter 21, pages 427-448.
Lawrence Erlbaum Associates, 2007.

[14] H. M. Wallach. Topic modeling: beyond bag-of-words.
In ICML, pages 977-984, 2006.

[15] X. Wang, A. McCallum, and X. Wei. Topical n-grams:
Phrase and topic discovery, with an application to
information retrieval. In ICDM, pages 697-702, 2007.

APPENDIX

Gibbs Sampling Derivation

We follow the notations declared in Table 1. The Gibbs
Sampler draws a value to each latent variable by zq,; ~
P(z4,4|W,24,:),¥, @, 5,0), where _(4;) indicates that the
corresponding datum has been excluded. Our goal is to de-
rive this distribution. We can rewrite the above probability

"Recently Hoffman et al. [7] proposed an online learning
approach for latent Dirichlet allocation.

using Bayes Rule as:
P(W7 Z7 y|a7 B? 9)
P(Wﬁ(d,i)vzﬁ(d,i)7y|a7579)A
(5)
The problem now reduces to derive the joint probability
P(w,z,y|a, 8,0). The tricks of this manipulation are tri-
partite. Firstly, we introduce co-occurrence counters m. ,
and ng . . to replace the multinomial distributions. Sec-
ondly, we take advantage of conjugate prior to simplify the
integrals. Moreover, the Euler integral® is used to make all
remained integrals into product. We show that:
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Finally, we have to show the full conditional probability of
z4,; by substituting equation 6 in equation 5. Using chain
rule and I'(z) = (x — 1)I'(x — 1), an obvious reduction of
fraction yields:
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