
Open-TEE - An Open Virtual Trusted Execution
Environment

Peng Xu

April 29, 2019



Table of Contents

I Introduction

I Background

I Design

I Evaluation

I Conclusion



Introduction

I Why we need hardware-based TEEs?

I TEEs are programmable (TPMs/HSMs)

I Application developers have lacked the interfaces to use
hardware-based TEE functionality

I Software development kits are proprietary or expensive

I Open-tee

1. Not intended to emulate a hardware TEE
2. Compile and run Trusted Application successfully on any

TEE-compliant targets



Introduction

I Why we need hardware-based TEEs?

I TEEs are programmable (TPMs/HSMs)

I Application developers have lacked the interfaces to use
hardware-based TEE functionality

I Software development kits are proprietary or expensive
I Open-tee

1. Not intended to emulate a hardware TEE
2. Compile and run Trusted Application successfully on any

TEE-compliant targets



Background - Structure

I Rich Execution Environment (REE)

I Trusted Execution Environment (TEE)

I Trusted Application (TA)

I Client Application (CA)



TEE architectural options

I Co-Processor
I External Security co-processor: outside of main System on

Chip (SoC)
I Embedded Security co-processor: embedded into the main SoC

I Processor Secure Environment



TEE architectural options

I Co-Processor
I External Security co-processor: outside of main System on

Chip (SoC)
I Embedded Security co-processor: embedded into the main SoC

I Processor Secure Environment



TEE architectural options

I Processor Secure Environment
I ARM TrustZone
I Intel Software Guard Extensions (SGX)



Why Open-TEE?

1. Enable to utilize TEE functionality

2. Provide a fast and efficient prototyping environment

3. Promote research into TEE Services

4. Promote community involvement



Architecture of Open-TEE

1. REE Client API and TEE Core API

2. Requirements

2.1 Compliance and ease-of-use
2.2 Hardware-independence
2.3 Reasonable Performance



Architecture of Open-TEE



Architecture of Open-TEE - Base

1. A process that encapsulates the TEE functionality as a whole

2. Loading the configuration

3. Preparing the common parts of the system

4. Forking two processes: Manager and Launcher



Architecture of Open-TEE - Manager

1. Open-TEE’s operating system

2. Manager’s responsibilities:

2.1 Managing connections between applications
2.2 Monitoring TA state
2.3 Providing secure storage for a TA
2.4 Controlling shared memory regions for the connected

application



Architecture of Open-TEE - Launcher

1. Creating new TA processes

2. Loading TEE Core API library

3. Waiting commands from Manager



Architecture of Open-TEE - TA Processes

1. Each process is divided into two threads

2. Inter-process Communication (IPC) thread

3. TA logic thread



Evaluation

1. Hardware-independence

2. Performance

2.1 Disk and Memory consumption
2.2 Build and Run performance

3. Ease to use



Questions?


