
A Tough call: Mitigating Code-Reuse Attacks
On The Binary Level

Anonymous

Institute of Informatics
Technische Universität München, Germany

anonymous@in.tum.de

December 15, 2018

Abstract. Binary-level control-flow integrity, unlike source-level solu-
tions which can accurately infer the targets of indirect callsites and de-
tect malicious control-flow transfers, is weak in determining the set of
valid targets for indirect control flow transfers on the forward edge. How-
ever, considering that source code is not always available, offering similar
quality of protection at binary level is of importance.
In the paper, the researchers propose binary-level analysis techniques
to considerably reduce the number of possible targets for indirect call-
sites. Furthermore, they reconstruct a conservative approximation of tar-
get function prototypes by means of use-def analysis at possible callees.
What’s more, they come up with liveness analysis at each indirect call-
site to derive a many-to-many relationship between callsites and target
callees with a much higher precision compared to existing binary-level
solutions. This prototype,TypeArmor, has achieved some goals such as it
successfully breaks published COOP exploits.
In this report, I will describe this powerful binary-level CFI solution
published by S&P in 2016, and then compare it with other binary-level
solutions as well as source-level solutions.

1 Introduction

Extracting an accurate Control Flow Graph from the binary level is an unde-
cidable problem. As the CFG is the main requirement for control flow integrity,
this makes CFI at the binary level hard in practice. In this case, most existing
binary-level CFI methods choose to base their invariants on an approximation
of the CFG, which leaves enough chances for attackers to launch successful ex-
ploits.
The goal of this solution is not that all possible attacks can be stopped: even
the strictest CFI solutions with access to source code are unable to guarantee
one hundred percent protection against all possible attacks. Nevertheless, the
solution, TypeArmor, the binary-level protection prototype, can stop all COOP
attacks published to date and considerably raise the bar for an adversary. It
is worth noting that. TypeArmor provides strong mitigation for many types
of code-reuse attacks for programs binaries, without requiring access to source



code.
TypeArmor deploys a forward-edge CFI strategy that relies on conservatively
reconstructing both callee invariants and callsite invariants and it uses this in-
formation to restrict that each callsite only targets matching functions strictly.
For instance, it is not allowed for a callsite to call a function that the number of
argument the function consumes is more than the number of arguments the call-
site prepares. Additionally, TypeArmor deploys a novel protection policy, term
as Control-Flow Containment, which further reduces the possible target set of
callees for each callsite.
In this report, I will first give a high-level overview of this solution TypeAr-
mor, then I will explain in more detail about it when it comes to static analysis
as well as runtime enforcement. Next, I will list its achieved success including
how completely it stops COOP exploits against IE, Firefox and Chrome. Also, I
will display some COOP extension, which could be further work of TypeArmor.
Then I will further my report to have a comparison between TypeArmor with
other binary-level CFI solutions as well as source-level prototypes. Finally, I will
summarize this prototype and come to a conclusion.

2 Overview

In this section, I will first introduce a high-level overview of TypeArmor and
then explain how TypeArmor impacts COOP exploits.

2.1 What is TypeArmor

As the author introduces that TypeArmor deploys a combination of two type-
based control-flow invariants: target-oriented invariants and callsite-oriented in-
variants, resulting in a strict forward-edge protection strategy. It is worth noting
that the callsite-oriented invariants have not been explored at binary level be-
fore, while target-oriented invariants are based on traditional CFI policies. Here
TypeArmor enforces callsite-oriented invariants through a novel containment
technique which termed as Control-Flow Containment(CFC). [1]
To be more specific, TypeArmor only allows that indirect callsites that set at
most max arguments cannot call functions that consumes more than max ar-
guments. Additionally, TypeArmor ensures that indirect callsites that expect a
return value, which in other words, is non-void callsites, can never target a callee
of type void.
In order to be conservative and support existing program functionality, Ty-
peArmor ’s callsite analysis may only report an overestimation of the number
of prepared arguments, on the other hand, the callee analysis should report only
underestimation.

2.2 How does it impact COOP

TypeArmor ’s CFC enforces a maximum number of arguments prepared at a
callsite and scrambles the unused registers, resulting in a severe impact on the



ability of an attacker to enable data flow between gadgets. [2]
Furthermore, TypeArmor ’s CFI implementation reduces the target set of the
virtual function calls by the main-loop and recursive gadgets considerably. Gen-
erally, it prohibits any forward edges to functions that expect more arguments
than the callsite prepares.

3 Static Analysis

Static analysis in TypeArmor aims to detect (i) the minimum number of con-
sumed arguments at possible callees, (ii) the maximum number of prepared ar-
guments at indirect callsites, and (iii) non-void callsites and void callees.

3.1 Callee Analysis

The callee analysis focuses on collecting state information on each registers to
determine if they are used for passing arguments or not. The state of a register
can be distinguished as the following classes: read-before-write(R), which means
data are always read from this register before new data are written to it, write-
before-read(W),which indicates that this register is always written to before it is
read, or clear/untouched(C), which means this register is never read or written
to.

Step 1) Forward Analysis
The analysis starts at the entry basic block of an address-taken function
and iterates over the instructions to determine the state of registers.
If all argument registers are determined either R or W, the analysis
terminates. Otherwise, a recursive forward analysis starts until the block
has no outgoing edges.
A recursive analysis loops over all outgoing edges of the basic block to
get a pointer to the next basic block to analyze. Depending on different
types of edge, which can be categorized into direct calls, indirect calls,
return instructions, and regular outgoing edges, different operations will
be followed.

– Direct calls: For direct calls, the next basic block to analyze is the
entry block of the target function.

– Indirect calls: The analysis cannot statically infer the target of the
indirect calls. Due to conservative principle, it is assumed that the
target writes all arguments, which means all registers are in W state,
and thus stops the recursion.

– Returns: For return instructions, we pop a fall-through basic block
from the stack and use it as the next basic block in the analysis. An
empty stack indicates the end of the analyzed function and termi-
nates the recursive analysis.

– Other: We handle other edge types in the same way: the targets of
the edge are set as the next basic blocks in the analysis.



Step 2) Merging Paths
The set of states Si(i = 1, 2, ...n), which is returned by TypeArmor static
analysis for a basic block B, means that it has n outgoing edges. Each
state, which is a vector, represents argument registers’ states for each
edge i. TypeArmor combines these vectors into a superstate S. Due to
conservative principle, the state of a certain register can only be R in S
if the state is R in every Si .

Step 3) Counting Arguments
”Once the recursive analysis converges to a definite state for the entry
basic block of a function, the argument count is set using the highest
argument register that is marked as R.” The author describes this step
very simple, and it is pretty straightforward. Due to calling conventions
in x86, where the sequence of using is rdi, rsi, rdx, rcx, r8, r9, it means
that if r9 is in state R, the previous five registers are all used, thus
we conclude this function expects 6 arguments, otherwise we continue
determining r8’s state.

3.2 Callsite Analysis

TypeArmor detects over each indirect callsite and does a backward static anal-
ysis to detect how many argument registers will be set at a specific callsite.
The states of argument registers can be categorized into two types: set(S) or
not(T,trashed).

1) Backward Analysis
TypeArmor starts the analysis at the basic block that contains the indirect
call, and iterates over preceding instructions for determining the argument
registers’ states. If all argument registers are S, TypeArmor terminates the
analysis and assumes that the callsite prepares the maximum number of ar-
guments, otherwise TypeArmor starts a recursive backward analysis.
Similar to what happened to forward analysis in callee, which basic block will
be detected next depends on different edge type.
– Direct calls: For direct calls, the preceding basic block to analyze next

is the basic block where the direct call originated. Once the backward
analysis reach the entry block of the function which contains the inspected
callsite, an inter-procedural backward analysis at all the callers of this
function is initiated.

– Indirect call: Since indirect call targets cannot be resolved statically, there
are no indirect call edges.

– Return: When there is a return edge, it means the currently analyzed
basic block has a predecessor that performs a function call. As a result,
traversing further in this path is stopped and all remaining argument
registers are marked as T.

2) Merging Paths
Path merging for the callsite backward static analysis is simpler than what
needs to be done in callee analysis. For all collected states of the incoming



basic blocks, T always supersedes S.
Similar to the forward analysis, once the recursive analysis is finished, the
number of prepared arguments is set based on the states of the last write
operations.

3.3 Return Values

It is more precise for TypeArmor’s CFI implementation to add information
about return value. ”If we find a callsite that expects a return value (a non-void
callsite), it should never target a callee that does not prepare a return value
(void functions),” It will add protection strength for TypeArmor to restrict the
incompatible matching.
Defining return usage information of a certain callee and callsite analysis is also
conservative, which means a void callsiite is allowed to target both void and
non-void callees.

1) Non-void Callsites: By seraching for read-before-write operations on the reg-
ister that holds return values (rax for the System V ABI), a callsite is void or
not can be defined. In short, by applying the forward analysis starting from
the callsite and only for rax.

2) Void Callee: Contrast to detecting non-void callsites, we apply the previously
introduced backward analysis at the exit points of a function. The backward
analysis only searches for write operations on rax which may indicate a set
return value.

4 Runtime Enforcement

After discussing how TypeArmor analyze callee and callsite statically, we have a
look at how TypeArmor provide security guarantees at runtime in this section.
The runtime enforcement is composed by three parts:(i) shadow code memory
preparation, (ii)CFI enforcement, and (iii) CFC enforcement.

1) Shadow Code Memory Preparation
The shadow code is an exact copy of the original code that also contains
the instrumentation of the callsites, where program execution is actually per-
formed.
Whenever reaching an indirect callsite during normal program execution, the
instrumentation code at this location performs an integrity check between
the type of the callsite and the type of the callee. If the types are compatible
with each other, the callsite is allowed to target the callee, otherwise it is not
allowed to perform.
We perform the integrity check by retrieving and processing the function’s
label, located right before the function entry point in the original code region.
By using this shadow code memory, there is no need to worry the label will
overwrite code.



2) CFI Enforcement

”TypeArmor instruments binaries for enforcing that callsites can only target
functions with a compatible type.” This essentially means TypeArmor only
allow (i) a callsite with a higher number of prepared arguments target all the
functions that any callsite with a lower number of prepared argument can
also target, but not vice versa, and (ii) a callsite that expects a return value
can only target functions that return a value, however, a callsite that does
not set a return values can target both functions that are void and non-void.
I will describe callee instrumentation and callsite instrumentation separately.

1) Callee instrumentation: We add a label of each address-taken function.
There are seven possible labels: from no argument (0) to all arguments
(6). Therefore, we use a 3-bit representation. In addition, we use one more
bit at the lowest position to represent whether the function returns a value:
we use 1 to encode void functions and 0 for non-void functions. For exam-
ple, we represent the bits of a non-void function that has four arguments
as 1000.
As the author describes, in order to have a unique combination of four
bytes that does not occur at any other code location, they choose 0xCC-
CCCC40 as the base label and use the four least signicant bits to encode
the function type.

2) Callsite instrumentation: At each callsite, TypeArmor ’s runtime compo-
nent inserts a check to determine if the callee is of compatible type for the
callsite to target. It does so by retrieving the callee’s label, decoding the
type and check if the result is compatible with the callsite. To be more
specific, the instrumented check does the following:

Step 1) Get the address of the function.
Step 2) Point into the original code region.
Step 3) Read the target’s memory.
Step 4) Perform xor instruction with the base label to get the function

type.
Step 5) For non-void callsites, make sure that the last bit is 0.
Step 6) Using an unsigned comparison, check compatibility.

3) CFC Enforcement

As a new terminology, the author introduces that CFC is what they use for
scrambling unused registers at indirect callsites. For example, consider an
address-taken function f that accepts five arguments, but for which TypeAr-
mor conservatively concludes that it accepts at least two arguments. Now,
consider an indirect callsite cs for which TypeArmor assumes that it sets no
more than three arguments. By enabling CFC, TypeArmor instruments cs in
such a way that the last three argument registers are initialized with a ran-
dom value at the callsite, which we term it as scrambled. Without enforcing
CFC, cs is allowed to target f. However, with CFC in place, it will not change
the fact that it is still allowed for cs to target f, but what it really does is that
when the function set the last three argument registers, which are already
been scrambled, the program is about to crash.



5 In practice

In this section, we first discuss advanced code-reuse attacks in more detail,
COOP in particular. Then, we will have a specific example of how TypeAr-
mor stops practical COOP exploits for Internet Explorer, Firefox and Chrome.
Next, we will discuss about the Control Jujutsu exploits. And then we will dive
into other possibilities of COOP exploitation. Finally, we will talk about pure
data-only attacks.
From this table below provided in the paper, we can conclude a short summary
of how TypeArmor addresses recently published code-reuse attacks.

Exploit Stopped? Notes

IE(32-bit) 7 Out of scope
IE(64-bit) 3 Argcount mismatch

Firefox 3 Argcount mismatch

Chrome 3 Argcount mismatch,
Void target where non-void was expected

Apache 3 Target function not address-taken
Nginx 3 Void target where non-void was expected

1) Effectiveness against COOP
As summarized in the COOP paper, there are three ways for data flow as
explained as concluded in COOP paper:(i) data flow using unused argument
registers, (ii) data flow using overlapping counterfeit object fields or global
variables, and (iii) data flow by relying on arguments actually passed to the
callee. The first way is called implicit data flow, and the remaining two ways
are called explicit data flow.
In COOP paper, the last two methods are proved hard to practice in reality,
so we can conclude that COOP relies on unused argument registers to enable
data flow between gadgets. We are interested in how many of those spurious
arguments remain when TypeArmor is in place.
From a test of accuracy of TypeArmor compared to the ground truth for
different server applications, it can determine the exact number of prepared
arguments for 103 out of 130 indirect callsites (geometric mean). Even though
this percentage is fairly promising enough, the missing 27 callsites are still
dangerous and could be used by attackers to allow data flow. But with Ty-
peArmor in place, the attack surface is limited drastically.

2) Stopping COOP Exploits in Practice

1) Exploit on 64-bit IE: There are two ways for exploiting against 64-bit IE
which are published in COOP paper. Both exploits start with the same



main loop. For the callsite, TypeArmor will detect that it set at most one
argument, however, for the callee, which is a series of gadgets, most of
them will need two arguments. In this case, TypeArmor will not allow
this callsite to target this callee, which successfully stops the exploit.

2) Exploit on 64-bit Firefox: We examined COOP’s exploit on Firefox and
also we can find the main loop gadget prepares only one argument, how-
ever, functions always expect at least two arguments. This means that
TypeArmor successfully stops the Firefox COOP exploit.

3) Exploit on Chrome: There are two reasons why TypeArmor successfully
stop exploit on Chrome. One is that we find that three consecutive gadges
use rsi to pass data. However, the second indirect call prepares only one
argument, which means that TypeArmor ’s CFC enforcement scrambles
data stored in rsi and thus stops the exploit.
Another is the first indirect callsite is non-void, but it tries to target a
void function, which is not allowed with TypeArmor in place.

3) Control Jujutsu
The two Control Jujutsu exploits combine data and control-flow diversion
attacks: the authors assume a restricted memory write to prepare a certain
state, followed by overwriting a function pointer. The new function pointer
still targets a function entry, but one that can use the prepared state to give
the attacker control over the program.
With TypeArmor in place, first, the attack against Nginx diverts a non-void
callsite to target a void function will be not allowed. Second, the attack
against Apache HTTPD diverts a callsite to invoke a target function that
does not have its address taken, which is also what TypeArmor does not al-
low.

4) COOP possible Extensions
As we are already armed with the knowledge that there are three ways for
data flow in COOP: using unused registers, using overlapping counterfeit ob-
ject fields or global variables as well as using arguments actually passed to
the callee. According to the COOP paper, implicit data flow is always key
to successful exploitation: in many cases, main-loop gadgets and recursive
gadgets prepare only few arguments for the callsite, leaving the attacker with
many registers she can use for date flow. On the other hand, explicit data
flow is characterized by enabling data flow using actual arguments to the
vfgadget.
TypeArmor does effectively prevent implicit data flow. However, if TypeAr-
mor fails to determine the exact argument count a callsite prepares, an at-
tacker might be able to use the discrepancy to enable data flow, the attack
surface is limited drastically.

5) Pure Data-only Attacks
The Control-Flow Bending (CFB) paper evaluates the general effectiveness
of ideal CFI solutions and evidences their limitations against sophisticated



CFG-aware attacks. As any other CFI solution, TypeArmor cannot stop pure
data-only attacks. Through author’s communication with the author of CFB,
author says in paper:”the CFB authors shared their exploit notes for the pre-
sented Apache and Wireshark attacks; two attacks that work even in the pres-
ence of a runtime shadow stack and ultimately overwrite a function pointer
at some point during the exploit”.Obviously, TypeArmor as any other CFI
solution, it cannot stop pure data-only attacks.

6 Performance and security analysis

TypeArmor is implemented on Linux for x86 64. In order to evaluate the im-
pact of TypeArmors instrumentation on runtime performance, they measured
the time to complete the execution of the benchmarks and compared against
the baseline. The baseline refers to the original version of the benchmark with
no binary instrumentation applied. The result as published is that conguration
introduces a noticeable performance impact (7.6% on average, geometric mean),
owing to about half of the applications executing millions of indirect callsites
per second.
In all, ”TypeArmor imposes a relatively low runtime performance impact on all
the test programs considered”, as the author puts it. And we are safe to say that
this lightweight instrumentation is successful in producing a runtime overhead
that is comparable to, or even faster than existing binary rewriting-based CFI
solutions.
The security analysis covers the following concerns:(i) callee and (ii) callsite
analysis, (iii) the median number of legal indirect callsite targets as enforced by
existing (binary-level) address-taken-based solutions and TypeArmors policies.
The static analysis results turns out to be very accurate in identifying the exact
number of used arguments (79% for callsites and 83% for callees, respectively,
geometric mean).

7 Other binary-level solutions

By learning other binary-level solutions which are published, there is an auto-
mated method that is published to identify virtual function call sites in C++
binary applications based on an intermediate language and backward slicing,
which enables us to determine the potential attack surface for use-after-free vul-
nerabilities in binary executables implemented in C++. [3]
It presents a generic binary rewriting framework for PE executables with low
overhead called PeBouncer that we utilize to implement integrity policies for
virtual call sites.
It is worth noting that it is the first to present virtual table integrity protection
for binary C++ code without the need for source code, debugging symbols, or
runtime type information. Furthermore, it shows that towards vtable integrity



protection (T-VIP) protects against sophisticated, real-world use-after-free re-
mote code execution exploits launched against web browsers, including zero-
day exploits against Microsoft Internet Explorer and Mozilla Firefox. A perfor-
mance evaluation against GCCs virtual table verification feature with micro-
and macro-benchmarks demonstrates that our approach introduces a compara-
ble performance overhead.

8 Source-level solutions

With the access to source code, there is no doubt that solutions at source level
will be more precise and more reliable. Here I summarize two main source-level
solutions compared to solutions at binary level. I will first start with SAFEDIS-
PATCH, and then describe another source-level solution,

1) SAFEDISPATCH
SAFEDISPATCH[4] addresses the growing threat of vtable hijacking, an en-
hanced C++ compiler that prevents such attacks. SAFEDISPATCH first per-
forms a static class hierarchy analysis (CHA) to determine, for each class c in
the program, the set of valid method implementations that may be invoked by
an object of static type c. It uses this information to instrument the program
with dynamic checks, ensuring that all method calls invoke a valid method
implementation according to C++ dynamic dispatch rules at runtime. By
carefully optimizing these checks, it is likely to reduce runtime overhead to
just 2.1% and memory overhead to just 7.5% in the first vtable-safe version
of the Google Chromium browser which we built with the SAFEDISPATCH
compiler.
In summary, this solution makes the following contributions:

(a) It is a comprehensive defense against vtable hijacking attacks. We detail
the static analysis and compilation techniques to efficiently ensure control
flow integrity through virtual method calls.

(b) The detail of implementation of SAFEDISPATCH as an enhanced C++
compiler is already applied to the entire Google Chromium web browser
code base to evaluate the effectiveness and efficiency of this approach.

2) Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM
This paper [5] presents implementations of two mechanisms that provide
forward-edge CFI protection, one in LLVM and one in GCC. We also provide
a dynamic CFI analysis tool for LLVM which can help find forward edge
control-flow vulnerabilities. These CFI implementations are fully integrated
into their respective compilers and were developed in collaboration with their
open source communities. They do not restrict compiler optimizations, oper-
ation modes, or features, such as Position Independent Code (PIC) or C++
exceptions. Nor do they restrict the execution environment of their output
binaries, such as its use of dynamically-loaded libraries or Address Space
Layout Randomization (ASLR). The main contributions of this paper can be
concluded in three:



(a) It is the first CFI implementations that are fully integrated into produc-
tion compilers without restrictions or simplifying assumptions.

(b) It shows that our CFI enforcement is practical and highly efficient by
applying it to standard benchmarks and the Chromium web browser.

(c) It resolves the major challenges in the development of a real-world CFI
implementation that is compatible with common software engineering
practices.

Constraining dynamic control transfers is a common technique for mitigat-
ing software vulnerabilities. This defense has been widely and successfully
used to protect return addresses and stack data; hence, current attacks in-
stead typically corrupt vtable and function pointers to subvert a forward edge
(an indirect jump or call) in the control-flow graph. Forward edges can be
protected using Control-Flow Integrity (CFI) but, to date, CFI implemen-
tations have been research prototypes, based on impractical assumptions or
ad hoc, heuristic techniques. To be widely adoptable, CFI mechanisms must
be integrated into production compilers and be compatible with software-
engineering aspects such as incremental compilation and dynamic libraries.

9 Conclusion

In this report, I describe TypeArmor in detail according to the paper. In general,
TypeArmor relies on binary-level static analysis to derive both target-oriented
and callsite-oriented control-flow invariants and efficiently apply security poli-
cies at runtime, and thus stop code-reuse attacks bt disallowing calls between
incompatible types.
In addition, TypeArmor relies on callsite-oriented invariants to invalidate illegal
function arguments at each callsite and contain attacks that rely on type-unsafe
function argument reuse, using a protection technique dubbed Control-Flow
Containment. CFC further improves the quality of our target-oriented invari-
ants, resulting in the strictest binary-level CFI solution to date.
The author of COOP paper questioned whether it is even likely to mitigate ad-
vanced code-reuse attacks at binary level, apparently, TypeArmor contrasts this
doubt. According to testing, TypeArmor is able to stop all published COOP
exploits.

References

1. V. van der Veen et al. A Tough call: Mitigating Advanced Code-Reuse Attacks At
The Binary Level. In S&P , 2015

2. F. Schuster et al. Counterfeit Object-oriented Programming: On the Difficulty of
Preventing Code Reuse Attacks in C++ Applications, In S&P , 2015

3. R. Gawlik, T. Holz. Towards Automated Integrity Protection of C++ Virtual Func-
tion Tables in Binary Programs Anual Computer Security Applications Conference
(ACSAC), 2014.



4. D. Jang, Z. Tatlock, S. Lerner. SAFEDISPATCH: Securing C++ Virtual Calls from
Memory Corruption Attacks Symposium on Network and Distributed System Se-
curity (NDSS), 2014.

5. C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson, L. Lozano, G.
Pike. Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM USENIX
Security Symposium, 2014


