
Return-into-libc without Function Calls (on the
x86)

Peng Xu

October 29, 2018

Table of Contents

I Introduction

I Problem

I Design

I Implementation

I Conclusion

Introduction

I Software-development with C/C++
I Memory Corruption

I Stack overflow
I Buffer overflow

I Code Injection Attacks

I Code Reuse Attacks

Introduction

I Software-development with C/C++
I Memory Corruption

I Stack overflow
I Buffer overflow

I Code Injection Attacks

I Code Reuse Attacks

Introduction - Code Injection
I Function-level
I External code injecting

Introduction - Code Injection
I Function-level
I External code injecting

Introduction - Code Reuse
I Function-level
I Internal code reuse

Introduction - Code Reuse
I Function-level
I Internal code reuse

Problem

I Removing certain functions from libc

I Changing the assembler’s code generation choices

I Defense against code reuse attacks

Design

I Return-oriented programming - ROP

I Instruction-level - gadgets
I Discovering useful instructions sequences in Libc

I Useful code sequence
I Ending with a ret instruction
I Boring instructions

Design

I Return-oriented programming - ROP

I Instruction-level - gadgets
I Discovering useful instructions sequences in Libc

I Useful code sequence
I Ending with a ret instruction
I Boring instructions

Design - ROP

Design - GALILEO Algorithm

Gadget - Load/Store
Loading a Constant

pop %reg; ret

Gadget - Load/Store
Loading from Memory

movl 64(%eax), %eax; ret

Gadget - Load/Store
Storing to Memory

movl %eax,24(%edx); ret

Gadget - Arithmetic and Logic
Add

addl (%edx),%eax; push %edi; ret

Gadget - Arithmetic and Logic
Shifts and Rotates

roll %cl, 0x17383f8(%ebx);ret

Gadget - Control Flow
Unconditional Jumps

changing the value of %esp to point to a new gadget
pop %esp; ret

Gadget - Control Flow
Conditional Jumps

Phase One: Clear CF if %eax is zero, set CF if %eax is nonzero.

Gadget - Control Flow
Conditional Jumps

Phase Two: Store either 1 or 0 in the data
word labeled “CF goes here,” depending on whether CF is set or not.

Gadget - Control Flow
Conditional Jumps

Phase Three: part one: Convert the word (labeled “CF here”) con-
taining either 1 or 0 to contain either esp delta or 0. The data
word labeled 0xbadc0ded is used for scratch.

Gadget - Control Flow
Conditional Jumps

Phase Three: two: Apply the perturbation in the word labeled
“perturbation here” to the stack pointer. The perturbation is
relative to the end of the gadget.

Gadget - System Calls

System call’s number

Implementation
Buffer overflow

I Buffer overflow vulnerability

I No randomization

I No stack-protector

Implementation
Steps

I @.data (@ of .data for to place some strings)

I int $0x80 (for execute our payload)

I mov %eax,(%ecx) — pop %ebp — ret (for mov eax into
buffer)

I inc %eax — ret (for increment eax to up to 11)

I pop %edx — pop %ecx — pop %ebx — ret (for pop address)

I pop %eax — pop %ebx — pop %esi — pop %edi — ret (here
just pop %eax will be useful)

I xor %eax,%eax — ret (for put %eax to zero)

Questions?

