
TRUSTSHADOW:
SECURE EXECUTION OF UNMODIFIED APPLICATIONS

WITH ARM TRUSTZONE

14.11.2018

Florian Olschewski

1

OUTLINE

1) Introduction

2) Trustzone

3) Threat Model

4) Overview

5) Runtime System

6) Implementation

7) Evaluation

8) Future Work

2

1) INTRODUCTION

▪Rapid evolution of IOT-Devices

▪Problem: compromised OS

▪Leak of sensitive Data

▪TrustShadow(TS): shields applications from untrusted OS

▪TS uses ARM-Trustzone

▪Normal world →OS

▪Secure world → TEE : critical application

▪Secure world is managed by a leightweight runtime system(RTS)

▪Forwards system calls + verifies responses

3

2) TRUSTZONE - ARCHITECTURE

▪Partition of SoC- hardware + software in secure and normal world

▪Processor can enter normal and secure state

▪Normal state: access to resources in normal world

▪Secure state: access to all resources

▪To check permissions: Non-Secure bit

▪Monitor mode software to switch between the worlds

4

2) TRUSTZONE - ADDRESS SPACE CONTROLLER +
MEMORY MANAGEMENT UNIT(MMU)

▪Set-up security access permissions for address regions

▪Controls data transfer between processor and Dynamic Memory Controller

▪NS-bit must equal the security setting of memory region

▪MMU: Translation of virtual to physical addresses

▪Memory splitted in 2 worlds → 2 MMU’s for independent memory mapping

▪Normal world: only access to memory in non-secure state

▪Secure world: access to both memory states by tuning NS-bit

5

3) THREAT MODEL

▪Shielding applications from completely hostile OS

▪Memory disclosure

▪Code injection attacks

▪Change program behavior

▪Side channel attacks (e.g. observe page fault pattern)

▪No prevention for

▪DoS-attacks: OS refuses to boot / decline time slices for a process

▪Side channel like timing and power analysis

6

4) OVERVIEW

▪Trusted application:

▪Customized system call:

▪„zombie“ HAP: normal world, never
scheduled „shadow“ HAP: secure world,
ran by TrustShadow

▪RTS forwards exceptions to Linux

▪Data structures task_shared / task_private

7

Figure 1: Architecture of TrustShadow

5) RTS - MEMORY MANAGEMENT

▪3 partitions of physical memory:

▪Non-secure: ZONE_NORMAL – Linux OS

▪Secure: ZONE_TZ_RT – for runtime system

ZONE_TZ_APP – shadow-HAP‘s

▪Virtual memory:

▪ user/kernel memory split of secure world equals Linux

→ execution of legacy code in secure world

▪RTS maps itself to ZONT_TZ_RT

▪maps memory holding Linux in the virtual address space

→efficiently locate shared Data from OS

8

Figure2: physical + virtual memory layout

5) RTS - FORWARDING EXCEPTIONS

Exception handling of ARM-Processors:
1. Pc points exception vector table

2. store previous cpsr to spsr

▪Every processor mode has its own spsr
register (banked Register)

3. Setting cpsr to indicate the target mode

▪Spsr reveals information of pre-exception
processor mode

Reproduction by RTS (e.g. svc)

1. Set spsr in monitor mode to represent target
mode (svc)

2. Switch to target mode (svc) + set it’s spsr to
represent User-Mode

3. Switch back to monitor mode

4. Issue movs instruction
 Jump to target exception handler

 Copy spsr from current mode in cpsr

→OS catches exception at correct address +
in the right mode (svc, step1)

→Spsr indicates: exception comes from user mode
(step 2)

9

current program status register (cpsr)

saved program status register (spsr)

5) RTS - HANDLING PAGE FAULT

▪Exception by MMU → no page table entry for accessed memory

▪OS maintains page tables

▪RTS maintains own page table in secure world

▪Uses Linux page fault handler for updating

▪For TS, the Linux handler was modified: it stores the updated entry value to task_shared

Basic Page Table update:

▪Anonymous memory

▪RTS verifies that the provided entry of task_shared is within ZONE_TZ_APP

▪RTS duplicates page table entry

10

5) RTS - HANDLING PAGE FAULT

11

Figure3: PageTableUpdate with integrity check

5) RTS - HANDLING PAGE FAULT

12
Figure4: PageTableUpdate for Protected Files

5) RTS - INTERVENING SYSTEM CALLS

▪OS has no access to user data from shadow HAP

▪system call parameters are values → RTS forwards them directily

▪Pointers: RTS marshals them in a world shared buffer

→OS gets temporary access to the system call parameters

▪procedures for signal handling and coordinating Futex

▪Defeating Iago Attacks

▪Manipulate return of system call → leak used for return oriented programming

▪RTS checks the results for memory overlaps

▪ If one is found: → HAP is killed

13

5) RTS - INTERNAL EXCEPTION HANDLING

Floating Point Computation

▪Multiple processes enter VFP – Linux maintains VFP context for each process

▪Leaks User Data

▪RTS duplicates code handling VFP

Random Number Generator

▪Random numbers very important for cryptographic operations

▪OS should not know key materials

▪RTS utilizes on-board hardware RNG4

14

5) RTS - MANIFEST DESIGN

▪Each HAP is bundled with a manifest

▪Provides meta data for security features

▪Per application secret key

▪ Integrity metadata (vaddr, hash)

▪List of filenames that should be protected

▪Manifest is stored on persistent storage

▪Encrypt per-application key by per-device public key

▪Append digital signature

15

6) IMPLEMENTATION

Normal World – changes on linux

▪Added parameter to indicate ZONE_TZ_APP -> pages for HAPs come from this region

▪Added a flag -> OS can distinguish HAPs

▪New System call to start HAPs

▪Changed ret_to_user -> OS pass execution back to shadow instead of zombie

▪Hooked page fault handler

▪Modifeid code handling signals

→ 300 LOC

16

6) IMPLEMENTATION

Secure World

→ 4.5 k LOC in C + 0,8k LOC of assembly

▪Applicable for manual review or formal verification

▪In addition: secure boot mechanism

17

7) EVALUATION

Microbenchmarks

▪Overhead imposed by system
calls

▪Ran each benchmark with 1,000
iterations -> took average

18

7) EVALUATION
File Operations

▪128 files, each 8Mb

▪Sequential + random write

▪Caching disabled

▪File protection on → high overhead

▪Encryption + hashing

▪Solution: better cryptographic
engine

19

7) EVALUATION

Embedded Web Server

▪ Impact on real world application

▪Respond with HTML files in different size

▪Small files: reduce troughput ~ 6-10%

▪Big files: only ~2% from 256 kb

▪HTTPS: TS-overhead overwhelmed by
intensive cryptographic operations

▪Latency: almost no overhead

20

8) FUTURE WORK

Remaining Attack Surface

▪DoS-attacks: process sceduling / start application in normal world

▪Manipulation of Manifest
▪Roll-back attack possible

▪Future: version number in manifest

▪Side channel attacks still are possible
▪ It is possible to adopt known techniques for prevention

▪E.g. cryptographic libraries like OpenSSL

▪Physical attacks
▪Solution: store sensitive data on SoC components: harder to compromise

▪Future: extend iRAM

21

THANK YOU

22

BACKUP

23

SECURE BOOT

24

