
Blender
Self-randomizing Address Space Layout for Android Devices



Background: Security Mechanisms
- Since 1.5: ProPolice (Stack Protectors):

- Random number between local variables and return pointer
- Return is not executed if number is overwritten

- Since 2.3: DEP (Data Execution Prevention)/NX (Not eXecutable):
- Memory pages are never marked as both executable and writable

- Since 4.0: ASLR (Address Space Layout Randomization):
- base addresses of stack, heap, system and dynamic libraries are randomized

- Since 4.1: PIE (Position Independent Executable)
and RELRO (Relocation Read-Only)



Background: Recap: ROP
- whenever a function is called, the later next instruction is pushed on the stack
- if there is a buffer overflow you can overwrite this value (return pointer)
- this makes it possible to hijack the programs control flow
- the attacker can chain together many addresses on the stack (ROP chain)
- these addresses are called ROP-gadgets and together make a new program 

logic



Background: Android Attack Surfaces
- weakened ASLR:

- the zygote process forks itself for every started app, memory layout is inherited
- therefore memory layout is shared between all running apps and predictable

- ART vs. DalvikVM:
- ART (Android RunTime) as the successor of the DalvikVM
- the ART loads well defined native API code into the memory
- base address of the ART code section is not randomized sufficiently

- malicious apps:
- a malicious app could read the shared memory layout, stack cookie secrets etc.
- this can happen with full authorization of the user

- high number of ROP-gadgets:
- preloaded libraries, ART



Blender: Structure
- Blender bootstrap module

- takes over startup of the app, invokes other modules

- Blinker (Blender dynamic linker)
- rearranges preloaded libraries and loads other libraries to randomized addresses

- BlenderLRM (Blender Library Randomization Module)
- organizes rearrangement of preloaded libraries

- BlenderART (Blender ART Randomization Module)
- rearranges the ART native code to a randomized address



Blender: Implementation - BlenderLRM
- most system libraries are dynamically linked
- linking happens with the creation of the zygote process
- dependencies between libraries -> no simple relocation
- computation of dependency graph
- relocate library and fix all references to all GOT entries of the library



Blender: Implementation - BlenderART
- fix all absolute addresses before relocation:

- find all absolute addresses with Google’s “oat_patch” tool
- rewrite addresses for all found patches
- patch metadata of the oat-header and section headers

- fix the Class Linker Data Instance
- method tables also contain absolute addresses

- mark the old memory region as non-executable
- cannot be fully unmapped because there are still absolute data-pointers



Blender: Performance Evaluation
- high increase in average memory entropy:

- 0.005 vs 0.991 for original app vs full Blender

- increases startup overhead noticeably:
- increases startup time by almost one second
- only affects (cold) startup, not runtime
- highly optimizable with pool of pre-relocated libraries

- negligible memory and battery consumption overhead



Conclusion
- the zygote app creation process weakens ASLR on android

- together with the new ART this creates many unnecessary threats

- the methods proposed in this paper could mitigate them effectively


