SEMINAR: SECURITY IN AUTOMOTIVE AND INDUSTRIE 4.0 INTRODUCTORY MEETING 01.02.2018

Alexander Kiening, Alexander Giehl

{alexander.kiening | alexander.giehl}@aisec.fraunhofer.de

About Fraunhofer AISEC

- Head: Prof. Dr. Claudia Eckert, Prof. Georg Sigl
- Employees: 70
- Research and Development:
 - Embedded Security, Smartcard & RFID Security
 - Product Protection
 - Cloud & Service Security
 - Network Security
 - Automotive Security
 - Smart Grid & CPS
 - Security Evaluation
 - Security Engineering

General Information

- Type of course
 - Master Seminar
 - 5,0 ECTS
 - Module in "Distributed Systems, Networks and Security"
 - Course at Chair for IT Security, I20 (Prof. Eckert)
- Requirements
 - Knowledge of lecture "IT Sicherheit"

- 01.02.2018 (today)
 - Organizational information
 - Topic presentation and assignment of preferred topics
- From 09.02.2018 to 14.02.2018
 - Registration via DocMatching (http://docmatching.in.tum.de/)
- 21.02.2018
 - Automated assignment of courses
- Until 23.02.2018
 - Possibility to withdraw from the seminar
 - Not attendance after this point is graded with 5.0
- Until 15.03.2018
 - Response from organizers with assigned topic

- 15.03.2018 26.04.2018
 - Kickoff meeting with the supervisor at Fraunhofer AISEC
- 15.03.2018 30.05.2018
 - Preparation of the (final) draft version of the written report
 - Language: English
 - Format: Latex (LNCS Style), 15-20 pages
 - Delivery of the draft written report until 9:00 at 30.05.2018

30.05.2018 - 08.06.2018

- Review of two written reports
 - Similar to the review process of a scientific conference
 - Using a given review form
 - Evaluation of two written reports
 - Delivery of the reviews until 9:00 at 08.06.2018
- 09.06.2018 18.06.2018
 - Preparation of the final written report
 - Revision on the basis of three reviews (two from students, one from the supervisor)
 - Delivery of the final written report until 9:00 at 18.06.2018

- **18.06.2018 22.06.2018**
 - Slide preparation
 - Delivery to the organizers until 9:00 at 22.06.2018
- Until 25.06.2018
 - Comments on the slides from the supervisor
- 26.06.2018 05.07.2018
 - Revision of slides (if necessary)
 - Delivery of final slides to the organizers until 9:00 at 05.07.2018
- 06.07.2018
 - Oral presentations (room 01.08.033)
 - Length (25 minutes + 5 minutes discussion)
 - Additional details will be given later

Any time

- Questions to the supervisor via Email
- Face-to-face meetings (appointment via Email)

Grading

- Final grade consists of:
 - Draft version of the written report (30%)
 - Reviews (15%)
 - Final version of the written report (20%)
 - Presentation (25%)
 - Discussion (10%)

- 1. Security incidents in automotive
- 2. Security incidents in industry
- 3. Security protocols and the OSI stack
- 4. Security in Industrial Ethernet protocols
- 5. Comparison of hardware security modules
- 6. Secure multicast communication
- 7. Automotive operating systems
- 8. Security in internal industrial networks
- 9. Security in external industrial networks
- 10. [Student topics]

Topics

- 1. Security incidents in automotive
 - Provide on overview of security-related attacks on automotive components
 - Which types of attacks have been executed?
 - Which approach did the individual attackers take?
 - What did they try to achieve with the attack?
 - Have they been successful or not?
 - Why did the attack fail or succeed?
 - What was the impact of the attack?
 - How did the OEMs react?
 - Give two detailed discussions of individual attacks
 - Provide a possible security solution to prevent this attacks in the future

Topics

- 2. Security incidents in industry
 - Provide on overview of security-related attacks on industrial facilities/components
 - Which types of attacks have been executed?
 - Which approach did the individual attackers take?
 - What did they try to achieve with the attack?
 - Have they been successful or not?
 - Why did the attack fail or succeed?
 - What was the impact of the attack?
 - How did the plant/factory operators react?
 - Give two detailed discussions of individual attacks
 - Provide a possible security solution to prevent this attacks in the future

- 3. Security protocols and the OSI stack
 - Introduction to security protocols
 - TLS
 - MACsec
 - IPsec
 - other relevant protocols?
 - Provide a comparison of advantages/disadvantages across OSI stack layers
 - Focus on security and security-related features
 - Give an evaluation of security protocols in regard to their usage in embedded systems
 - Focus on the automotive and/or industrial domain

- 4. Security in Industrial Ethernet protocols
 - Provide an introduction to Industrial Ethernet protocols
 - Powerlink
 - Profinet
 - Ethercat
 - etc.
 - Compare the advantages/disadvantages of the researched protocols
 - Discuss the relevance of the protocols in industrial use cases
 - Possible application areas, market share, etc.
 - Perform an evaluation of security in these Industrial Ethernet protocols
 - Sketch possible improvements in regards to security

- 5. Comparison of hardware security modules
 - Provide an overview of different HSMs
 - Different standards and implementations
 - Trusted Platform Module (TPM), and many more
 - Compare the features of the researched HSMs
 - Develop or use an existing taxonomy for HSMs
 - Provide an evaluation towards the usage of the researched HSMs in regard to their application in automotive and industrial use cases
 - Are there any automotive/industrial components deployed with HSMs?
 - What are the possible use cases for HSMs?
 - etc.

- 6. Secure multicast communication
 - Introduce the problem of secure multicast communication
 - Provide an overview of possible techniques for secure multicast communication
 - Are there any reference implementations or real world use cases available?
 - Sketch use cases in respect to automotive and industrial settings for secure multicast
 - Evaluate the researched secure multicast techniques towards their application in automotive and industrial settings

- 7. Automotive operating systems
 - Provide an overview on automotive operating systems and their security related features
 - QNX
 - AUTOSAR Classic and Adaptive Platforms
 - and other relevant OSs
 - Perform an evaluation of the researched OSs in regards to their security features
 - Sketch possible attacks on these OSs and provide an outline for improvements

- 8. Security in internal industrial networks
 - Provide an overview on the industrial communication stack
 - "Automation pyramid" (ERP, MES, SCADA, SPS, I/O layers)
 - Develop a reference architecture of a typical automation setup within a factory
 - The reference architecture should be based on one or more business cases/specific examples
 - Provide an evaluation of security-critical aspects in this reference architecture
 - Sketch possible improvements in regards to security to this architecture

- 9. Security in external industrial networks
 - Provide an overview on business cases facilitating interconnection along the value chain
 - Develop a reference architecture of a typical automation setup within a factory
 - The reference architecture should be based on one or more business cases and should provide specific examples
 - Sketch how to implement a secure connection of factories with each other
 - Evaluate possible approaches towards the protection value they provide and towards their feasibility in respect to the provided business cases/examples

10. [Student topics]

- Possibility to provide your own suggestions for topics
- The suggested topics need to
 - be focused on security
 - in the domains automotive or automation/manufacturing
 - or related areas in which case a motivation needs to be provided why this area is chosen
 - and cannot be solely literature research
- Topics suggestions via email prior to registration via DocMatching
 - If you suggested topic has not been approved by the supervisors, no claim on this topic is provided by us

Contact

Alexander Kiening Alexander Giehl

Fraunhofer AISEC Parkring 4 85748 Garching (bei München)

E-Mail: alexander.kiening@aisec.fraunhofer.de alexander.giehl@aisec.fraunhofer.de Internet: http://www.aisec.fraunhofer.de

