
Chair of IT Security
Department of Informatics
Technical University of Munich

Protecting C++ Dynamic Dispatch Through VTable Interleaving

Benjamin Zanger

Technical University of Munich

Department of Informatics

Chair for IT Security

Munich, November 19, 2018

Chair of IT Security
Department of Informatics
Technical University of Munich

Outline
Dynamic Dispatch in C++

Virtual Functions in C++

VTable Hijacking

Protecting Dynamic Dispatches
VTable Ordering
VTable Interleaving
Multiple Inheritance
Optimization

Benchmarks

Comparison with other Approaches

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 1

Chair of IT Security
Department of Informatics
Technical University of Munich

Virtual Functions in C++

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 2

class A {
public :
void f0 () { }
virtual void f1 () { }
virtual void f2 () { }
int i n t_ in_A ;

} ;

class B : public A {
public :
void f1 () { } //override f1
int i n t_ in_B ;

} ;

Chair of IT Security
Department of Informatics
Technical University of Munich

Multiple Inheritance

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 3

class A1 {
public :
void f0 () { }
virtual void f1 () { }
int i n t_ in_A1 ;

} ;

class A2 {
public :
virtual void f2 () { }
int i n t_ in_A2 ;

} ;

class B : public A1 , public A2 {
public :
void f1 () { } //override f1
int i n t_ in_B ;

} ;

Chair of IT Security
Department of Informatics
Technical University of Munich

VTable Hijacking
• Exploting memory corruption, for example use after free.
• VTables are stored in read only memory, vptr in writable memory.
• Changing vptr to take control over program flow.
• Either code injection or reuse attacks possible.

Assumptions made by the authors:
• Hacker capable of modifying the Heap.
• Registers are safe.

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 4

Chair of IT Security
Department of Informatics
Technical University of Munich

Protecting Dynamic Dispatches
• Most strategies use Inline Reference Monitors (IRMs) before dynamic dispatch calls.
• Example for semantic of IRMs:

vptr ∈ {0x08, 0x20} (1)

⇒ Differences are in the implementation.

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 5

Chair of IT Security
Department of Informatics
Technical University of Munich

VTable ordering (OVT)
• Preorder traversal of the class hierarchy.
• Padding added, so that VTable addresses are 2n Bytes aligned.
• Address point ranges are stored.
• Example1:

1Bounov, Kici, and Lerner 2016.

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 6

Chair of IT Security
Department of Informatics
Technical University of Munich

VTable Ordering (OVT)
• Simple range check and alignment check before dispatch call.

Problems of VTable Ordering:
• Takes more memory than necessary because of padding.
• Especially an issue in systems with limited memory (embedded systems).

⇒ VTable Interleaving

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 7

Chair of IT Security
Department of Informatics
Technical University of Munich

VTable Interleaving (IVT)
• Interleaving of different VTables, by making them sparse, to save memory.
• Saving different functions offsets.
• Example2:

2Bounov, Kici, and Lerner 2016.

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 8

Chair of IT Security
Department of Informatics
Technical University of Munich

Handling Multiple Inheritance
• Multiple Inheritance can be decomposed into several single inheritances.
• Each single inheritance is managed individually.

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 9

Chair of IT Security
Department of Informatics
Technical University of Munich

Implementation of IRMs
• Checking necessary if vptr ∈ [a, b] and vptr mod 2n = 0.

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 10

Trivial implementation:
cmp $vptr , $a
jlt FAIL
cmp $vptr , $b
jgt FAIL
and $vptr ,1111 . . . n
cmp $vptr , 0
jne FAIL
. . . ;Success

Enhanced implementation:
$ d i f f = $vp t r − $a
$ d i f f R = r o t r $ d i f f , n
cmp $d i f fR , ($b−$a) >> n
jgt FAIL
. . . ;Success

Chair of IT Security
Department of Informatics
Technical University of Munich

Benchmarks
• Implemented approaches into the LLVM compiler.

3Bounov, Kici, and Lerner 2016.
4Bounov, Kici, and Lerner 2016.

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 11

Runtime overhead3: Binary size overhead4:

Chair of IT Security
Department of Informatics
Technical University of Munich

Other Approaches
• Other compiler based techniques (SafeDispatch5, VTV6).
→ Similar runtime and binary overhead.

• General CFI which protect all control transfers (also normal function pointers and returns).
→ Bigger runtime overhead.

5Jang, Tatlock, and Lerner 2014.
6Tice et al. 2014.

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 12

Chair of IT Security
Department of Informatics
Technical University of Munich

References
Bounov, D., R. G. Kici, and S. Lerner (2016). “Protecting C++ Dynamic Dispatch Through VTable Interleaving.”. In: NDSS.
Jang, D., Z. Tatlock, and S. Lerner (2014). “SafeDispatch: Securing C++ Virtual Calls from Memory Corruption Attacks.”. In:
NDSS.
Tice, C. et al. (2014). “Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM.”. In: USENIX Security Symposium,
pp. 941–955.

Benjamin Zanger | Protecting C++ Dynamic Dispatch Through VTable Interleaving 13

	Dynamic Dispatch in C++
	Virtual Functions in C++

	VTable Hijacking
	Protecting Dynamic Dispatches
	VTable Ordering
	VTable Interleaving
	Multiple Inheritance
	Optimization

	Benchmarks
	Comparison with other Approaches

