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Virtual Functions in C++
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class A {
public :
void f0 ( ) { }
virtual void f1 ( ) { }
virtual void f2 ( ) { }
int i n t_ in_A ;

} ;

class B : public A {
public :
void f1 ( ) { } //override f1
int i n t_ in_B ;

} ;
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Multiple Inheritance
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class A1 {
public :
void f0 ( ) { }
virtual void f1 ( ) { }
int i n t_ in_A1 ;

} ;

class A2 {
public :
virtual void f2 ( ) { }
int i n t_ in_A2 ;

} ;

class B : public A1 , public A2 {
public :
void f1 ( ) { } //override f1
int i n t_ in_B ;

} ;
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VTable Hijacking
• Exploting memory corruption, for example use after free.
• VTables are stored in read only memory, vptr in writable memory.
• Changing vptr to take control over program flow.
• Either code injection or reuse attacks possible.

Assumptions made by the authors:
• Hacker capable of modifying the Heap.
• Registers are safe.
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Protecting Dynamic Dispatches
• Most strategies use Inline Reference Monitors (IRMs) before dynamic dispatch calls.
• Example for semantic of IRMs:

vptr ∈ {0x08, 0x20} (1)

⇒ Differences are in the implementation.
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VTable ordering (OVT)
• Preorder traversal of the class hierarchy.
• Padding added, so that VTable addresses are 2n Bytes aligned.
• Address point ranges are stored.
• Example1:

1Bounov, Kici, and Lerner 2016.
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VTable Ordering (OVT)
• Simple range check and alignment check before dispatch call.

Problems of VTable Ordering:
• Takes more memory than necessary because of padding.
• Especially an issue in systems with limited memory (embedded systems).

⇒ VTable Interleaving
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VTable Interleaving (IVT)
• Interleaving of different VTables, by making them sparse, to save memory.
• Saving different functions offsets.
• Example2:

2Bounov, Kici, and Lerner 2016.
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Handling Multiple Inheritance
• Multiple Inheritance can be decomposed into several single inheritances.
• Each single inheritance is managed individually.
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Implementation of IRMs
• Checking necessary if vptr ∈ [a, b] and vptr mod 2n = 0.
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Trivial implementation:
cmp $vptr , $a
jlt FAIL
cmp $vptr , $b
jgt FAIL
and $vptr ,1111 . . . n
cmp $vptr , 0
jne FAIL
. . . ;Success

Enhanced implementation:
$ d i f f = $vp t r − $a
$ d i f f R = r o t r $ d i f f , n
cmp $d i f fR , ( $b−$a ) >> n
jgt FAIL
. . . ;Success
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Benchmarks
• Implemented approaches into the LLVM compiler.

3Bounov, Kici, and Lerner 2016.
4Bounov, Kici, and Lerner 2016.
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Runtime overhead3: Binary size overhead4:
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Other Approaches
• Other compiler based techniques (SafeDispatch5, VTV6).
→ Similar runtime and binary overhead.

• General CFI which protect all control transfers (also normal function pointers and returns).
→ Bigger runtime overhead.

5Jang, Tatlock, and Lerner 2014.
6Tice et al. 2014.
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