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ABSTRACT
Android is the most dominant operating system in the mobile
ecosystem. As expected, this trend did not go unnoticed by mis-
creants, and quickly enough, it became their favorite platform for
discovering new victims through malicious apps. These apps have
become so sophisticated that they can bypass anti-malware mea-
sures implemented to protect the users. Therefore, it is safe to admit
that traditional anti-malware techniques have become cumbersome,
sparking the urge to come up with an efficient way to detect An-
droid malware. In this paper, we present a novel Natural Language
Processing (NLP) inspired Android malware detection and catego-
rization technique based on Function Call Graph Embedding. We
design a graph neural network (graph embedding) based approach
to convert the whole graph structure of an Android app to a vector.
We then utilize the graphs’ vectors to detect and categorize the
malware families. Our results reveal that graph embedding yields
better results as we get 99.6% accuracy on average for the malware
detection and 98.7% accuracy for the malware categorization.
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1 INTRODUCTION
Android is the most popular mobile operating system in the world.
Unfortunately, it has also become the leading target platform for
attackers. Adversaries use Android to launch millions of malicious
apps that dupe victims into revealing their private data or per-
forming malicious operations, such as spying on users’ actions,
propagating spam, or launching unwanted advertisements. At the
same time, Android malware investigation, which includes malware
detection and categorization, has become a crucial task for security
investigators. As a result, numerous research works have attempted
to detect Android malware [5, 7, 10]. Recently, a significant portion
of the proposed approaches leverages the contextual information of
Android applications. For example, Li et al. [7] presented a classifier
using the Factorization Machine architecture, where they extract
various Android app features from manifest files and source code.
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Similarly, Chen et al. [4] proposed an approach that analyzes An-
droid malware based on its static behavior that involves the use of
permissions, components, and sensitive API calls.

Although the above methods add an an extra security layer to
Android, they come with limitations. For instance, the contextual in-
formation struggles against malware obfuscation procedures. Such
examples are (𝑖) the Identifier Renaming, which replaces the pack-
ages, classes, or methods’ original values with random or encrypted
labels, (𝑖𝑖) theDead-Code Insertion, which inserts ineffectual instruc-
tions to a program to alter its appearance while maintaining its
behavior, and (𝑖𝑖𝑖) the Instruction Substitution, which replaces in-
structions with equivalent ones. These procedures cause changes
in the compiled code to evade detection. In addition, the previously
mentioned malware detection techniques have limitations in learn-
ing comprehensive program semantics to characterize malware of
high diversity and complexity. In terms of learning approaches,
they borrow techniques from the Natural Language Processing
(NLP), such as document embedding, to process the source code or
the dissembled binary files. However, in contrast with document
embedding, source code and dissembled binaries are more struc-
tural and logical than natural languages. Therefore, considering
the graph representation of source code and binary files, such as
Abstract Syntax Tree (AST), Control Flow, and Data Flow Graph, is
a reasonable method to preserve the structural and logical infor-
mation. Finally, adversarial machine learning can also evade some
of the widely-used malware detection techniques due to the low
complexity of the presented neural network structure, as most of
these networks leverage the manually specific features [11, 14, 15].

In this paper, we present an NLP inspired-method based on the
function call graph. It can detect obfuscated applicationswhilemain-
taining an excellent performance evenwhen it is under the influence
of adversarial examples. In brief, we first design the opcode2vec,
function2vec, and graph2vec components to represent instruc-
tion, function, and the whole program’s information with vectors.
We then feed the vectors of graph embedding into the classifier and
train it to differentiate between benign and malicious applications,
and finally identify the Android malware families. We evaluate our
approach on various datasets and show that it outperforms most
of the existing frameworks, as we get 99.6% accuracy for malware
detection and 98.7% accuracy for malware categorization.

In summary, we make the following main contributions:
• We introduce graph embedding for Android malware detec-
tion and categorization.

• We design and implement an NLP-inspired malware detec-
tion and categorization framework that can discover ob-
fuscated applications while defending against adversarial
machine learning.

• We evaluate the accuracy of our approach using real mali-
cious and benign datasets.
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Figure 1: Framework’s overall architecture

2 DESIGN
2.1 Overview
We want to develop a framework that leverages neural networks to
detect malicious Android applications. To achieve this, we first need
to transform the Android opcode, represented as text, to a vector.
Then we must continuously convert the functions to the corre-
sponding vectors by function embedding and the Android APK file
to a vector as well. Finally, we inject the generated graph embedding
into a Multi-Layer Perception (MLP) to perform the classification.
Figure 1 displays the overall architecture of our framework.

The framework takes an Android app as input and produces the
function call graph through static code analysis. The graph nodes
represent the functions in an application. Each function includes
several basic blocks, and each block includes various Dalvik op-
codes. After retrieving the opcodes’ embedding, we use the function
embeddings sub-module to convert those functions into function
vectors. The converted function vectors (node of the call graph)
then convert to a final vector by graph embedding, representing the
entire graph information. Finally, the framework detects the mali-
cious application through a 2-layer MLP network or classify it into
multiple groups such as DroidKungFu, Plankton, and FakeInstaller.

2.2 Opcode Embedding
To simplify the procedure, we replace the instruction (opcode and
operands) embedding with the opcode embedding, as the opcode
represents the behaviors of Dalvik’s instruction and the operands
represent the parameters. Dalvik’s operands are virtual registers in a
virtual machine. Those values are affected by the undergoing usage
of Dalvik VM or ART VM. Thus, we cannot enumerate them all.
Further, if several malware samples within the family use the same
malicious pattern, the opcode itself can capture these behaviors. In
theory, our opcode embedding method may suffer from the operand
removal problem [6]. One significant issue with that is that all the
Invoke-Virtual instructions1 have the same embedding vector, no
matter what are the targets of the Invoke-Virtual instruction.

For opcode embedding, or opcode2vec, we map each opcode
op𝑖 ∈ OP (i.e., OP stands for the whole Dalvik opcodes) to a vector
of the real number, using word2vec [9] with skip-gram. word2vec
is an excellent feature learning method, based on continuous bag-of-
word and skip-gram methods. The skip-gram uses the current op-
code to predict the opcodes around it. We trained our opcode2vec
model with a large corpus of opcodes extracted from real apps.
1All the calling instructions such as invoke-super, invoke-direct, invoke-static, and
invoke-interface suffer from the same problem.

2.3 Function Embedding
In this work, we treat the function embedding similar to the sen-
tence embedding. Overall, we introduce two methods to perform
the function embedding, which we describe as follows.

Weighted Mean Function Embedding. We utilize the weighted
mean of a non-empty finite multi-set of instruction’s opcode to cal-
culate the function embedding. Assuming the function 𝑓 includes
n-opcode and a 𝑙-dimensional vector represents each opcode, the
weight of the corresponding non-negative weights𝑤1,𝑤2, . . . ,𝑤𝑛

is obtained by calculating the average value. Weighted mean func-
tion embedding is an easy and straightforward way. However, this
weighted method skips the sequence of opcodes. Therefore, we de-
sign a follow-up method, which considers the sequence of opcodes.

SIF-Invoked Function Embedding. For this function embedding,
we utilize the SIF network [2]. We compute the function embedding
®𝑓 by using the sequence of opcodes’ vectors, which we get from the
opcode2vec method. Adapting from the natural language process-
ing, given the discourse vector 𝑐 𝑓 , the probability of instruction is
emitted in the function f is modeled by

𝑃𝑟 [𝑖 ∉ 𝑓 | ˜𝑐 𝑓 ] = 𝛼𝑝 (𝑖) + (1 − 𝛼)
𝑒𝑥𝑝 (< 𝑐 𝑓 , 𝑣𝑖 >)

𝑍 ˜𝑐 𝑓
, (1)

where ˜𝑐 𝑓 = 𝛽𝑐0 + (1 − 𝛽)𝑐 𝑓 , 𝑐0 ⊥ 𝑐 𝑓 , 𝛼 and 𝛽 are scalar hyperpa-
rameters, and𝑍 ˜𝑐 𝑓 =

∑
𝑖∈𝑓 𝑒𝑥𝑝 (< ˜𝑐 𝑓 , 𝑣𝑖 >) the normalizing constant.

2.4 Graph Embedding, Malware Detection and
Identification

After getting the function embedding, we take those generated
function embedding as the node embedding of the function call
graph; i.e., we perform graph embedding on function call graph
level. This way, we convert the graph representation to a vector
and take the vector as the neural network-based classifier’s input.

For the graph embedding, in our case, the vectors (nodes) of
graphs are functions, and the edges are connections among those
functions. Each vector (node) contains a set of opcodes inside it.
The function embedding constructs each node’s feature. Finally, a
𝑝-dimensional vector 𝜇𝑖 is associated with each vertex 𝑣𝑖 . We use
adapted structure2vec to update the 𝑝-dimensional vector 𝜇𝑡+1

𝑖
during the network training dynamically. The graph embedding
generates the vector embedding after all iterations, and we use
the average aggregation function as our last step to transform the
vector embedding to the graph-based function embedding.

After getting our graph embedding for function call graph, we
design a two-layer multi-layer layers perception (MLP) as our mal-
ware detection and malware categorization system. In our network,
malware detection is a binary classification issue. We label malware
samples as “1” and benign samples as “-1” at the training step. Dur-
ing testing, we treat all the predictions less than zero as benign and
the ones that are more than zero as malware.

𝑓 (𝐺ℎ) =< (< 𝑔𝑖 ,𝑤𝑖1 > +𝑏𝑖1),𝑤𝑖2 > +𝑏𝑖2 (2)

where𝑤𝑖1,𝑤𝑖2 ∈ 𝑅𝑝 is the weight of the 2-layer MLP network and
𝑏𝑖1, 𝑏𝑖2 ∈ 𝑅𝑝 is the offset from the origin of the vector space. In
this setting, a function call graph 𝐺ℎ is classified as malicious if
𝑓 (𝐺ℎ) > 0 and as benign if 𝑓 (𝐺ℎ) < 0.
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For the malware categorization, we divide this task into two sub-
tasks. The first one categorizes the malware samples without pre-
processing them.We label all the applications with a𝑁 -dimensional
one-hot vector. The “1” in the one-hot vector stands for the index
of the kinds of Android malware. We append one softmax layer,
like Equation 3, at the end of MLP and classify the malware to the
classification “n”, which stands for the type of malicious samples.
We treat malware categorization as a multi-class classification issue.

𝑓 (𝐺ℎ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (< (< 𝑔𝑖 ,𝑤𝑖1 > +𝑏𝑖1),𝑤𝑖2 > +𝑏𝑖2) (3)

Additionally, we enumerate the top-n largest malware families
as a pre-processing step and retrieve the malware dataset samples.
If the sample is from the indicated malware family, we label it as
“1”. Otherwise, we label it as “0”. With this assumption, we convert
the multi-class classification problem to binary classification.

3 EVALUATION
3.1 Datasets and Experimental Setup
For the evaluation, we utilize four different datasets: (𝑖) DREBIN [3],
(𝑖𝑖) AMD [12], (𝑖𝑖𝑖) PRAGuard [8], and (𝑖𝑣) AndroZoo [1]. Our dataset
includes 45,592 malware and 90,313 benign samples. We divide this
dataset into training and testing sub-datasets, with 80% of those
samples to be training samples and the rest 20% testing samples. For
themachine learning classifier setup, we use TensorFlow2 and scikit-
learn3. Finally, we train the network with AdamOptimizer and
squared difference cross-entropy, and use L2 loss as regularization.

3.2 Experiments
We evaluate our framework through two different tasks: malware
detection and malware categorization. For malware detection, we
divide our approach into three parts. First, we assess our system
with different hyper-parameters. We then compare our trained
system with baseline detection algorithms. Finally, we evaluate
the robustness of our framework by introducing the adversarial
machine learning. In the evaluation, we primarily present the results
based on the 64-bit vectors due to space limitation. However, this
is very easy to extend other sizes vectors such as 16, 32, 50, 100,
128. For malware categorization, we classify all malware samples
into their corresponding families. Meanwhile, we list the top-6 and
top-7 malware families and perform malware family classification
for those top families. In the following, we provide further details.

Malware Detection.We define the malware detection problem as
a binary classification task. That means we have only two types of
outputs: benign ormalware. Herewe evaluate themalware detection
performance using weighted mean function embedding, the SIF-
invoked function embedding, and the graph-based methods.

Hyper-parameters: To evaluate the convergence feature of our
module, we set the learning rate as {0.001, 0.01, 0.05, 0.1}, various
epochs between 5 and 20, t_iteration4 as {2, 3, 4}, and m_lv5 as
{2, 4}. Figure 2(a) illustrates the ROC of the different learning rate.
We found that various learning rates during the training have a
large influence on the testing data. With a learning rate of 0.1, our
2https://www.tensorflow.org/
3https://scikit-learn.org/
4one parameter for the graph embedding, which indicates the n-hop neighbors)
5embedding depth, the number of layers in graph deep network
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Figure 2: Hyper-parameters

framework only gets 74.4% AUC. With the learning rates of 0.01
and 0.001, the AUC will be 99.62% and 99.85%, respectively. For
various training epochs, Figure 2(b) shows the slight differences.
Figure 2(c) shows the differences with various t_iteration, under
the different epochs. In Figure 2(c), we notice that bigger t_iteration
gets better performance because we collect more information from
multi-hops. Finally, for the embedding depth, m_lv, our results are
the same with structure2vec, as displayed in Figure 2(d), which
indicates that the two-layers graph network is the best choice.
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lated work

Comparison: We com-
pare our frameworkwith
similar systems. We set
our hyper-parameters
learning rate as 0.001,
training epochs as 10,
t_iteration as 2, and
m_lv as 2. In more de-
tail, we compare the per-
formance of malware de-
tection with Drebin [3],
Droidmat [13], and Ada-
gio [5]. The ROC curves
of Drebin, Adagio, and our graph embedding are presented in Fig-
ure 3. With our graph embedding methods, we obtain nearly 99.8%
AUC of our dataset. To contrast with our method, we get 96.6%
AUC with the Drebin method and 89.85% with Droidmat on our
mixed dataset. Additionally, Adagio gets a lower AUC value, around
89.02%.6 Additional details can be found in Table 1. Ge-Mean, and
Ge-SIF show the results within our malware detection framework.

6The results of Adagio are a little different from the original work because of the mixed
datasets.
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Table 1: Comparison with other works ofmalware detection

Algorithm Accuracy (%) Precision (%) Recall (%) F1 (%) FPR (%)

Ge-SIF 99.86 99.75 99.75 99.42 0.7
Ge-Mean 99.74 99.92 99.63 99.78 0.4

Drebin 96.58 95.37 97.85 96.59 2.35
Droidmat 89.87 90.89 88.28 89.56 4.36
Adagio 95.0 91.07 100 95.32 5.0

Table 2: Detection rate of obfuscated APK

ClassEnc. StrEnc. Refl. Triv. Triv.-Str. Triv.-Ref.-Str. Triv.-Ref.-Str.-Class.

PRAGuard7 38.0 64.0 96 90.0 50.0 44.0 32.0
Drebin 99.12 98.99 86.58 98.32 98.99 99.32 96.98
Our framework 99.33 98.99 86.58 98.32 98.99 99.32 96.98

Result analysis: After getting the results of malware detection,
we analyze them and reconsider those values from several stand-
points. First of all, we do our evaluation under the inductive setting.
That means we have never seen the test instances during training.
Therefore, we do not have problems that indicate the testing dataset
influences the training procedure. On the other hand, we consider
the influence of the sizes of the samples. As a phenomenon, the
sizes of benign samples are generally larger than malware samples.
Therefore, various sizes of testing samples would influence the
results of the malware detection system. For example, one sizeable
benign sample may include the malicious sample’s function call
graph. As a consequence, our malware detection system will be
confused to detect real malware samples. To demonstrate this type
of influence, we split our dataset using samples’ sizes and evaluated
them with different sizes.
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Figure 4: ROC of obfuscated APK

Obfuscation: PRAGuard
mentions the influence
of obfuscated applica-
tions on Android mal-
ware detection. More
precisely, it presents
seven types of obfusca-
tion techniques and in-
fluenced performance.
We evaluate our frame-
work by the PRAGuard
dataset. The ROC is il-
lustrated in Figure 4. We compare the detection rate with PRAGuard
in Table 2. From the extracted results, we identify that obfuscation
does not influence our framework.

Malware Categorization. In contrast to the malware detection,
we divide the malware categorization into two subtasks: a multi-
class task and a binary classification issue. On the one hand, we
implement a pre-processing step to discover the top-6 largest mal-
ware families of the DREBIN dataset (with the limited space, we
did not put the AMD results of this sub-task (Table 3) to train and
classify those samples. Details about those top-N malware families
are shown in the second and third columns of Table 3. All samples
from the six largest malware families in the DREBIN set form the
first dataset.

Table 3: Family classification results

5-epoch 10-epoch

Family Samples Accuracy Precision Recall F1 FPR Accuracy Precision Recall F1 FPR

Mean

FakeInstaller 925 99.61 98.78 98.90 99.39 0.57 99.21 98.78 98.78 99.39 0.58
DroidKungFu 667 99.60 98.10 98.10 99.04 0.50 99.20 98.10 98.06 99.04 0.5
Plankton 624 99.65 92.31 92.31 96.00 0.37 99.29 92.31 92.31 96.0 0.37
Opfake 613 99.35 97.21 97.05 98.50 0.82 99.08 97.87 97.86 98.92 0.58
GinMaster 339 99.64 95.92 95.92 97.91 0.38 99.29 92.31 95.92 97.92 0.39
BseBridge 330 99.61 96.62 96.62 98.28 0.44 99.14 96.31 96.31 98.12 0.48

SIF

FakeInstaller 925 99.5 98.45 98.45 99.22 0.74 99.0 98.45 97.59 97.60 0.74
DroidKungFu 667 99.53 97.76 97.76 98.87 0.59 99.06 97.76 98.21 97.16 0.59
Plankton 624 99.64 92.59 92.59 96.15 0.37 99.29 92.59 97.18 97.30 0.37
Opfake 613 99.44 97.38 97.38 98.67 0.72 99.22 98.20 97.16 97.16 0.49
GinMaster 339 99.50 94.8 94.4 97.32 0.55 98.76 92.8 97.87 97.86 0.70
BseBridge 330 99.47 95.07 95.38 97.63 0.6 99.01 95.69 96.85 96.89 0.56

4 CONCLUSION
In this work, we present a graph embedding-based approach to
detect and categorize Android malware. Our method makes use
of natural language processing concepts, namely, word2vec, sen-
tence2vec, and document2vec. We represent Android applications
based on their function call graph. We train the graph embedding
model with a large dataset to differentiate between benign and ma-
licious applications and to identify the Android malware families.
Graph embedding is shown to be both efficient and effective, as our
framework outperforms several existing works.
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